0% found this document useful (0 votes)
308 views116 pages

IRGS Course

This document discusses intrusion-related gold deposits. It begins by classifying these deposits and comparing their characteristics to other deposit types. It then provides examples of intrusion-related gold deposits in the Tintina Gold Province, including the Fort Knox, Pogo, Ryan Lode, and True North deposits. The document discusses the deposit sizes, grades, host rocks, intrusion compositions, deposit styles, ages, and associated metal suites of these examples. Finally, it provides an overview of exploration models for intrusion-related gold systems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
308 views116 pages

IRGS Course

This document discusses intrusion-related gold deposits. It begins by classifying these deposits and comparing their characteristics to other deposit types. It then provides examples of intrusion-related gold deposits in the Tintina Gold Province, including the Fort Knox, Pogo, Ryan Lode, and True North deposits. The document discusses the deposit sizes, grades, host rocks, intrusion compositions, deposit styles, ages, and associated metal suites of these examples. Finally, it provides an overview of exploration models for intrusion-related gold systems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 116

INTRUSION-RELATED GOLD DEPOSITS

SE Europe Geoscience Foundation


Shortcourse

Dr Tim Baker
Economic Geology Research Unit, School of Earth Sciences, James Cook University
Townsville, QLD 4811, Australia
Ph: 61-7-47814756, Email: Timothy.Baker@jcu.edu.au
OVERVIEW

• Part 1: Classification, nomenclature & deposit


comparison

• Part 2: Examples: Tintina Gold Province

• Part 3: Other examples & exploration


INTRUSION RELATED GOLD DEPOSITS
CHARACTERISTICS
• Sillitoe (1991)
– Gold-rich porphyry deposits
– Epithermal & skarn in porphyry Cu environments
– Gold related to alkalic magmatism
– Mostly associated oxidized intrusions
– Intrusion related gold deposits in Sn-W terranes
(Thompson et al., 1999)
NOMENCLATURE
• Porphyry Au (Hollister, 1992)
• Fort Knox-style Au (Bakke, 1995)
• Intrinsic Au (Newberry et al., 1995)
• Plutonic Au (McCoy et al., 1997)
• Intrusion-related Au (Thompson et al., 1999)
• Granitoid Au (Goldfarb et al., 1999)
• Thermal aureole gold systems (Wall, 2005)
CHARACTERISTICS

• Intrusion related Au deposits in Sn-W terranes


• Metals
– Au, Bi, Te, W, Mo, As (Sb, Sn, Pb, Cu)

• Magmas
– Intermediate to felsic (wide range SiO2)
– I-type (crustal input, transitional S-type)
– Ilm>Mag
– W-Sn-Mo association

(Thompson et al., 1999)


CHARACTERISTICS
• Tectonic environment
– Continental setting, inboard, commonly late
• Age
– Phanerozoic (Precambrian – Archean?)
– Intrusions = mineralization
• Ore
– Au, Bi, Te, W, Mo, As (Sb, Sn, Pb, Cu)
– Reduced (no Mag-Hem), low sulfide (Po-Py-Apy)
• Style
– Sheeted, breccia, stockwork, flat-vein, disseminated

(Thompson et al., 1999)


LOCATION OF MAJOR
GRANITE RELATED GOLD DEPOSITS

(Lang & Baker, 2001)


Shallow-level examples

Porphyry-style examples

Type-examples

Pogo

GEOLOGICAL EXPLORATION MODEL


INTRUSION RELATED GOLD SYSTEMS IN Sn-W PROVINCES

(Baker et al., 2005a)


Metallogenic Region/ Granite SiO2 Granitoid Alumina saturation Accessory minerals
Association Deposit type wt % Series (in addition to zircon & apatite)

Sn-W-Bi Cornwall S 71-74 Ilmenite peraluminous ilmenite, monazite, andalusite,


topaz, fluorite

Sn-W-Bi Herberton I 73-77 Ilmenite peraluminous ilmenite, monazite, topaz, fluorite

Sn-W-Bi Fairbanks- I 71-77 Ilmenite peraluminous ilmenite, titanite, monazite,


Circle tourmaline, topaz

Sn-W Western I/S 70-74 Ilmenite peraluminous ilmenite, andalusite, pyrrhotite


Thailand
W-Sn-Mo Jiangxi S 66-76 Magnetite peraluminous magnetite, ilmenite, garnet,
monazite, tourmaline, fluorite

W-Cu-Mo E Yukon I 67-77 Ilmenite metaluminous to ilmenite, monazite, garnet,


peraluminous andalusite, allanite, tourmaline

W-Mo-Sn-Bi Altaid I 63-77 Magnetite metaluminous to magnetite, titanite, monazite,


orogenic belt peraluminous allanite, ilmenite

W-Mo-Bi-Sn Herberton I 56-72 Magnetite metaluminous to allanite, fluorite, ilmenite


peraluminous

W-Sn-Au Iberia I/S 62-76 Ilmenite metaluminous to cordierite, garnet, titanite,


peraluminous andalusite, sillimanite, tourmaline,
topaz

Au-Bi-W Tintina Gold I 50-74 Ilmenite metaluminous to ilmenite, titanite, allanite


Province peraluminous

Au-Bi-Mo Tasman Fold I 49-78 Both metaluminous to magnetite, ilmenite, titanite,


Belt peraluminous fluorite

Cu-Au-Mo SW Arizona I 48-79 Magnetite metaluminous to magnetite, titanite


peraluminous

(Baker et al., 2005a)


MAGMAS & METALS

10

7
Na2O + K2O (wt %)

6
Sn
5

4
W
3

2
Cu-Au, Au-(Bi)
1

0
50 55 60 65 70 75 80
SiO2 (wt %)

(Baker et al., 2005a)


MAGMAS & METALS

Cu-Au, Au-(Bi)

Sn

(Baker et al., 2005a)


MAGMAS & METALS

10
oxidised

Cu-Au W

1
Fe2O3/FeO

magnetite series
ilmenite series

0.1

Au-(Bi)
Sn
0.01 reduced
0.001 0.01 0.1 1 Rb/Sr 10 100 1000

(Baker et al., 2005a)


GRANITE Au-Bi & Sn-W COMPARISON
COMPARISON WITH OTHER ORE SYSTEMS

Epithermal/epizonal gold

Porphyry Cu-Au (PCD’s)

Skarn & sed-hosted Au


(Carlin-like)

Mesothermal/orogenic
gold
COMPARISON WITH OROGENIC GOLD
• Differences
– Metals: Au-As-Sb-(W-Bi-Te)
– Magma: Lacks spatial/temporal relationship
– Structure: Regional scale faults
– Ore: Py abundant
– Alteration: Varies: host rock/metamorphic grade
• Similarities
– Metals: Intrusion-hosted may have W-Bi-Te
– Magma: Lacks spatial/temporal relationship
– Structure: Deeper IRG have regional stress influence
– Ore: Low-mod sulfide, reduced Po-Asp
– Alteration: Albite, carbonate, quartz
– Fluids: Low salinity, H2O-CO2-(CH4)
EPITHERMAL/EPIZONAL GOLD
• Shallow-level IRG
• Donlin Creek, Brewery Creek, Korri Kollo

• Similarities: depth; As-Sb-Hg association


• Differences:
• General geological & tectonic environment
• LS – lack textures & wide structurally-controlled veins
• HS – lack acidic fluids & related-alteration features; low Cu
• Shallow IRG - High CO2 content to fluids

• Epizonal orogenic gold


• Less well defined
• Shallow IRG – spatial & temporal association with intrusions
SKARN & SED-HOSTED GOLD
• Parallels with reduced Au skarns (Meinert,2000)
– Part of total hydrothermal system
– Calcareous host rocks
– Associated with ilmenite series diorite to
granodiorite
– Reduced sulfide mineralogy; Au-Bi common

• Non-carbonate sequences may have links to


Carlin systems (Poulson et al, 1997)
COMPARISON WITH PCD’s

• Metals: Cu-Au-Fe-Pb-Zn-Ag-Mo
• Magmas: Oxidized I-type, higher Fe content
• Style: Multiple intrusions, stockwork & breccia
• Ore: High sulfide content, oxidized
• Alteration: Extensive, variety of types
• Fluids: High salinity, aqueous; carbonic rare
REDUCED PCD’s (Rowins, 2000)

• Most examples NOT Cu deposits

• Some overlap with shallow porphyry-hosted

environment (e.g. Shotgun but again no Cu)

• Also distinct from alkalic Au & Cu-Au systems

• More parallels with W-Sn-Mo systems


THERMAL AUREOLE GOLD SYSTEMS

(Wall, 2005)
OVERVIEW

• Part 1: Classification, nomenclature & deposit


comparison

• Part 2: Examples: Tintina Gold Province

• Part 3: Other examples & exploration


TGB EXAMPLES
Deposit Size Grade Country rocks Intrusion Deposit type Age Metal
(Mt) (g/t ) composition (Ma) suite
Tintina Gold Belt

z.
.o0.8
Fort Knox, Alaska 158 5 M Mica-quartz Porphyritic Sheeted veins 92 Bi, Te, Mo,
> schist granite As, Sb, W
Pogo, Alaska 10
M oz.
.~15 Gneiss Granite, aplite Flat lenses 107-92? Bi, Te, As,
> 5 Ag, Cu, Pb
Ryan Lode, Alaska 4.1 3.1 Quartz-mica Granodiorite Veins, breccia 90 As, Sb
schist
True North, Alaska 16.5 2.5 Schist & Granite Disseminated, 90 As, Sb, (Hg)
eclogite breccia
Dublin Gulch, 50.3 0.9 Qtz-bt & Granodiorite Sheeted veins 92 Bi, Te, Mo,
Alaska
M.oz. calcareous As, Sb, W,
~ 2 schist Pb
Brewery Creek, 13.3 1.4 Calcareous Monzonite, Disseminated, 91.4 As, Sb, (Hg)
Yukon schist syenite veinlets
Shotgun, Alaska ~1M.oz. Quartz-biotite Granite Stockwork 70 Ag, Bi, Mo,
schist Te, Cu
Donlin Creek, 111
M oz.
.2.9 Greywacke & Rhyodacite Veins, veinlets 70 Ag, As, Sb,
Alaska > 25 shale Hg

(Thompson et al., 1999)


TINTINA GOLD BELT
0 500
Tintina Gold Belt
kilometres
Tombstone Plutonic Suite

Tungsten P lutonic Suite


Major gold deposits
Gold occurrences
Fort Knox, Ryan Lode
& True North Alaska Yukon

Dublin
Pogo Gulch
Donlin Brewery
Creek Creek
Shotgun

Kula Kula
(85Ma) (56Ma) Farallon
(100Ma)

(Flanigan et al., 2000)


TECTONIC SETTING
• Central-eastern Alaska & Yukon
• Orthogonal subduction Farallon plate 115-100 Ma
• Continued subduction - dextral component 100-85 Ma
• Coincident magmatism – younging cratonwards
• Strong crustal component (NdT –7.6 to –15; 87Sr/86Sr 0.709-0.702)
• Kula plate oblique subduction,dextral strike-slip 85 Ma

• Western Alaska
• Magmatic arc 77 to 58 Ma
• Local N-S compression – plate reorganization ~ 70 Ma
• Kuskokwim magmatism – shallow at continental margin

(Flanigan et al., 2000; Goldfarb et al., 2000)


TINTINA GOLD BELT

(Goldfarb et al., 2000)


Shallow-level examples

Porphyry-style examples

Type-examples

Pogo

GEOLOGICAL EXPLORATION MODEL


TPS WESTERN YUKON
TINTINA GOLD BELT
0 500
Tintina Gold Belt
kilometres
Tombstone Plutonic Suite

Tungsten P lutonic Suite


Major gold deposits
Gold occurrences
Fort Knox, Ryan Lode
& True North Alaska Yukon

Dublin
Pogo Gulch
Donlin Brewery
Creek Creek
Shotgun

Kula Kula
(85Ma) (56Ma) Farallon
(100Ma)

(Flanigan et al., 2000)


FORT KNOX
FORT KNOX
FORT KNOX (7.2 M.oz.)
• Exploration & mining
– Placer gold 1902 in creeks down stream
– Au-W veins & skarns 1913 peripheral to FK
– Bismuthinite with Au 1980 proximal creeks
– Visible Au in granite 1984
– Advanced exploration 1987 to 1994
– Construction 1995; bulk tonnage open pit
– Production 1996; 169 Mt @ 0.93 g/t
– 1 M.oz. 1999

(Bakke, 1994)
FORT KNOX
• Intrusion Characteristics
Tombstone suite
Granodiorite to granite
Ilmenite series, I-type
Late aplites & pegmatites
Locally UST & brain rock textures
• Age
U-Pb 92 Ma - Intrusion
Ar-Ar ~88-86 Ma - Muscovite alt.
Re-Os 92.5 Ma -Molybdenite
(Bakke, 1994; Hart et al., 2001)
FORT KNOX

150m

Med.Granit e Schist

Coarse Granit e Shear Zone

(Bakke, 1994)
FORT KNOX (looking W)
N S

50 m

Schist Vein
Med.Granit e Shear Zone
Coarse Granit e
Pegmat it e

(Bakke, 1994)
FORT KNOX (looking W)

(Bakke, 2000)
FORT KNOX
• Vein Characteristics
Pegmatites & sheeted veins (min’l)
Overprinted quartz filled faults (min’l)
Au-Bi-Te-As-Sb-W-Mo (inc. deeper)
Sulfide <1% - Py, Po, Apy, Mo, Sch
• Ore Characteristics
Bi, Bi2S3, Bi2Te3
Free Au, ~111microns, >960 fineness
Au:Bi 0.86
(Bakke, 1994; McCoy et al., 1997)
FORT KNOX
FORT KNOX
FORT KNOX
FORT KNOX
• Alteration
Early Albite > K-feldspar
Quartz-Sericite-Carbonate
Regional propylitic & pyrite halo
• Fluids
Low salinity aqueous-carbonic
250-500°C @ >1.5kbar, >5km
Oxygen isotopes fluid 5 to 10 per mil
Sulphur isotopes 0±5 per mil

(Bakke, 1994; McCoy et al., 1997)


DUBLIN GULCH
DUBLIN GULCH (~2 M.oz.)
• Exploration
– Placer Au mining established 1895 – 1898;scheelite reported
– Rex-Peso Pb-Zn-Ag veins explored 1910
– Cassiterite found – Tin Dome (<0.3 % Sn)
– Au-W-Bi reported (Boyle, 1965)
– W-skarn targeted;soil sampling& mapping – 1970-1980
– Ray Gulch 5.4 Mt.@ 0.82 % WO3
– Gold in peripheral veins explored – 1986-1988
– 1991 to 1996 gold soil anomaly around Eagle Zone drilled

(Maloof et al, 2001)


DUBLIN GULCH
Biotite hornfels and calc-
silicate skarn aureole N

Granite and aplite


Granodiorite Ray
Gulch
Eagle
Zone

Peso-Ag

Rex-Ag Upper Schist


Central Quartzite
1.6 km Grit Unit Lower Schist
(Maloof et al, 2001)
DUBLIN GULCH
• Intrusion Characteristics
Granodiorite to granite
Ilmenite series, I-type
Late aplites & pegmatites
• Vein & Ore Characteristics
Predominantly sheeted veins (2 main stages)
Au-Bi-Te-As-Sb-Pb-W-Mo (inc. deeper)
Sulphide <3% - Py, Po, Apy, Sch, Gal, Au-Pb-Bi-Te-Sb
Free Au & Au-Bi, ~155microns, ~1000 fineness
Au:Bi – 0.89

(Maloof et al, 2001)


EAGLE ZONE
granodiorite
200 m
Ore zone

43
69
65

53
63

(Maloof et al, 2001)


EAGLE ZONE PARAGENESIS
Stage I StageII
Qtz
Ksp
Ab
Sch
Po
Apy
Py
Chl
Mus
Carb ?

Gal
Pb/Bi/Sb
sulfosalts
Moly
Bism
Bi
Gold

(Maloof et al, 2001)


EAGLE ZONE VEIN
EAGLE ZONE PARAGENESIS

carb

quartz carb/ser
frac
K-spar
scheelite
1.8mm

(Maloof et al, 2001)


EAGLE ZONE PARAGENESIS

Bi/Pb
sulfosalt
carb-ser
Au

0.2mm

py

qtz
carb
1.8mm

(Maloof et al, 2001)


EAGLE ZONE GEOCHEMISTRY

Au Bi As Sb Ag Mo W Zn Pb
Cu 0.14 0.15 0.59 0.56 0.63 0.23 0.00 0.59 0.64
Pb 0.08 0.07 0.68 0.89 0.89 0.08 0.00 0.93
Zn 0.03 0.02 0.58 0.74 0.77 0.10 0.00
W 0.03 0.00 0.00 0.00 0.00 0.55
Mo 0.15 0.17 0.07 0.04 0.07
Ag 0.24 0.21 0.79 0.85
Sb 0.07 0.05 0.61
As 0.28 0.24
Bi 0.90

(Maloof et al, 2001)


RAY GULCH
W LOOKING NORTH E

CALC-SILICATE SKARN
(scheelite bearing)
APLITE DYKES 60m
GRANODIORITE
BIOTITE-QUARTZ HORNFELS AND PHYLLITES

(Brown et al, 2001)


RAY GULCH PARAGENESIS
Stage I Stage II Stage III Stage IV Stage V
(Alt'n) (Alt'n) (Vein) (Vein) (Vein)
Qtz
Wol
Pyx
Gnt
Sch
granodiorite

aplite
Fsp
Amp
Cal
Chl
Mol
Py
Po
Apy

(Brown et al, 2001)


EAGLE ZONE GEOCHEMISTRY
Ave.
Au up to 40 g/t 0.83
Bi up to 500 ppm 19
W up to 2000 ppm 11
Mo up to 700 ppm 6
As up to & >10,000 ppm 195
Pb up to & >10,000 ppm 59
Zn up to & >10,000 ppm 108
Sb up to 5,000 ppm 11
Cu up to 355 ppm 34

(Maloof et al, 2001)


RAY GULCH GEOCHEMISTRY

W Mo Sn Au Bi Sb As Zn Ag
(ppb)

Wol-Qtz <334 <6 bd bd <1 <0.5 1-5 bd bd


Skarn
(n=2)
Pyx Skarn 200 to <180 bd bd <1 <5 <5 <300 bd
50000 (10, 38,
(n=9) 13)
Vein 0 to <90 bd bd <1 <5 <14 <150 bd
>100000 (148)
(n=14)

(Brown et al, 2001)


RAY GULCH VS EAGLE ZONE

• RG skarn replacement > vein (~10 vol. %)


• EZ sheeted veins
• EZ Stage II key – Au-Bi event
• Stage missing in RG skarn
• Stage III-V RG = Stage I EZ – Qtz-Fsp-Sch

(Brown et al, 2001)


3. Shallow-level examples

2. Porphyry-style examples

1. Type-examples

4. Pogo

OUTLINE OF EXAMPLES IN SHORTCOURSE


SHOTGUN (~1 M.oz.)

(Rombach & Newberry, 2001)


SHOTGUN

• Geology & Mineralization

– Granite porphyry (70 Ma)

– Stockwork & breccia; local UST/brain rock

– Early albite, later sericite-carbonate

– Apy-Py-Po-Loel-Cpy-Mo-Bn-Sch

– Au-Bi-Te (Au:Bi 0.76)

(Rombach & Newberry, 2001)


SHOTGUN
• Fluids

– Reduced ore assemblages (δS –5.5 to –5.0)

– Fluid inclusions: vapour & brine; 300-600C

– Vapour: H2O>CO2>CH4, low salinity

– Brine: 40-60 wt.% NaCl equiv.

– Pressure/depth: ~0.5 kbar/ ~2 km

– O, H, S isotopes & fluids = magmatic

(Rombach & Newberry, 2001)


SHOTGUN PARAGENESIS

(Rombach & Newberry, 2001)


SHOTGUN TEXTURES

A - Stockwork
C - Breccia
D - UST/brain rock
Au-Bi – 0.73
(Rombach & Newberry, 2001)
3. Shallow-level examples

2. Porphyry-style examples

1. Type-examples

4. Pogo

OUTLINE OF EXAMPLES IN SHORTCOURSE


TINTINA GOLD BELT
0 500
Tintina Gold Belt
kilometres
Tombstone Plutonic Suite

Tungsten P lutonic Suite


Major gold deposits
Gold occurrences
Fort Knox, Ryan Lode
& True North Alaska Yukon

Dublin
Pogo Gulch
Donlin Brewery
Creek Creek
Shotgun

Kula Kula
(85Ma) (56Ma) Farallon
(100Ma)

(Flanigan et al., 2000)


DONLIN CREEK (28 M.oz.)
• Exploration

– Placer gold 1909

– Lode ore found 1940 above placer fields

– Ongoing exploration 1970-1990’s

– Rock chip & soil sampling (>250ppb over ore)

– RC & diamond drilling

(Ebert et al., 2000)


DONLIN CREEK
• Geology & mineralization

– Rhyolite dykes hosted in


reduced flysch sediments

– Magmatism & mineralization


71 to 66 Ma

– Fault controlled NE & NW


strike-slip

– Narrow Au-As-Sb-Hg veins in


dykes>sediments

– Ore within NNE extensional


fracture zone

– Epithermal/epizonal
characteristics
(Ebert et al., 2000)
DONLIN CREEK VEINS
TINTINA GOLD BELT
0 500
Tintina Gold Belt
kilometres
Tombstone Plutonic Suite

Tungsten P lutonic Suite


Major gold deposits
Gold occurrences
Fort Knox, Ryan Lode
& True North Alaska Yukon

Dublin
Pogo Gulch
Donlin Brewery
Creek Creek
Shotgun

Kula Kula
(85Ma) (56Ma) Farallon
(100Ma)

(Flanigan et al., 2000)


BREWERY CREEK (1.4 M.oz.)
• Exploration
– Discovered in 1987
– Soil geochemistry
– >25ppb over 12km strike
– Reserve trend ~12 major gold zones
– Open pit mining between 1997 & 2001

(Diment, 1996)
BREWERY CREEK
• Geology
– 80 % ore hosted in Tombstone suite intrusions
– 20 % hosted in Cambrian-Carboniferous sediments
– Reserve trend comprises
• Lies outside magnetic high (aureole/intrusion)
• E-W monzonite
• Normal, dip-slip E-W, NW & NNE brittle faults
• Veins & ore trend E-W with NNE component
(Lindsay, 2002)
BREWERY CREEK MAP

(Lindsay, 2002)
BREWERY CREEK MAGNETICS

(Hart et al., 2000)


BREWERY CREEK CROSS SECTION

(Diment, 1995; Lindsay, 2002)


BREWERY CREEK GRADE TRENDS

Golden Kokanee

(Lindsay, 2002)
BREWERY CREEK
• Ore
– Mineralization in monzonite, 3 vein stages
1) pyrite-quartz-carbonate-roscoelite
2) arsenopyrite-carbonate-quartz-gold
3) stibnite-quartz-carbonate-adularia
– Only oxide ore processed (weathering ~10-30m)
– Hypogene gold in arsenopyrite & arsenian pyrite

(Mark, 2002)
BREWERY CREEK PARAGENESIS
BREWERY CREEK
POGO (> 5 M.oz.)
• Exploration
– Geochemical sampling Goodpaster River 1981
– Au, As, W anomalies in Pogo & Liese Creeks
– Soil sampling & surface-exploration 1993

– >100ppb Au in soils anomaly 2km2


– Drilling soil anomaly 1994 – Liese zone
– Drive developed 1999-2000
– Pour first gold end 2005
(Smith et al., 1999)
POGO
View to North

L1 L2

• Topo relief - 830m (1225m -


400m ASL)
• Deepest Drilling is 230m ASL
returned 2.5m @ 7.16 g/t Au at
L3 L3 level.
• 1500m relief from deep bottom
drilling to Top Hill 4021

(Roberts, 2005)
POGO
POGO
• Host rocks
– L. Proterozoic - M. Paleozoic gneiss
• Amphibolite facies
– M. Cretaceous granite dykes, aplites & pegmatites
• Reduced I-type, 15% vol.
– Post-mineralization dolerites
• Age
– U-Pb 107 to 93 Ma – Intrusions
– Ar-Ar ~91-92 Ma - Mica alt
– Re-Os ~104Ma - Molybdenite

(Smith et al., 1999; Selby et al., 2002)


POGO (> 5 M.oz.)

(Smith et al., 1999; Selby et al., 2002)


POGO
• Ore
Sulphide ~3%
Reduced assemblage: Po-Lo-Apy-Py-Ccp
Au-Bi-Pb-Te-Ag-S phases; Au:Bi 0.89

0.89

(Smith et al., 1999)


OVERVIEW

• Part 1: Classification, nomenclature & deposit


comparison

• Part 2: Examples: Tintina Gold Province

• Part 3: Other examples & exploration


Late Paleozoic gold deposits, Tien Shan

(Yakubchuk et al., 2002)


Gold deposit model
Tien Shan
Taror 3 M.oz.

Amantaitau 4 M.oz.

Muruntau 175 M.oz.

Jilau 3 M.oz.

Zarmitan 11.3 M.oz.

(Yakubchuk et al., 2002)


LOCATION OF MAJOR
INTRUSION RELATED GOLD DEPOSITS

(Lang & Baker, 2001)


KIDSTON (4 M.oz.)

• Regional Geology

• Kennedy Igneous Province

• Mid-Carboniferous-Permian intrusions

• I-type granites, crustally derived

• Similar tectonic setting to TGB?

• Regional Au-Sn-W-Bi-Mo-As-Sb

(Baker & Andrew, 1991)


KIDSTON
• Deposit Geology
• Magmatic-hydrothermal breccia pipe
• Intrudes Proterozoic granitoid & gneiss
• Gold in breccia & sheeted veins
• Rhyolite sills & dykes
• Py-Po-Sph-Ccp-Mo-Gal-Apy-Bi; zoned
• Deeper Mo-W mineralization
• Ser-Carb-Qtz alteration
(Baker & Andrew, 1991)
KIDSTON MAP

(Baker & Andrew, 1991)


KIDSTON TEXTURES
TIMBARRA (0.4 M.oz.)
• Geology & Mineralization

– Zoned granite pluton (250-245 Ma)

– Age ore & alteration = intrusion

– Disseminated Au-Bi-Ag-Te-(Mo-As-Sb)

– Sulfide < 1%; Apy-Py-Moly-Au-Bi-Te-Ag

– Magmatic-hydrothermal transition

(Mustard, 2001)
TIMBARRA MAP

(Mustard, 2001)
TIMBARRA CROSS SECTION

(Mustard, 2001)
TIMBARRA GRANITE FACIES & Au

(Mustard, 2001)
TIMBARRA PARAGENESIS & FLUIDS
Late Transitional
Process Magmatic- Hydrothermal
Magmatic Hydrothermal
Mineralization
Stage 1 Stage 2a Stage 2b Stage 3 Stage 4
Style
Miarolitic cavities
Aplite dykes
Pegmatite veins
Vein-dikes
Quartz-moly veins
Fractures (Au)
Comb veins
Chalcedonic veins
Hematite staining
Melt Inclusions
High XCO2
Mod-Low XCO2
Mod-Low Salinity H2O

(Mustard, 2001; Mustard, 2000)


SUMMARY CHARACTERISTICS
Style Alteration Metals Fluids
Shallow • veinlets, stockwork, • clays, • As,Sb,Hg • brine, CO2-
(<3km, breccia carb, fsp • Bi, Te vapour
<1 kbar) • dikes, stocks, sills • late H2O

Strong evidence for major magmatic input,


epithermal/porphyry style characteristics
Style Alteration Metals Fluids
Deep • sheeted, disseminated • fsp, carb • W, Mo • CO2-H2O
(>3km, • stocks, plutons • Bi, Te • some late brine
>1 kbar)

(Baker, 2002)
Magmatic Meteoric
DEPTH-FLUIDS MODEL FOR IRGS CO2-H2O Brine H2O
km
Style Example
vv v v v
vv 0
Epithermal
Dyke, sill, dome Brewery Creek +
+
Veins Donlin Creek
Dis’minated

Porphyry Kidston +
+
Stocks, plugs Shotgun + 5
+
Breccias
Stockwork

Mesothermal Fort Knox + +


+
Plutons Dublin Gulch
+ + +
Sheeted Timbarra + + + + +
+ + + +
Dis’minated Pogo +
+
10
(Baker, 2002)
IMPLICATIONS
• IRG possess range in characteristics

• Variation in part reflects depth of emplacement

• Magmatic carbon dioxide critical role

• High pressure devolatilzation

• Effect on other volatiles

• Volatile composition varies with depth

• Continuum of deposit types reflect depth & fluid composition

• Exploration criteria will vary between deep, shallow, proximal, distal


ROLE OF BISMUTH
• Au-Bi-W-Mo-As geochemistry
• Spatial & temporal link to intrusions
• In detail spatial & temporal differences
• W early
• Au-Bi late
• Main ore zones spatially separate
• Re-emphasizes Bi association
ROLE OF BISMUTH
• Bi significant in ppt. Au
• Bi low melting point (274C), dec. with inc.
pressure
• Bi will ppt. as a liquid rather than solid
• Experiments @ 300C show strong
partitioning Au in Bi liquid
• Bi may concentrate Au in fluids with very low
Au contents
• Low melting point Bi, Au-Bi will be late

(Douglas et al, 2000)


APPLICATION OF
KEY EXPLORATION CHARACTERISTICS
– Vertical & lateral zonation about mod-reduced

granitic intrusions

– Set of pathfinder elements including Au, Bi, Te,

As, W, (Mo, Sn, Sb)

– Variety of target types within IRGS


EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD
• Reviewed mineral occurrence data sheets &
1:500,00 scale maps (Hogdkinson Province)

• Regional Scale: Tectono-Magmatic Setting


– Continental arc environment

– Numerous W-Sn-Mo-Bi-As & Au occurrences

– Permo-Carb Kennedy Igneous Provence (KIP)


EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD
• Regional Scale: Intrusive types
– Wide range of granite suites
– Including mod reduced I-types & transitional I-S to S
types
– Highly fractionated components
– Magmatic-hydrothermal transition textures
EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD
• Regional Scale: Variety of crustal levels exposed
– Contact aureole development (& P-T information)
– Presence/absence syn-intrusive volcanic rocks
– Mineral occurrence styles

• Local Scale: Mineral Occurrence Data & Past Exploration


– Past Au exploration focussed on Kidston-breccia styles &/or porphyry
Cu-Au systems

– Wider range of IRGS styles not widely tested

– W-Bi-As-(Mo,Sn) prospects poorly tested for Au


EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD
• Local Scale: Target Criteria
– Spatial associated with mod-red I-type KIP intrusives
– Geochemistry of mineral occurrences (including placer)
• Au-Bi ±(W-Sn-Mo-Cu-Pb-As) – highest potential
• Au-W (Bi commonly n/a)
• Bi±(W-Sn-Mo±Cu - no recorded Au – commonly n/a)
• Au-As-Sb – distal from intrusives, mesothermal-epithermal

– Target type
• Shallow (Donlin Creek-style); Mod-Deep proximal (Fort Knox-style);
Mod-Deep distal (Pogo-style)
N QLD HODGKINSON PROVINCE

(modified from Garrad & Bultitude, 1999)


EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD
EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD

M2: 0.5ppm Au,


140ppm Bi

M5: 8.6ppm Au, 657ppm Bi


EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD
1000
Tinaroo regional
Mount Mascotte

100
Bi (ppm)

10

1
1 10 100 1000 10000
Au (ppb)
EXAMPLE OF IRGS EXPLORATION
CHARACTERISTICS: NORTH QLD

T14 (1.26 ppm Au; 20.71 Bi) T18 (2.42 ppm Au; 58 ppm Bi)
Quartz-muscovite vein with narrow Quartz-muscovite pegmatite
muscovite (greisen-like) alteration halo -like vein
Tinaroo Creek
CONCLUSIONS I
• IRGS have a coherent, useable set of empirical
exploration characteristics
• Critical features include
– Vertical & lateral zonation about mod-reduced
granitic intrusions
– Set of pathfinder elements including Au, Bi, Te, As,
W, (Mo, Sn, Sb)
– Variety of target types within IRGS
CONCLUSIONS II
• Belts known for magmatic related W-Mo-Sn
systems are high priority target areas
– Au-(Bi-W) placer occurrences provide good
indicator
– Such regions commonly lack thorough testing of
IRGS model
– Commonly not sampled for Au & Bi
• Many regions can be regionally evaluated
quickly through database searches & GIS
approaches

You might also like