0% found this document useful (1 vote)
457 views18 pages

Webpage:: Textbook: "Matrix Algebra Useful For Statistics", Searle

This document provides an introduction to matrix algebra and its applications in statistics. It defines matrices and matrix operations such as addition, scalar multiplication, transpose, and multiplication. Examples are provided to demonstrate how to perform these operations. Matrix algebra concepts such as rows, columns, and dot products are introduced. The document aims to provide basic skills in matrix algebra that are useful for statistics.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (1 vote)
457 views18 pages

Webpage:: Textbook: "Matrix Algebra Useful For Statistics", Searle

This document provides an introduction to matrix algebra and its applications in statistics. It defines matrices and matrix operations such as addition, scalar multiplication, transpose, and multiplication. Examples are provided to demonstrate how to perform these operations. Matrix algebra concepts such as rows, columns, and dot products are introduced. The document aims to provide basic skills in matrix algebra that are useful for statistics.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 18

1

Textbook: “Matrix algebra useful for statistics”, Searle.


Webpage: Webpage:
1. course notes:

http://mail.thu.edu.tw/~wenwei/cgi,

then click on 統計教材 and then click on

and then click on

Math Algebra ( Word , PDF )

2. Online grades:

http://mail.thu.edu.tw/~wenwei
Then, click on
 Online Grade: 2008, Summer, Basic Statistics

Objective: introduce basic concepts and skills in matrix


algebra. In addition, some applications of
matrix algebra in statistics are described.

Section 1. Introduction and Matrix Operations


Definition of r  c matrix:
2

An r  c matrix A is a rectangular array of rc real numbers arranged in r


horizontal rows and c vertical columns:
 a11 a12  a1c 
a a22  a2 c 
A  21
.
    
 
 ar1 ar 2  arc 
The i’th row of A is

rowi ( A)   ai1 ai 2  aic , i  1,2,  , r , ,

and the j’th column of A is


 a1 j 
a 
col j ( A)   , j  1,2, , c.
2j

 
 
 arj 
We often write A as
 
A  aij  Ar c .

Matrix addition:
Let
 a11 a12  a1c 
a a22  a2 c 
A  Arc  [ aij ]   21 ,
    
 
 ar1 ar 2  arc 
b11 b12  b1s 
b b22  b2 s 
B  Bcs  [bij ]   21 ,
    
 
bc1 bc 2  bcs 
 d11 d12  d1c 
d d 22  d 2c 
D  Drc  [d ij ]   21 .
    
 
 d r1 dr 2  d rc 
Then,

 (a11  d11 ) (a12  d12 )  (a1c  d1c ) 


( a  d ) ( a  d 22 )  (a2 c  d 2c )
A  D  [aij  d ij ]   21 21 22
,
     
 
 ( a r1  d r1 ) ( a r 2  dr2 )  (arc  d rc ) 
3

 pa11 pa12  pa1c 


 pa pa22  pa2 c 
pA  [ paij ]   21 , p  R.
     
 
 par1 par 2  parc 
and the transpose of A is denoted as
 a11 a21  ar1 
a a22  ar 2 
At  Actr  [a ji ]   12
    
 
 a1c a2 c  arc 
Example 1:
Let
 1 3 1 3 7 0
A  and B   .
 4 5 0 8 1 1
Then,
 1 3 3  7 1  0  4  4 1
A B    ,
 4  8 5  1 0  1 4 6 1
 1 2 3  2 1 2   2 6 2
2A    
 4  2 5  2 0  2  8 10 0
and
1  4
A   3 5  .
t

 1 0 

Matrix multiplication:
We first define the dot product or inner product of n-vectors.

Definition of dot product:


The dot product or inner product of the n-vectors
 b1 
b 
a   a1 a 2  ac  and b    ,
2

 
 
bc 
are
c
a  b  a1b1  a2b2    ac bc   ai bi .
i 1

Example 1:
4

 4
Let a  1 2 3 and b  5 . Then, a  b  1  4  2  5  3  6  32 .
6

Definition of matrix multiplication:


 e11 e12  e1s 
e  e2 s 
E  E r s  
 eij   21
 
e22
  
 
 er1 er 2  ers 

 row1 ( A)  col1 ( B) row1 ( A)  col 2 ( B)  row1 ( A)  col s ( B) 


row ( A)  col ( B) row 2 ( A)  col2 ( B)  row 2 ( A)  col s ( B)
 2 1

     
 
 row r ( A)  col1 ( B ) row r ( A)  col 2 ( B )  row r ( A)  col s ( B) 

 row1 ( A) 
 row ( A) 
 2  col ( B ) col ( B )  col ( B )
  
1 2 s

 
 rowr ( A) 
 a11 a12  a1c   b11 b12  b1s 
a a22  a2 c  b21 b22  b2 s 
  21
 Arc Bcs
         
  
 ar1 ar 2  arc  bc1 bc 2  bcs 

That is,
eij  rowi ( A)  col j ( B )  ai1b1 j  ai 2 b2 j    aic bcj , i  1, , r , j  1, , s.
Example 2:
1 2 0 1 3 
A22    , B23   .
3  1  1 0  2
Then,

 row1 ( A)  col1 ( B ) row1 ( A)  col2 ( B) row1 ( A)  col3 ( B )   2 1  1


E 23    
row 2 ( A)  col1 ( B ) row 2 ( A)  col2 ( B ) row 2 ( A)  col3 ( B )  1 3 11 
since
0 0
row1 ( A)  col1 ( B)  1 2    2 , row 2 ( A)  col1 ( B )   3  1    1
 1  1
1 1
row1 ( A)  col2 ( B )  1 2    1 , row 2 ( A)  col 2 ( B)   3  1    3
0 0 
 3   3 
row1 ( A)  col3 ( B )  1 2    1 , row 2 ( A)  col3 ( B)   3  1    11 .
  2   2
5

Example 3
1  1   4 5 
a31  2, b12   4 5  a 31b12  2 4 5   8 10 
3 3 12 15

Another expression of matrix multiplication:

 row1 ( B ) 
row ( B )
Ar c Bcs   col1 ( A) col 2 ( A)  col c ( A)  2 
  
 
 row c ( B) 
c
 col1 ( A)row1 ( B )  col 2 ( A)row 2 ( B )    col c ( A)row c ( B )   col i ( A)row i ( B )
i 1

where coli ( A) rowi ( B) are r  s matrices.


Example 2 (continue):

 row1 ( B) 
A22 B23   col1 ( A)
col2 ( A)    col1 ( A)row1 ( B )  col2 ( A)row 2 ( B)
row 2 ( B)
1 2  0 1 3   2 0  4  2 1  1
   0 1 3     1 0  2     
3  1 0 3 9  1 0 2   1 3 11 

Note:
 row1 ( A) 
row ( A)
Heuristically, the matrices A and B,   and
2

  
 
 row r ( A) 

 col1 ( B) col 2 ( B)  col s ( B ) , can be thought as r  1 and 1  s vectors.

Thus,
 row1 ( A) 
row ( A)
Arc Bcs  2  col1 ( B ) col2 ( B )  cols ( B )
  
 
 rowr ( A) 

can be thought as the multiplication of r  1 and 1  s vectors. Similarly,


6

 row1 ( B ) 
row ( B)
Arc Bcs   col1 ( A) col2 ( A)  colc ( A)  2 
  
 
 rowc ( B) 

can be thought as the multiplication of 1  c and c  1 vectors.


Note:
I. AB is not necessarily equal to BA . For instance,
1 3 2  1
A  and B  
2  1 0 2 

2 5  0 7 
 AB     BA .
4  4 4  2
II. AC  BC  A might be not equal to B . For instance,

1 3 2 4 1  2
A  , B  and C  
0 1 2 3  1 2 

 2 4
 AC    BC but A  B
1 2
III. AB  0 , it is not necessary that A  0 or B  0 . For instance,
1 1 1  1
A  and B  
1 1  1 1 

0 0
 AB    BA but A  0, B  0.
0 0

A p  A  A A , A p  A q  A p  q , ( A )  A
p q pq
IV.
p factors
Also, ( AB) p is not necessarily equal to A p B p .
V.  AB  t  B t At .

Trace:
Definition of the trace of a matrix:
The sum of the diagonal elements of a rr square matrix is called the trace of
the matrix, written tr ( A) , i.e., for
7

 a11 a12  a1r 


a a 22  a 2 r 
A   21 ,
    
 
 a r1 ar 2  a rr 
r
tr ( A)  a11  a22    arr   aii .
i 1

Example 4:
1 5 6
 7  . Then, tr ( A)  1  2  3  6 .
Let A   4 2
8 9 3

Homework 1
1. Prove tr ( AB )  tr ( BA) , where A and B are r  c and c  r
matrices, respectively.

2.
(a) When does  A  B  A  B   A 2  B 2 ?
(b) When A t  A. Prove tr ( AB)  tr ( AB t )
(c) When X t XGX t X  X t X , prove X t XG t X t X  X t X

Section 2 Special Matrices


2.1 Symmetric Matrices:
Definition of symmetric matrix:
A rr matrix Ar r is defined as symmetric if A  A t . That is,
 a11 a12  a1r 
a a22  a2 r 
A  12
, aij  a ji .
    
 
 a1r a2 r  arr 
Example 1:
1 2 5
A  2 3 6  is symmetric since A  A t .
5 6 4
8

Example 2:
Let X 1 , X 2 , , X r be random variables. Then,
X1 X2 … Xr

X 1  Cov ( X 1 , X 1 ) Cov ( X 1 , X 2 )  Cov ( X 1 , X r ) 


X 2 Cov ( X 2 , X 1 ) Cov ( X 2 , X 2 )  Cov ( X 2 , X r )
V 
     
 
X r Cov ( X r , X 1 ) Cov ( X r , X 2 )  Cov ( X r , X r ) 
 Var ( X 1 ) Cov ( X 1 , X 2 )  Cov ( X 1 , X r ) 
Cov ( X , X ) Var ( X 2 )  Cov ( X 2 , X r ) 
  1 2

     
 
Cov ( X 1 , X r ) Cov ( X 2 , X r )  Var ( X r ) 

is called the covariance matrix, where Cov( X i , X j )  Cov( X j , X i ), i, j  1,2, , r ,


is the covariance of the random variables X i and X j and Var ( X i ) is the variance
of X i . V is a symmetric matrix. The correlation matrix for X 1 , X 2 , , X r is defined
as
X1 X2 … Xr

X 1  Corr ( X 1 , X 1 ) Corr ( X 1 , X 2 )  Corr ( X 1 , X r ) 


X 2 Corr ( X 2 , X 1 ) Corr ( X 2 , X 2 )  Corr ( X 2 , X r )
R
     
 
X r Corr ( X r , X 1 ) Corr ( X r , X 2 )  Corr ( X r , X r ) 
 1 Corr ( X 1 , X 2 )  Corr ( X 1 , X r ) 
Corr ( X , X ) 1  Corr ( X 2 , X r )
  1 2

     
 
Corr ( X 1 , X r ) Corr ( X 2 , X r )  1 
Cov( X i , X j )
where Corr ( X i , X j )   Corr ( X j , X i ), i, j  1,2,  , r , is the
Var ( X i )Var ( X j )
correlation of X i and X j . R is also a symmetric matrix. For instance, let X 1 be the
random variable represent the sale amount of some product and X 2 be the random
variable represent the cost spent on advertisement. Suppose
Var ( X 1 )  20, Var ( X 2 )  80, Cov( X 1 , X 2 )  15.
Then,
20 15 
V 
15 80
and
9

 15   3
 1   1
R 20  80   8
3 
 15 1   1
 20  80   8 
Example 3:
Let Ar c be a r  c matrix. Then, both AA t and A t A are symmetric since
 AA 
t t
 
 At
t

A t  AA t and A t A  t
 
 At At
t
 At A .

AA t is a rr symmetric matrix while A t A is a c  c symmetric matrix.


 row1 ( At ) 
 
row2 ( At )
AA   col1 ( A) col2 ( A)  colc ( A)
t 
  
 t 
 rowc ( A ) 
col1t ( A) 
 t 
col2 ( A)
  col1 ( A) col2 ( A)  colc ( A) 
  
 t 
colc ( A) 
 col1 ( A)col1t ( A)  col2 ( A)col2t ( A)    colc ( A)colct ( A)
c
  coli ( A)colit ( A)
i 1

Also,
 row1 ( A) 
row ( A)
AA  
t

2

 

 row1t ( A) row2t ( A)  rowrt ( A) 
 
 rowr ( A) 
 row1 ( A)  row1t ( A) row1 ( A)  row2t ( A)  row1 ( A)  rowrt ( A) 
 
 row2 ( A)  row1t ( A) row2 ( A)  row2t ( A)  row2 ( A)  rowrt ( A)

     
 
 rowr ( A)  row1 ( A) rowr ( A)  row2 ( A)  rowr ( A)  rowr ( A) 
t t t

Similarly,
10

 row1 ( A) 
row ( A) 
t

A A  row1 ( A) row2 ( A)  rowr ( A) 
t t t

2

 


 
 rowr ( A) 
 row1t ( A) row1 ( A)  row2t ( A)row2 ( A)    rowrt ( A)rowr ( A)
r
  rowit ( A) rowi ( A)
i 1

and
col1t ( A) 
 t 
col2 ( A) 
A A
t 
   1
 col ( A) col2 ( A)  colc ( A)
 t 
colc ( A) 
col1t ( A)  col1 ( A) col1t ( A)  col2 ( A)  col1t ( A)  colc ( A) 
 t 
col ( A)  col1 ( A) col2t ( A)  col2 ( A)  col2t ( A)  colc ( A)
 2
     
 t 
colc ( A)  col1 ( A) colc ( A)  col2 ( A)  colct ( A)  colc ( A) 
t

For instance, let


1 3
1 2  1  
A  and A   2 0 .
t

3 0 1
 1 1

Then,
 row1 ( A t ) 
 
AA t   col1 ( A) col 2 ( A) col3 ( A) row 2 ( A t ) 
 row3 ( A t ) 
 
col1t ( A) 
 
  col1 ( A) col 2 ( A) col3 ( A) col2t ( A)
col3t ( A) 
 
 col1 ( A)col1t ( A)  col 2 ( A)col 2t ( A)  col3 ( A)col3t ( A)
1  2  1
  1 3    2 0     1 1
3 0  1
1 3 4 0  1  1 6 2 
    
3 9 0 0  1 1  2 10
In addition,
11

At A  row1t ( A) row1 ( A)  row2t ( A) row2 ( A)


1 3
  2 1 2  1  0 3 0 1
 
 1 1
1 2  1  9 0 3 10 2 2 
2 4  2  0 0 0   2 4  2
 1  2 1  3 0 1  2 2 2 

Note:
A and B are symmetric matrices. Then, AB is not necessarily equal to
 BA  ( AB) t . That is, AB might not be a symmetric matrix.

Example 4:
1 2 3 7
A  and B   .
2 3 7 6
Then,
17 19  17 27 
AB     BA  19
27 32  32 

Properties of AA t and A t A :
(a)
At A  0  A0
tr ( A A)  0
t
 A0
(b)
PAA t  QAAt  PA  QA
[proof]
(a)
Let

col1t ( A)  col1 ( A) col1t ( A)  col2 ( A)  col1t ( A)  colc ( A) 


 t 
 col2 ( A)  col1 ( A) col2t ( A)  col2 ( A)  col2t ( A)  colc ( A)
S  A A
t
     
 t 
colc ( A)  col1 ( A) colc ( A)  col2 ( A)  colct ( A)  colc ( A) 
t

 
 sij  0 .
Thus, for j  1,2,  , c,
12

 a1 j 
a 

s jj  col tj ( A)  col j ( A)  a1 j a2 j 
 a rj    a12j  a 22 j    a rj2  0
 
2j

 
 a rj 
 a1 j  a 2 j    a rj  0
 A0
tr ( A t A)  tr ( S )  s11  s 22    s cc
 col1t ( A)  col1 ( A)  col2t ( A)  col2 ( A)    colct ( A)colc ( A)
 a112  a 21
2
   a r21  a122  a 22
2
   a r22    a12c  a 22c    a rc2
0
 a  0, i  1,2,  , r ; j  1,2,  , c.  aij  0
2
ij

 A0

(b)
Since PAA t  QAAt , PAA t  QAAt  0,
 PAA t
 
 QAAt P t  Q t   PA  QA  At P t  Q t  
  PA  QA   A P t t
 At Q t 
  PA  QA  PA  QA
t

0
By (a),
 PA  QA t 0  PA  QA  0  PA  QA

Note:
A r  r matrix Br r is defined as skew-symmetric if B   B t . That is,
aij   a ji , a ii  0 .

Example 5:
 0 4 5
B    4 0 6
  5 6 0

Thus,
0 4  5  0 4 5
B  4
t
0  6   B    4
t
0 6  B .
5 6 0    5 6 0

2.2 Idempotent Matrices:


Definition of idempotent matrices:
13

A square matrix K is said to be idempotent if


K 2  K.
Properties of idempotent matrices:
1. K r  K for r being a positive integer.
2. I  K is idempotent.
3. If K 1 and K 2 are idempotent matrices and K 1 K 2  K 2 K 1 . Then,
K 1 K 2 is idempotent.
[proof:]
1.
For r  1, K 1  K .
Suppose K r  K is true, then K r 1  K r  K  K  K  K 2  K .
By induction, K r  K for r being any positive integer.
2.
 I  K  I  K   I  K  K  K 2 I K K K I K

3.

 K 1 K 2  K1 K 2   K1 K 2 K1 K 2  K1 K1 K 2 K 2  since K1 K 2  K 2 K1 
 K 12 K 22  K 1 K 2

Example 1

Let Ar c be a r  c matrix. Then,



K  A At A  1
A is an idempotent matrix since

KK  A A t A   1

At A At A  1

A  AI A t A  1

At  A At A  1
AK.

Note:
A matrix A satisfying A 2  0 is called nilpotent, and that for which A 2  I could
be called unipotent.

Example 2:
1 2 5 
A   2 4 10   A 2  0  A is nilpotent.
 1 2  5

1 3 1 0
B   B2    B is unipotent.
0  1 0 1 
14

Note:
K is a idempotent matrix. Then, K  I might not be idempotent.

2.3 Orthogonal Matrices:


Definition of orthogonality:
Two n  1 vectors u and v are said to be orthogonal if
u tv  vtu  0
A set of n  1 vectors  x1 , x 2 ,  , x n  is said to be orthonormal if
xit xi  1, xit x j  0, i  j , i, j  1,2,  , n.
Definition of orthogonal matrix:
A n  n square matrix P is said to be orthogonal if
PP t  P t P  I nn .
Note:
 row1 ( P )row1t ( P ) row1 ( P )row 2t ( P )  row1 ( P )row nt ( P ) 
 
row 2 ( P )row1t ( P ) row 2 ( P )row 2t ( P )  row 2 ( P )row nt ( P )
PP t  
     
 t 
row n ( P )row1 ( P ) row n ( P )row 2t ( P )  row n ( P )row nt ( P )
1 0  0 
0 1  0 
 
    
 
0 0  1 
col1t ( P )col1 ( P ) col1t ( P )col 2 ( P )  col1t ( P )col n ( P ) 
 t 
col ( P )col1 ( P ) col 2t ( P )col 2 ( P )  col 2t ( P )col n ( P ) 
 2
     
 t t t 
col n ( P )col1 ( P ) col n ( P )col 2 ( P )  col n ( P )col n ( P )
 Pt P

row i ( P ) row it ( P )  1, row i ( P ) row tj ( P )  0



colit ( P )coli ( P )  1, colit ( P )col j ( P )  0

Thus,

row ( P), row


t
1
t
2 ( P), , row nt ( P) and  col1 ( P), col 2 ( P), , col n ( P)

are both orthonormal sets!!


15

Example 1:
(a) Helmert Matrices:
The Helmert matrix of order n has the first row
1 / n 1/ n  1/ n , 
and the other n-1 rows ( i  2,3,  , n ) has the form,

   i  1 
1 / (i  1)i 1 / (i  1)i  1 / (i  1)i 0  0
  i  1 i 

(i-1) items n-i items


For example, as n  4 , then
 1/ 4 1/ 4 1/ 4 1/ 4 
 
1/ 1 2  1/ 1 2 0 0
H4   
1 / 23 1/ 2  3  2/ 23 0 
 
1 / 3 4 1/ 3  4 1/ 3  4  3 / 3  4 
 1/ 4 1/ 4 1/ 4 1/ 4 
 
1/ 2  1/ 2 0 0
 
 1/ 6 1/ 6  2/ 6 0 
 
1 / 12 1 / 12 1 / 12  3 / 12 

In statistics, we can use H to find a set of uncorrelated random variables.


Suppose Z 1 , Z 2 , Z 3 , Z 4 are random variables with
Cov( Z i , Z j )  0, Cov( Z i , Z i )   2 , i  j , i, j  1,2,3,4.
Let
 X1   1/ 4 1/ 4 1/ 4 1 / 4   Z1 
X    
 1 / 2  1 / 2 0 0  Z 2 
X     H4Z 
2

X3   1/ 6 1/ 6  2 / 6 0  Z 3 
    
X 4  1 / 12 1 / 12 1 / 12  3 / 12  Z 4 
 1 / 4  Z1  Z 2  Z 3  Z 4  
 
 1 / 2  Z1  Z 2  

 1/ 6  Z  Z  Z  
 1 2 3

1 / 12  Z1  Z 2  Z 3  3Z 4  
Then,
Cov( X i , X j )   2 row i ( H 4 )row tj ( H 4 )  0

 
since row1t ( H 4 ), row2t ( H 4 ), row3t ( H 4 ), row4t ( H 4 ) is an orthonormal set of

vectors. That is, X 1 , X 2 , X 3 , X 4 are uncorrelated random variables. Also,

X  X  X   Zi  Z  ,
4
2 2 2 2
2 3 4
i 1
16

where
4

Z i
.
Z  i 1

(b) Givens Matrices:


Let the orthogonal matrix be
 cos( ) sin( ) 
G .
 sin( ) cos( ) 
G is referred to as a Givens matrix of order 2. For a Givens matrix of order 3,
 3
there are    3 different forms,
2
 
1 2 3 1 2 3
1  cos( ) sin( ) 0 1  cos( ) 0 sin( ) 
G12  2  sin( ) cos( ) 0, G13  2  0 1 0 
3  0 0 1  3  sin( ) 0 cos( )
1 2 3 .
1 1 0 0 
G23  2 0 cos( ) sin( ) 
3 0  sin( ) cos( ) 

The general form of a Givens matrix Gij of order 3 is an identity matrix except
for 4 elements, cos( ), sin( ), and  sin( ) are in the i’th and j’th rows and
 4
columns. Similarly, For a Givens matrix of order 4, there are    6 different
2  
forms,
1 2 3 4 1 2 3 4
1  cos( ) sin( ) 0 0 1  cos( ) 0 sin( ) 0
2   sin( ) cos( ) 0 0 2 0 1 0 0
G12   , G13  
3 0 0 1 0 3   sin( ) 0 cos( ) 0
   
4 0 0 0 1 4 0 0 0 1

1 2 3 4 1 2 3 4
17

1  cos( ) 0 0 sin( )  1 1 0 0 0
2 0 1 0 0  2 0 cos( ) sin( ) 0
G14   , G23  
3 0 0 1 0  3 0  sin( ) cos( ) 0
   
4   sin( ) 0 0 cos( ) 4 0 0 0 1

1 2 3 4 1 2 3 4
1 1 0 0 0  1 1 0 0 0 
2 0 cos( ) 0 sin( )  2 0 1 0 0 
G24   , G34   .
3 0 0 1 0  3 0 0 cos( ) sin( ) 
   
4 0  sin( ) 0 cos( ) 4 0 0  sin( ) cos( )

 n
For the Givens matrix of order n, here are   different forms. The general
2  
form of Grs   g ij  is an identity matrix except for 4 elements,
g rr  g ss  cos( ),  g rs  g sr  sin( ), r  s .

2.4 Positive Definite Matrices:


Definition of positive definite matrix:
A symmetric n  n matrix A satisfying
x1tn Ann x n1  0 for all x  0 ,
is referred to as a positive definite (p.d.) matrix.

Intuition:
If ax 2  0 for all real numbers x, x  0 , then the real number a is positive.
Similarly, as x is a n  1 vector, A is a n  n matrix and x t Ax  0 , then the
matrix A is “positive”.

Note:
A symmetric n  n matrix A satisfying
x1tn Ann xn1  0 for all x  0 ,
is referred to as a positive semidefinite (p.d.) matrix.

Example 1:
Let
18

 x1  1
x  1
x   2  and l    .
  
   
 xn  1
Thus,
n n

  xi  x    xi2  nx 2
2

i 1 i 1

 x1  1 / n   x1 
x  1 / n  x 
  x1 x2  xn   2   n x1 x2  xn   1 / n 1 / n  1 / n  2 
     
     
 xn  1 / n   xn 
 1 1  ll t 
 x t Ix  x t  n ll t  x  x t Ix  x t   x
 n n  n 
 ll t 
 x t  I  x
 n 

ll t
Let A  I  . Then, A is positive semidefinite since for x  0,
n
n
x t Ax    xi  x   0 .
2

i 1

You might also like