1
Textbook: “Matrix algebra useful for statistics”, Searle.
Webpage: Webpage:
1. course notes:
                 http://mail.thu.edu.tw/~wenwei/cgi,
then click on 統計教材 and then click on
and then click on
                    Math Algebra ( Word , PDF )
2.   Online grades:
                       http://mail.thu.edu.tw/~wenwei
Then, click on
   Online Grade: 2008, Summer, Basic Statistics
Objective:     introduce basic concepts and skills in matrix
               algebra. In addition, some applications of
               matrix algebra in statistics are described.
 Section 1. Introduction and Matrix Operations
Definition of r  c matrix:
                                                           2
An r  c matrix A is a rectangular array of rc real numbers arranged in r
horizontal rows and c vertical columns:
                                 a11 a12  a1c 
                                a    a22  a2 c 
                            A    21
                                                    .
                                          
                                                 
                                 ar1 ar 2  arc 
The i’th row of A is
                          rowi ( A)   ai1         ai 2  aic , i  1,2,  , r , ,
and the j’th column of A is
                                                  a1 j 
                                                 a 
                                    col j ( A)   , j  1,2, , c.
                                                     2j
                                                  
                                                  
                                                  arj 
We often write A as
                                                        
                                               A  aij  Ar c .
Matrix addition:
Let
                                                     a11        a12     a1c 
                                                    a           a22     a2 c 
                               A  Arc  [ aij ]   21                           ,
                                                                       
                                                                               
                                                     ar1        ar 2    arc 
                                                    b11         b12     b1s 
                                                    b           b22     b2 s 
                               B  Bcs  [bij ]   21                            ,
                                                                       
                                                                               
                                                    bc1         bc 2    bcs 
                                                        d11     d12     d1c 
                                                       d        d 22    d 2c 
                              D  Drc      [d ij ]   21                         .
                                                                       
                                                                                
                                                        d r1    dr 2    d rc 
Then,
                         (a11  d11 ) (a12          d12 )     (a1c     d1c ) 
                        ( a  d ) ( a               d 22 )    (a2 c    d 2c )
A  D  [aij  d ij ]   21         21       22
                                                                                    ,
                                                                             
                                                                                 
                         ( a r1  d r1 ) ( a r 2    dr2 )     (arc     d rc ) 
                                                3
                                   pa11       pa12        pa1c 
                                   pa         pa22        pa2 c 
                  pA  [ paij ]   21                               , p  R.
                                                          
                                                                  
                                   par1       par 2       parc 
 and the transpose of A is denoted as
                                                a11   a21  ar1 
                                               a      a22  ar 2 
                      At  Actr    [a ji ]   12
                                                           
                                                                  
                                                a1c   a2 c  arc 
Example 1:
Let
                        1         3    1         3         7       0
                     A                  and B                         .
                        4        5    0         8         1        1
Then,
                           1 3            3  7 1  0  4          4 1
                   A B                                                  ,
                           4  8          5  1 0  1 4         6 1
                           1 2   3  2 1 2   2   6                2
                     2A                      
                           4  2 5  2 0  2  8 10                0
and
                                            1  4
                                       A   3 5  .
                                        t
                                             1 0 
Matrix multiplication:
We first define the dot product or inner product of n-vectors.
Definition of dot product:
The dot product or inner product of the n-vectors
                                                                b1 
                                                               b 
                        a   a1    a 2  ac          and b    ,
                                                                  2
                                                                
                                                                
                                                               bc 
are
                                                               c
                       a  b  a1b1  a2b2    ac bc   ai bi .
                                                              i 1
Example 1:
                                                         4
                                  4
Let a  1 2         3 and b  5 . Then, a  b  1  4  2  5  3  6  32 .
                                 6
Definition of matrix multiplication:
                      e11    e12      e1s 
                     e                e2 s 
E  E r s      
              eij   21
                      
                              e22
                                       
                                             
                      er1    er 2     ers 
      row1 ( A)  col1 ( B)         row1 ( A)  col 2 ( B)      row1 ( A)  col s ( B) 
     row ( A)  col ( B)            row 2 ( A)  col2 ( B)      row 2 ( A)  col s ( B)
         2           1
                                                                                     
                                                                                         
      row r ( A)  col1 ( B )       row r ( A)  col 2 ( B )    row r ( A)  col s ( B) 
                        row1 ( A) 
                        row ( A) 
                           2      col ( B ) col ( B )  col ( B )
                             
                                         1         2           s
                                  
                        rowr ( A) 
                        a11 a12  a1c   b11 b12  b1s 
                       a      a22  a2 c  b21 b22  b2 s 
                        21
                                                                    Arc Bcs
                                                    
                                                              
                        ar1 ar 2  arc  bc1 bc 2  bcs 
That is,
eij  rowi ( A)  col j ( B )  ai1b1 j  ai 2 b2 j    aic bcj , i  1, , r , j  1, , s.
Example 2:
                                     1       2            0         1     3 
                              A22              , B23                       .
                                     3        1           1       0     2
Then,
         row1 ( A)  col1 ( B ) row1 ( A)  col2 ( B) row1 ( A)  col3 ( B )   2 1  1
E 23                                                                                 
        row 2 ( A)  col1 ( B ) row 2 ( A)  col2 ( B ) row 2 ( A)  col3 ( B )  1 3 11 
since
                                  0                                                      0
row1 ( A)  col1 ( B)  1     2    2 , row 2 ( A)  col1 ( B )   3             1    1
                                   1                                                     1
                                   1                                              1
row1 ( A)  col2 ( B )  1     2    1 , row 2 ( A)  col 2 ( B)   3      1    3
                                   0                                              0 
                                   3                                                   3 
row1 ( A)  col3 ( B )  1    2       1 , row 2 ( A)  col3 ( B)   3        1       11 .
                                    2                                                  2
                                                   5
Example 3
                         1                                    1              4 5 
               a31    2, b12   4   5  a 31b12    2 4   5   8 10 
                         3                                  3           12 15
Another expression of matrix multiplication:
                                                      row1 ( B ) 
                                                     row ( B )
Ar c Bcs      col1 ( A) col 2 ( A)  col c ( A)      2      
                                                          
                                                                 
                                                      row c ( B) 
                                                                                    c
       col1 ( A)row1 ( B )  col 2 ( A)row 2 ( B )    col c ( A)row c ( B )   col i ( A)row i ( B )
                                                                                   i 1
where coli ( A) rowi ( B) are         r  s matrices.
Example 2 (continue):
                                 row1 ( B) 
A22 B23   col1 ( A)
                     col2 ( A)              col1 ( A)row1 ( B )  col2 ( A)row 2 ( B)
                                row 2 ( B)
     1           2                        0 1 3   2 0  4  2 1  1
      0 1 3     1 0  2                                                
     3            1                     0 3 9  1 0 2   1 3 11 
Note:
                                      row1 ( A) 
                                     row ( A)
Heuristically, the matrices A and B,              and
                                           2
                                          
                                                 
                                      row r ( A) 
 col1 ( B)     col 2 ( B)  col s ( B ) , can be thought as r  1 and 1  s vectors.
Thus,
                   row1 ( A) 
                  row ( A)
   Arc Bcs         2       col1 ( B )   col2 ( B )  cols ( B )
                       
                             
                   rowr ( A) 
can be thought as the multiplication of r  1 and 1  s vectors. Similarly,
                                                        6
                                                        row1 ( B ) 
                                                       row ( B)
      Arc Bcs   col1 ( A)   col2 ( A)  colc ( A)     2       
                                                            
                                                                   
                                                        rowc ( B) 
can be thought as the multiplication of 1  c and c  1 vectors.
Note:
I.         AB is not necessarily equal to BA . For instance,
             1       3          2           1
           A           and B  
             2       1         0           2 
                                           2          5  0      7 
                                     AB                              BA .
                                           4          4 4    2
II.     AC  BC          A might be not equal to B . For instance,
                          1         3     2          4         1         2
                        A            , B             and C  
                          0         1     2          3          1       2 
                                            2         4
                                     AC                   BC but A  B
                                           1          2
III.       AB  0 , it is not necessary that A  0 or B  0 . For instance,
                                      1 1         1                1
                                    A    and B  
                                      1 1          1             1 
                                         0    0
                                   AB            BA but A  0, B  0.
                                         0    0
        A p  A  A A , A p  A q  A p  q , ( A )  A
                                                  p q    pq
IV.
      p factors
  Also, ( AB) p is not necessarily equal to A p B p .
V.  AB  t  B t At .
Trace:
Definition of the trace of a matrix:
The sum of the diagonal elements of a                 rr   square matrix is called the trace of
the matrix, written tr ( A) , i.e., for
                                                  7
                                        a11    a12     a1r 
                                       a       a 22    a 2 r 
                                   A   21                       ,
                                                      
                                                               
                                        a r1   ar 2    a rr 
                                                                  r
                               tr ( A)  a11  a22    arr   aii .
                                                                 i 1
Example 4:
        1      5   6
                   7  . Then, tr ( A)  1  2  3  6 .
Let A   4     2
        8     9   3
                                  Homework 1
1. Prove tr ( AB )  tr ( BA) , where A and B are            r  c and c  r
 matrices, respectively.
2.
(a) When does  A  B  A  B   A 2  B 2 ?
(b) When A t  A. Prove tr ( AB)  tr ( AB t )
(c) When X t XGX t X  X t X , prove X t XG t X t X  X t X
                Section 2 Special Matrices
2.1 Symmetric Matrices:
Definition of symmetric matrix:
A   rr    matrix Ar r is defined as symmetric if A  A t . That is,
                                a11 a12  a1r 
                               a    a22  a2 r 
                           A    12
                                                   , aij  a ji .
                                           
                                                
                                a1r a2 r  arr 
Example 1:
     1     2   5
A  2     3   6  is symmetric since A  A t .
     5    6   4
                                                    8
Example 2:
Let X 1 , X 2 , , X r be random variables. Then,
               X1          X2    …      Xr
                  X 1  Cov ( X 1 , X 1 )    Cov ( X 1 , X 2 )  Cov ( X 1 , X r ) 
                  X 2 Cov ( X 2 , X 1 )    Cov ( X 2 , X 2 )  Cov ( X 2 , X r )
              V 
                                                                              
                                                                                   
                  X r Cov ( X r , X 1 )     Cov ( X r , X 2 )  Cov ( X r , X r ) 
                       Var ( X 1 )          Cov ( X 1 , X 2 )  Cov ( X 1 , X r ) 
                      Cov ( X , X )          Var ( X 2 )       Cov ( X 2 , X r ) 
                              1    2
                                                                               
                                                                                   
                      Cov ( X 1 , X r )     Cov ( X 2 , X r )   Var ( X r ) 
is called the covariance matrix, where Cov( X i , X j )  Cov( X j , X i ), i, j  1,2, , r ,
is the covariance of the random variables X i and X j and Var ( X i ) is the variance
of X i . V is a symmetric matrix. The correlation matrix for X 1 , X 2 , , X r is defined
as
              X1       X2     …      Xr
               X 1  Corr ( X 1 , X 1 )      Corr ( X 1 , X 2 )  Corr ( X 1 , X r ) 
               X 2 Corr ( X 2 , X 1 )      Corr ( X 2 , X 2 )  Corr ( X 2 , X r )
            R
                                                                               
                                                                                    
               X r Corr ( X r , X 1 )       Corr ( X r , X 2 )  Corr ( X r , X r ) 
                           1                Corr ( X 1 , X 2 )  Corr ( X 1 , X r ) 
                   Corr ( X , X )                  1            Corr ( X 2 , X r )
                            1    2
                                                                                
                                                                                    
                   Corr ( X 1 , X r )       Corr ( X 2 , X r )         1           
                                 Cov( X i , X j )
where    Corr ( X i , X j )                              Corr ( X j , X i ), i, j  1,2,  , r ,   is the
                                Var ( X i )Var ( X j )
correlation of X i and X j . R is also a symmetric matrix. For instance, let X 1 be the
random variable represent the sale amount of some product and X 2 be the random
variable represent the cost spent on advertisement. Suppose
                 Var ( X 1 )  20, Var ( X 2 )  80, Cov( X 1 , X 2 )  15.
Then,
                                               20        15 
                                            V 
                                               15        80
and
                                                              9
                                                                 15        3
                                     1                                   1
                                  R                         20  80       8
                                                                          3   
                                     15                       1            1
                                     20  80                          8   
Example 3:
Let Ar c be a         r  c matrix. Then, both AA t and A t A are symmetric since
 AA 
    t t
            
           At
                 t
                                    
                     A t  AA t and A t A      t
                                                         
                                                     At At
                                                              t
                                                                   At A .
AA t is a    rr       symmetric matrix while A t A is a                     c  c symmetric matrix.
                                                      row1 ( At ) 
                                                                    
                                                        row2 ( At )
             AA   col1 ( A) col2 ( A)  colc ( A)
               t                                     
                                                                   
                                                               t 
                                                      rowc ( A ) 
                                                      col1t ( A) 
                                                       t          
                                                        col2 ( A)
                   col1 ( A) col2 ( A)  colc ( A) 
                                                        
                                                       t          
                                                      colc ( A) 
                        col1 ( A)col1t ( A)  col2 ( A)col2t ( A)    colc ( A)colct ( A)
                             c
                         coli ( A)colit ( A)
                         i 1
Also,
       row1 ( A) 
      row ( A)
AA  
  t
      
            2
             
                         
                   row1t ( A) row2t ( A)  rowrt ( A)                       
                 
       rowr ( A) 
       row1 ( A)  row1t ( A) row1 ( A)  row2t ( A)  row1 ( A)  rowrt ( A) 
                                                                              
        row2 ( A)  row1t ( A) row2 ( A)  row2t ( A)  row2 ( A)  rowrt ( A)
    
                                                                          
                                                                              
       rowr ( A)  row1 ( A) rowr ( A)  row2 ( A)  rowr ( A)  rowr ( A) 
                         t                      t                        t
Similarly,
                                                        10
                                                          row1 ( A) 
                                                         row ( A) 
          t
                  
         A A  row1 ( A) row2 ( A)  rowr ( A) 
                     t            t                t
                                                         
                                                              2
                                                               
                                                                     
                                                                     
                                                                    
                                                          rowr ( A) 
              row1t ( A) row1 ( A)  row2t ( A)row2 ( A)    rowrt ( A)rowr ( A)
                      r
                 rowit ( A) rowi ( A)
                  i 1
and
             col1t ( A) 
              t          
               col2 ( A) 
        A A
         t   
                1
                             col ( A) col2 ( A)  colc ( A)
              t          
             colc ( A) 
                col1t ( A)  col1 ( A) col1t ( A)  col2 ( A)            col1t ( A)  colc ( A) 
                 t                                                                                
                  col ( A)  col1 ( A) col2t ( A)  col2 ( A)             col2t ( A)  colc ( A)
                2
                                                                                              
                 t                                                                                
                colc ( A)  col1 ( A) colc ( A)  col2 ( A)             colct ( A)  colc ( A) 
                                            t
For instance, let
                                          1    3
  1 2  1                
A        and A   2 0 .
                 t
  3 0  1
                     1 1
Then,
                                                                    row1 ( A t ) 
                                                                                 
               AA t   col1 ( A)         col 2 ( A)    col3 ( A) row 2 ( A t ) 
                                                                    row3 ( A t ) 
                                                                                 
                                                                   col1t ( A) 
                                                                              
                            col1 ( A)    col 2 ( A)   col3 ( A) col2t ( A)
                                                                   col3t ( A) 
                                                                              
                           col1 ( A)col1t ( A)  col 2 ( A)col 2t ( A)  col3 ( A)col3t ( A)
                            1         2         1
                            1 3    2 0     1 1
                            3        0         1
                            1 3 4 0  1  1 6 2 
                                                    
                            3 9 0 0  1 1  2 10
In addition,
                                                11
                  At A  row1t ( A) row1 ( A)  row2t ( A) row2 ( A)
                          1               3
                          2 1 2  1  0 3 0 1
                               
                           1           1
                           1     2   1  9 0 3 10                   2     2 
                        2      4  2  0 0 0   2             4     2
                            1  2 1  3 0 1  2                 2    2 
Note:
A and B are symmetric matrices. Then, AB is not necessarily equal to
 BA  ( AB) t . That is, AB might not be a symmetric matrix.
Example 4:
                                  1       2         3        7
                                A          and B               .
                                  2       3         7        6
Then,
                                   17 19                17    27 
                              AB          BA         19
                                   27 32                      32 
Properties of AA t and A t A :
(a)
                                 At A  0               A0
                                tr ( A A)  0
                                      t
                                                           A0
(b)
                              PAA t  QAAt               PA  QA
[proof]
(a)
Let
         col1t ( A)  col1 ( A) col1t ( A)  col2 ( A)      col1t ( A)  colc ( A) 
          t                                                                          
          col2 ( A)  col1 ( A) col2t ( A)  col2 ( A)      col2t ( A)  colc ( A)
S  A A
     t
                                                                                 
          t                                                                          
         colc ( A)  col1 ( A) colc ( A)  col2 ( A)       colct ( A)  colc ( A) 
                                     t
       
  sij  0 .
Thus, for j  1,2,  , c,
                                                                  12
                                                                          a1 j 
                                                                         a 
                                           
          s jj  col tj ( A)  col j ( A)  a1 j       a2 j                 
                                                                   a rj    a12j  a 22 j    a rj2  0
                                                                          
                                                                             2j
                                                                          
                                                                          a rj 
      a1 j  a 2 j    a rj  0
       A0
tr ( A t A)  tr ( S )  s11  s 22    s cc
                      col1t ( A)  col1 ( A)  col2t ( A)  col2 ( A)    colct ( A)colc ( A)
                      a112  a 21
                                2
                                      a r21  a122  a 22
                                                          2
                                                                a r22    a12c  a 22c    a rc2
                0
       a  0, i  1,2,  , r ; j  1,2,  , c.  aij  0
          2
          ij
       A0
(b)
Since PAA t  QAAt , PAA t  QAAt  0,
                       PAA   t
                                                            
                                   QAAt P t  Q t   PA  QA  At P t  Q t                   
                                                                     PA  QA   A P t   t
                                                                                                At Q t   
                                                                     PA  QA  PA  QA
                                                                                                     t
                                                                   0
By (a),
                PA  QA t       0                             PA  QA  0                       PA  QA
Note:
A r  r matrix         Br r is defined as skew-symmetric if B   B t . That is,
                                                   aij   a ji , a ii  0 .
Example 5:
                                                         0            4        5
                                                   B    4          0        6
                                                          5         6       0
Thus,
     0        4     5                      0                  4       5
B  4
  t
               0      6             B    4
                                               t
                                                                   0       6  B .
     5       6      0                       5              6       0
2.2 Idempotent Matrices:
Definition of idempotent matrices:
                                                                 13
A square matrix K is said to be idempotent if
                                                             K 2  K.
Properties of idempotent matrices:
1.   K r  K for r being a positive integer.
2.   I  K is idempotent.
3.   If K 1 and K 2 are idempotent matrices and K 1 K 2  K 2 K 1 . Then,
   K 1 K 2 is idempotent.
 [proof:]
1.
For r  1, K 1  K .
Suppose K r  K is true, then K r 1  K r  K  K  K  K 2  K .
By induction, K r  K for r being any positive integer.
2.
                        I  K  I  K   I  K  K  K 2               I K K K I K
3.
         K 1 K 2  K1 K 2   K1 K 2 K1 K 2                 K1 K1 K 2 K 2           since       K1 K 2  K 2 K1 
                                    K 12 K 22  K 1 K 2
Example 1
Let Ar c be a         r  c matrix. Then,
       
K  A At A       1
                       A is an idempotent matrix since
           KK  A A t A          1
                                             
                                        At A At A      1
                                                                      
                                                             A  AI A t A       1
                                                                                                
                                                                                      At  A At A          1
                                                                                                                 AK.
Note:
A matrix A satisfying A 2  0 is called nilpotent, and that for which A 2  I could
be called unipotent.
Example 2:
                            1           2        5 
                       A   2          4       10   A 2  0                  A is nilpotent.
                             1       2        5
                         1              3         1                0
                       B                   B2                           B is unipotent.
                         0              1        0                1 
                                                     14
Note:
K is a idempotent matrix. Then, K  I might not be idempotent.
2.3 Orthogonal Matrices:
Definition of orthogonality:
Two n  1 vectors u and v are said to be orthogonal if
                                              u tv  vtu  0
A set of n  1 vectors  x1 , x 2 ,  , x n  is said to be orthonormal if
                          xit xi  1, xit x j  0, i  j , i, j  1,2,  , n.
Definition of orthogonal matrix:
A n  n square matrix P is said to be orthogonal if
                                           PP t  P t P  I nn .
Note:
                row1 ( P )row1t ( P )       row1 ( P )row 2t ( P )   row1 ( P )row nt ( P ) 
                                                                                              
                 row 2 ( P )row1t ( P )      row 2 ( P )row 2t ( P )  row 2 ( P )row nt ( P )
        PP t  
                                                                                          
                               t                                                              
               row n ( P )row1 ( P )       row n ( P )row 2t ( P )  row n ( P )row nt ( P )
                1 0  0 
                0 1  0 
                                
                    
                                 
                0 0  1 
               col1t ( P )col1 ( P )      col1t ( P )col 2 ( P )  col1t ( P )col n ( P ) 
                t                                                                           
                 col ( P )col1 ( P )       col 2t ( P )col 2 ( P )  col 2t ( P )col n ( P ) 
               2
                                                                                        
                t                              t                         t                  
               col n ( P )col1 ( P )     col n ( P )col 2 ( P )  col n ( P )col n ( P )
               Pt P
                              row i ( P ) row it ( P )  1, row i ( P ) row tj ( P )  0
                    
                              colit ( P )coli ( P )  1, colit ( P )col j ( P )  0
Thus,
        row ( P), row
             t
             1
                          t
                          2   ( P), , row nt ( P) and  col1 ( P), col 2 ( P), , col n ( P)
are both orthonormal sets!!
                                                            15
Example 1:
(a) Helmert Matrices:
The Helmert matrix of order n has the first row
                                     1 /       n     1/ n         1/ n ,            
and the other n-1 rows ( i  2,3,  , n ) has the form,
                                                                                       i  1            
            1 / (i  1)i    1 / (i  1)i             1 / (i  1)i                                    0  0
                                                                                      i  1 i           
           (i-1) items                                          n-i items
For example, as n  4 , then
                             1/      4              1/ 4                1/ 4               1/ 4       
                                                                                                      
                              1/     1 2         1/ 1 2                0                    0
                       H4                                                                            
                            1 /     23         1/ 2  3          2/ 23                     0       
                                                                                                      
                            1 /    3 4           1/ 3  4       1/ 3  4                3 / 3  4 
                              1/    4          1/ 4            1/ 4           1/ 4 
                                                                                       
                               1/    2           1/ 2         0                  0
                                                                                      
                              1/    6          1/ 6         2/ 6                0     
                                                                                       
                             1 /   12         1 / 12      1 / 12             3 / 12 
In statistics, we can use H to find a set of uncorrelated random variables.
Suppose Z 1 , Z 2 , Z 3 , Z 4 are random variables with
                 Cov( Z i , Z j )  0, Cov( Z i , Z i )   2 , i  j , i, j  1,2,3,4.
Let
                      X1        1/ 4 1/ 4      1/ 4   1 / 4   Z1 
                     X                                          
                                  1  / 2  1 / 2   0       0      Z 2 
                 X     H4Z 
                        2
                     X3         1/ 6 1/ 6  2 / 6        0  Z 3 
                                                                
                     X 4       1 / 12 1 / 12 1 / 12  3 / 12  Z 4 
                      1 / 4  Z1  Z 2  Z 3  Z 4  
                                                        
                            1 / 2  Z1  Z 2           
                   
                      1/ 6  Z  Z  Z  
                                   1     2     3
                                                         
                     1 / 12  Z1  Z 2  Z 3  3Z 4  
Then,
                            Cov( X i , X j )   2 row i ( H 4 )row tj ( H 4 )  0
                                                                             
since row1t ( H 4 ), row2t ( H 4 ), row3t ( H 4 ), row4t ( H 4 ) is an orthonormal set of
vectors. That is, X 1 , X 2 , X 3 , X 4 are uncorrelated random variables. Also,
                                      X  X  X   Zi  Z  ,
                                                                   4
                                            2        2      2                     2
                                            2        3      4
                                                                  i 1
                                                       16
where
                                                           4
                                                       Z          i
                                                                       .
                                               Z      i 1
(b) Givens Matrices:
Let the orthogonal matrix be
                                        cos( )                   sin( ) 
                                     G                                     .
                                        sin( )                  cos( ) 
G is referred to as a Givens matrix of order 2. For a Givens matrix of order 3,
            3
there are    3 different forms,
            2
            
            1      2    3            1       2 3
                 1  cos( )     sin( )       0                            1  cos( )     0      sin( ) 
         G12    2  sin( )   cos( )       0,            G13          2     0       1         0 
                 3     0         0           1                           3  sin( )   0      cos( )
                                         1             2                     3                                  .
                                       1 1            0                       0     
                             G23      2 0       cos( )                  sin( ) 
                                       3 0     sin( )                   cos( ) 
The general form of a Givens matrix Gij of order 3 is an identity matrix except
for 4 elements, cos( ), sin( ), and  sin( ) are in the i’th and j’th rows and
                                                                                              4
columns. Similarly, For a Givens matrix of order 4, there are    6 different
                                                                2                             
forms,
                                 1       2     3 4                         1    2 3      4
            1  cos( )      sin( )     0     0                           1  cos( )      0   sin( )        0
            2   sin( )    cos( )     0     0                          2      0        1      0           0
     G12                                         ,           G13          
            3      0           0        1     0                           3   sin( )    0   cos( )        0
                                                                                                               
            4      0           0        0     1                           4      0        0      0           1
           1     2 3   4         1       2     3       4
                                                         17
             1  cos( )        0     0   sin( )                   1 1       0           0     0
             2      0          1     0      0                     2 0   cos( )     sin( )   0
     G14                                          ,         G23    
             3      0          0     1      0                      3 0    sin( )   cos( )   0
                                                                                                 
             4   sin( )      0     0   cos( )                   4 0       0           0     1
        1     2     3    4            1 2     3      4
             1 1           0         0      0                      1 1   0       0          0 
             2 0        cos( )      0   sin( )                  2 0   1       0          0 
     G24                                           ,        G34                                   .
             3 0           0         1      0                      3 0   0    cos( )    sin( ) 
                                                                                                 
             4 0        sin( )     0   cos( )                   4 0   0    sin( )   cos( )
                                                               n
For the Givens matrix of order n, here are   different forms. The general
                                             2                 
form of Grs   g ij  is an identity matrix except for 4 elements,
                          g rr  g ss  cos( ),  g rs  g sr  sin( ), r  s .
2.4 Positive Definite Matrices:
Definition of positive definite matrix:
A symmetric n  n matrix A satisfying
                                    x1tn Ann x n1  0 for all x  0 ,
is referred to as a positive definite (p.d.) matrix.
Intuition:
If ax 2  0 for all real numbers x, x  0 , then the real number a is positive.
Similarly, as x is a n  1 vector, A is a n  n matrix and x t Ax  0 , then the
matrix A is “positive”.
Note:
A symmetric       n  n matrix A satisfying
                                    x1tn Ann xn1  0 for all x  0 ,
is referred to as a positive semidefinite (p.d.) matrix.
Example 1:
Let
                                                            18
                                                 x1         1
                                                x           1
                                            x   2  and l    .
                                                           
                                                             
                                                 xn         1
Thus,
  n                     n
   xi  x    xi2  nx 2
             2
 i 1                  i 1
                                      x1                                   1 / n                        x1 
                                     x                                     1 / n                       x 
          x1    x2           xn   2   n x1   x2                xn        1 / n 1 / n  1 / n  2 
                                                                                                      
                                                                                                        
                                      xn                                   1 / n                        xn 
                        1     1                    ll t       
         x t Ix  x t  n ll t  x  x t Ix  x t              x
                        n     n                    n           
                    ll t 
         x t  I       x
                     n 
                 ll t
Let A  I            . Then, A is positive semidefinite since for x  0,
                  n
                                                      n
                                           x t Ax    xi  x   0 .
                                                                        2
                                                     i 1