Desktop
Desktop
The Gynaecology Diagnostic and Outpatient Treatment Unit, Department of Obstetrics and
Gynaecology, Elizabeth Garrett Anderson Wing, University College Hospital, Grafton Way, London
WC1H
March 2014
2
I, Joel Naftalin, confirm that the work presented in this thesis is my own. Where information
has been derived from other sources, I confirm that this has been indicated in the thesis. I was
personally involved in the design of all studies, applications for ethical approval and
recruitment of all patients. I performed all ultrasound examinations except where indicated,
and collected all the data. All statistical analyses were done, either by me or by UCL
_____________
Joel Naftalin
3
ABSTRACT
(EMJ) and its clinical relevance to the uterine diseases, adenomyosis and endometrial cancer.
The inter- and intraobserver variability in the classification of EMJ visualisation using three-
dimensional ultrasound was assessed and a high level of agreement was found. Endometrial
thickness and parity were found to be significantly associated with the quality of EMJ
visualisation.
myometrial junction, were investigated for their role in the ultrasound diagnosis of
shadowing, linear striations, myometrial cysts, hyperechoic lesions and adenomyomas. The
presence of any of these features was considered diagnostic of adenomyosis. The inter- and
good level of agreement was found. This was the case when real-time ultrasound assessments
were compared with assessments made from stored uterine volumes, as well as when both
were considered to have adenomyosis if one or more ultrasound feature of adenomyosis was
found. Using this criterion, the prevalence was estimated to be 20.9% with 7.6% of women
being excluded from the data analysis. It was also found that age, gravidity and pelvic
Multivariable analysis revealed that while adenomyosis was not significantly associated with
menorrhagia when assessed as a binary outcome, when severity of disease was taken into
account, there was a significant association. A similar analysis found that adenomyosis was
A second-stage ultrasound test that incorporated assessment of the EMJ was investigated for
its use in the diagnosis of endometrial cancer in women presenting with post-menopausal
bleeding. It was found to significantly increase the specificity of ultrasound in the diagnosis
ACKNOWLEDGEMENTS
First and foremost I would like to thank my supervisor Davor Jurkovic. None of this thesis
would have been possible without his ideas, support and guidance. He is a true inspiration
and someone I feel immensely privileged to have been able to work with.
I would also like to thank Naaila Aslam and Rehan Salim for their clinical support during my
time as a research fellow. Thanks also to Professor Stephenson for her research guidance.
I would like to thank my research fellow colleagues during my time at UCH: Will Hoo,
Michelle Swer, Amna Jamil, Natalie Nunes and Katie Pateman for their practical help and
support. Similarly I would like to thank past research fellows Dimitri Mavrelos, Tom
Holland, Joseph Yazbek and Jara Ben–Nagi for being unfailingly helpful whenever called
upon.
Jacinta O’Neill, sister in charge of the GDOTU provided invaluable craic. And thanks to all
the other staff in the GDOTU: Ogechi, Sarah, Ronke, Lisa, Nancy, Leilani, Sian, Gody, Fumi
and Margaret for assorted chaperoning, appointment scheduling, help with flushings and for
Sam, Lyla & Bert – You are the loves of my life. Sam, I could not have done this without
your enormous support. I’m sorry for neglecting you. I hope it’s worth it.
6
TABLE OF CONTENTS
Page
Abstract 3
Acknowledgements 5
Table of contents 6
List of figures 12
List of tables 15
Hypothesis 19
Aims 20
PART I Background 21
1.1 Introduction 22
1.2 Principles 22
1.4 Doppler 23
2.1 Introduction 30
2.5.2 Ultrasound 35
2.6.1 Adenomyosis 39
2.6.1.3.1 Histology 43
2.6.1.3.2 Clinical 46
2.6.1.3.3 Ultrasound 47
2.6.1.3.4 MRI 50
2.6.1.3.6 Hysterosalpingography 53
2.6.1.4.1 Prevalence 54
2.6.1.4.2 Symptoms 54
2.6.1.4.2.2 Pain 56
2.6.2.1 Introduction 58
2.6.2.2 Prevalence 58
2.6.2.6.2 Hysteroscopy 61
1.1 Setting 69
1.1.1 The Gynaecology Diagnostic and Outpatient Treatment Unit, University College
Hospital 69
9
1.2 Ultrasound 69
1.1 Background 80
1.2 Methods 80
1.4 Results 81
2.1 Background 84
2.2 Methods 84
2.4 Results 85
3.1 Background 89
3.2 Methods 90
10
3.4 Results 91
4.1 Background 96
4.2 Methods 97
4.4 Results 98
3.0 Inter- and intraobserver variability in the ultrasound diagnosis of adenomyosis 137
REFERENCES 161
APPENDIX 180
12
List of Figures
Figure 1 – Image capture showing B-mode ultrasound image with Doppler velocimetry of a
blood vessel within a malignant ovary (short white arrow). The graph at the bottom (long
white arrow) is the tracing showing the estimated velocity of blood flow (y-axis) through the
blood vessel over time (x-axis) 25
Figure 2a – B-mode image of uterine corpus and a pelvic mass with appearances suggestive
of a uterine fibroid
Figure 2b – B-mode image of same uterine corpus and pelvic mass, with colour Doppler
illustrating the vascular pedicle connecting the fundus of the uterus and the pedunculated
fibroid 26
Figure 3 – TVUS image showing an endometrial polyp with power Doppler clearly
delineating its ‘feeder’ vessel 27
Figure 5 - Schematic diagram of a uterus in transverse section showing the endometrial and
myometrial layers and the EMJ (Naftalin and Jurkovic 2009) 31
Figure 6 – Sagittal T2-weighted image of a uterus showing normal zonal anatomy with a high
signal intensity endometrium (arrowhead), low-signal intensity JZ (short arrow) and
intermediate signal intensity outer myometrium (long arrow) (Novellas et al. 2011) 34
Figure 7 – Longitudinal B-mode image of a normal uterus in the proliferative phase of the
menstrual cycle. The callipers are placed on the basal endometrial layer which appears as a
regular continuous hyperechoic line. The surrounding inner myometrium appears hypoechoic
in comparison to both the outer endometrial and outer myometrial layers (Naftalin and
Jurkovic 2009) 36
Figure 10 – Illustration of PALM COEIN mnemonic for the causes of abnormal uterine
bleeding (Munro et al. 2011) 55
Figure 13 – Linear striations. A transverse B-mode image of a uterus with a linear striation,
seen as thin hyperechoic line (thin white arrow) extending from the endometrium into the
myometrium. (Naftalin et al. 2012b) 72
Figure 20 - Coronal view of uterus with EMJ visualisation classified as optimal (Naftalin et
al. 2012a) 82
Figure 21 - Coronal view of uterus with EMJ visualisation classified as satisfactory (Naftalin
et al. 2012a) 82
Figure 28 – Coronal view of a uterus where an endometrial cancer can be seen breaching the
EMJ at the right cornuum 128
Figure 30 – Longitudinal view of a uterus using B-mode ultrasound with colour Doppler in a
woman with endometrial cancer. Multiple vessels can be seen crossing the EMJ at the fundus
(white arrows) 129
List of tables
Table 2 – Studies comparing the diagnostic accuracy of TVUS and MRI for the diagnosis of
adenomyosis (Dueholm 2006) 52
Table 3 – Risk factors and protective factors for endometrial cancer (Saso et al. 2011) 59
Table 5 – Ultrasound features of adenomyosis used in this thesis (Naftalin et al. 2012b) 71
Table 9 - Principal indications for examination of women included in study evaluating factors
affecting EMJ visualisation (Naftalin et al. 2012a) 87
Table 10 – Result of Spearman’s rank correlation in assessing the effect of age, parity and
endometrial thickness on EMJ visualisation (Naftalin et al. 2012a) 87
Table 11 – Result of Kruskal-Wallis test in assessing the effect of stage of menstrual cycle on
EMJ visualisation (Naftalin et al. 2012a) 87
Table 12 – Result of Mann-Whitney test in assessing the effect of menopausal status on EMJ
visualisation (Naftalin et al. 2012a) 88
Table 13 – Results of multivariable analysis assessing the joint effect of the various factors
on EMJ visualisation (Naftalin et al. 2012a) 88
Table 14 - Principal indications for examination of women included in study evaluating inter
and intra-observer variability in the ultrasound diagnosis of adenomyosis 92
Table 19b - Kappa values for inter-observer agreement of the presence of each individual
ultrasound feature of adenomyosis (operator 1 and 2) 94
Table 24 – Principal indications for examination of women included in study assessing the
prevalence of adenomyosis (Naftalin et al. 2012b) 100
Table 25 - Summary of ultrasound diagnoses of the women included in study assessing the
prevalence of adenomyosis (Naftalin et al. 2012b) 100
Table 36 –The number of ultrasound features of adenomyosis seen in the women who were
diagnosed with adenomyosis in the study assessing whether adenomyosis was associated with
menorrhagia (n=157) 113
Table 37 – Results of the statistical analysis looking at the effect of the number and type of
ultrasound features on the PBAC assessment of menorrhagia (n=304) 114
Table 39 - Summary of ultrasound diagnoses recorded in the women included in the study
assessing whether adenomyosis is associated with dysmenorrhoea (n=714) 119
Table 43 - Results of the statistical analysis looking at the effect of the number and type of
ultrasound features on the subjective assessment of dysmenorrhoea (n=304) 122
Table 44 – The number of ultrasound features of adenomyosis seen in the study population
(n=157) 122
Table 45 – Demographics of women included and excluded from the endometrial cancer
study 130
18
Table 46 – Table showing how the endometria of women subsequently diagnosed with
endometrial cancer were classified at the time of their original ultrasound scan 131
19
HYPOTHESIS
cancer
20
AIMS
endometrial-myometrial junction
PART I BACKGROUND
22
1.1 Introduction
Ultrasound has transformed many aspects of gynaecological practice. Prior to its use in
examination, surgical and histological findings. The first published clinical use of ultrasound
was in the field of gynaecology when Professor Ian Donald and his registrar John McVicar
used transabdominal ultrasound to differentiate between solid and cystic abdominal masses
(Donald et al. 1958). Professor Donald combined his clinical experience and his knowledge
of SONAR, gleaned during World War II, with the technical expertise of Tom Brown, an
engineer with an interest in the use of ultrasound in metallurgy, to create and use the first
clinically useful ultrasound machine. The ability to provide instant, clinically useful
information using a safe, non-invasive modality was transformational and has revolutionised
gynaecological practice. There have been many significant technical advances, most recently
three-dimensional (3D) ultrasound, yet it is still B-mode ultrasound, first used by Donald and
his team over 50 years ago, that is the primary imaging tool in gynaecology today.
1.2 Principles
crystal to create ultrasound pulses, which can then be transmitted through the relevant body
tissue. When these pulses encounter an interface between tissues of differing acoustic
impedance or density, a proportion of the emitted soundwaves will be reflected back towards
the piezolelectric element from which they were emitted (echoes). The echoes are then
converted into an electric current, the amount of current produced being dependent on the
number of echoes received. The conversion of this current into an image therefore gives a
organ-boundaries within the body. The image is constructed from echoes generated by the
reflection of ultrasound waves at tissue boundaries. Each echo is displayed at a point in the
image which corresponds to the position of its origin in the tissue being isonated. The
brightness of the image at each point is related to the strength or amplitude of the echo,
The frequency of ultrasound pulses used is a compromise between image resolution and the
depth of penetration required. Higher ultrasound frequency results in better image resolution
but there is greater attenuation of the beam within the tissues. Therefore, transabdominal
ultrasound probes, which have to pass through multiple tissue layers before reaching the
abdominal cavity, tend to use lower frequencies (3.5-5MHz) at the expense of image
resolution. The ability of transvaginal ultrasound (TVUS) probes to get much closer to the
organs of interest, enables the use of higher frequencies (8-15MHz) leading to improved
image resolution.
1.4 Doppler
The Doppler effect is the apparent difference between the frequency at which waves (sound
or light) leave a source and that at which they reach an observer, caused by the relative
motion of the observer and the wave source (McNay and Fleming 1999). The effect takes its
name from the Austrian physicist Christian Johann Doppler who presented the idea in 1842
24
(Roguin 2002).When the object emitting the waves is stationary the observed frequency is the
same as the emitted frequency, however if the sound source is moving towards the observer,
the experienced frequency is higher as the sound waves become more compressed and the
opposite happens if the sound source is moving away from the observer. This change in
frequency is called the Doppler shift and is proportional to the relative velocity of the source
to the observer.
This effect can be applied clinically and is widely utilised in both obstetric and
gynaecological ultrasound in order to assess the velocity of blood flow through blood vessels.
When the ultrasound beam is reflected off moving blood, there are two Doppler shifts, one
when the transmitted ultrasound strikes circulating blood cells and a second when circulating
blood cells emit the reflected ultrasound. Evaluation of these Doppler shifts, alongside
knowledge of the transmitted ultrasound frequency, the velocity of sound through the tissue
and the angle of insonation, allow the calculation of the velocity of blood passing through the
vessel (Hoskins et al. 2003). This estimated velocity of blood flow over time can be shown on
Figure 1 – Image capture showing B-mode ultrasound image with Doppler velocimetry of a
blood vessel within a malignant ovary (short white arrow). The graph at the bottom (long
white arrow) is the tracing showing the estimated velocity of blood flow through the blood
vessel (y-axis) over time (x-axis).
In colour Doppler scanning, the same process is applied across an area of tissue rather than a
specific blood vessel. The velocity signals are presented as a colour coded overlay,
map that provides information on the morphological arrangement of the vascular tree in the
tissue of interest. While its sensitivity is good enough to enable visualisation of vessels
smaller than one millimetre (De Souza and Cosgrove 2003), it is restricted by its reliance on
frequency shifts.
26
Figure 2a –B-mode image of uterine corpus (long white arrow) and a pelvic mass (short
white arrow) with appearances suggestive of a uterine fibroid.
Figure 2b – B-mode image of same uterine corpus and pelvic mass, with colour Doppler
illustrating the vascular pedicle connecting the uterus and the pedunculated fibroid.
27
Power Doppler has greater sensitivity than colour Doppler imaging, because the display
depends on the amplitude of Doppler signal rather than the frequency shift. Thus, power
Doppler imaging provides information on the concentration of moving blood at the expense
of knowing its velocity and direction. In addition to being more sensitive than colour Doppler
imaging, it is relatively angle independent, more accurate in depicting luminal edges and
Figure 3 – TVUS image showing an endometrial polyp with its ‘feeder’ vessel delineated by
power Doppler.
pelvic organs by collecting a series of sequential ultrasound images and converting them into
in such a way as to allow visualisation of an organ from any chosen angle and in any arbitrary
28
plane (Jurkovic 2002). In the field of obstetrics and gynaecology 3D ultrasound has so far had
sequential movement of either the transducer or the ultrasound beam. This series of images is
then stored in the computer as a volume set which can be examined using three methods:
equipment used in this thesis is designed by Kretz Technik, Zipf, Austria (Voluson E8). This
commonly used system combines both short volume acquisition time and fast computing,
enabling almost immediate online data analysis and near real-time surface rendering. Volume
acquisition with this system is performed using mechanical movement of the ultrasound
An important aspect of 3D ultrasound is the ability to display and manipulate any chosen
section from within the dataset. This confers many advantages over B-mode imaging. Firstly,
it allows the acquisition of views that are not possible with conventional two-dimensional
(Baba et al. 1997). The example of this most relevant to this thesis is the coronal view of the
normal female uterus (Figure 4). Secondly, the ability to view the organ in three orthogonal
planes enables a more detailed analysis of the organ to be performed. Finally, the storage of
images for manipulation enables examination of the volume set by multiple operators at
different times.
29
2.1 Introduction
Assessment of the uterus has historically focussed on what were considered to be its two
constituent parts: the endometrium and the myometrium. Magnetic resonance imaging (MRI)
studies in the early 1980s revealed that the myometrium might be further divisible into two
distinct compartments: the inner and outer myometrium (Hricak et al. 1983). Despite being
macroscopically and microscopically indistinct, subsequent research has shown these two
physiology. The inner myometrium has been variously termed the uterine junctional zone
(JZ) (Fusi et al. 2006), the endometrial-subendometrial unit or stratum sub-vasculare (Noe et
al. 1999), the subendometrial myometrium (Lyons et al. 1991) the archimetra (Leyendecker et
al. 1998) or archimyometrium (Leyendecker et al. 2006). While these terms are often used
interchangeably it is not always clear whether they are referring to exactly the same entity.
For the purposes of this thesis, this region will be referred to as the EMJ. It is the transitional
zone between the mucous membrane that is the endometrium and the outer smooth muscle
Figure 5 - Schematic diagram of a uterus in transverse section showing the endometrial and
myometrial layers and the EMJ (Naftalin and Jurkovic 2009).
The endometrium and the EMJ both arise from the paramesonephric ducts, whereas the outer
paramesonephric ducts are formed at about six weeks’ gestation from the coelomic
invagination of mesodermal cells at the level of the third thoracic somite (Koff 1933;
O’Rahilly 1977). The caudal portions of these tubes make contact with each other and fuse in
the midline, giving rise to the uterus and vaginal canal. The septum that initially divides the
uterine cavity is then reabsorbed leaving a single cavity. The endometrial glands originate at
around 19 weeks’ gestation from out-pouchings of the columnar epithelium that lines the
primitive uterine cavity. The smooth muscle cells of the EMJ can be seen from around 21
weeks, while the outer layers of the myometrium develop in the third trimester or even
The myometrium consists of bundles of smooth muscle fibres, intermixed with areolar tissue,
blood vessels, lymphatic vessels, and nerves. The muscle fibres of the EMJ have
of the outer layers of myometrium (Wetzstein and Renn 1970). The endometrium, the
mucous membrane that lines the uterine cavity, is composed of a single layer of columnar
epithelium.
The EMJ is structurally distinct from other mucosal-muscle interfaces within the human body
in that it lacks a submucosal layer. Most tissues with a mucosa have a subjacent,
histologically recognizable submucosa that protects the underlying tissue from mucosal
invasion, e.g., stomach, intestine, trachea, and bronchi (Marcus 1961, Emge 1962). While the
superficial and basal layers of the endometrium are clearly distinguishable on light
microscopy, there is no histological distinction between the inner myometrium and the outer
EMJ when compared with the rest of the myometrium and also found that the muscle fibres
of this zone were more densely packed than in other zones of the myometrium. They
concluded that these architectural findings would account for the hypoechoic appearance of
The endometrium and EMJ do not just share an embryological origin. While they are
physiologically distinct, they are both under the cyclical influence of ovarian sex steroids.
The main function of the EMJ appears to be modulation of uterine peristalsis, an area thought
to play an increasingly significant role in fertility. Uterine contractions emanating from the
33
EMJ were first visualised and subsequently described by Birnholz who visualised them on
and frequency throughout the cycle under the influence of oestradiol and progesterone. In the
menstrual phase these contractions are fundo-cervical in direction (de Ziegler et al. 2001)
facilitating menstruation. The direction reverses during the follicular phase becoming
significantly as ovulation approaches. There is evidence that this pattern of contractions in the
late follicular phase facilitates sperm transport (Kunz et al.1996). After ovulation there is a
decrease in overall EMJ contractility under the influence of progesterone. Ijland et al.
suggested that this may help to facilitate implantation of the developing blastocyst, while
Assessment of the EMJ has traditionally been part of the MRI evaluation of the uterus, with
changes in this area being a key component of the diagnosis of adenomyosis. With regard to
ultrasound, although the EMJ is visible, it has not historically played a major part in the
evaluation of uterine pathology. This may be partly due to the fact that in order to obtain clear
images of the EMJ, high resolution ultrasound equipment with 3D imaging facility is often
required, which has only been available in recent years. This may also explain why the
majority of studies addressing visualisation and the appearance of the EMJ have used MRI.
Hricak et al. first described the uterus as comprising three distinct zones when visualised on
MRI (Hricak et al 1983). MR imaging of uterine zonal anatomy is best demonstrated on T2-
34
weighted images. The endometrium is of generally high signal intensity and is therefore
visualised as a thin white stripe. The inner myometrium or JZ, as most MRI studies refer to
the inner myometrium, is of uniformly low signal intensity while the outer myometrium is of
Figure 6 – Sagittal T2-weighted image of a uterus showing normal zonal anatomy with a high
signal intensity endometrium (arrowhead), low-signal intensity JZ (short arrow) and
intermediate signal intensity outer myometrium (long arrow) (Novellas et al. 2011).
Because of this observed contrast of the three uterine zones, MRI is very good at delineating
and measuring the size of these zones. Many studies have attempted to derive a normal range
for JZ thickness, with the upper limit now considered to be 8mm (Novellas et al. 2011). This
increased thickness of the JZ (Reinhold et al. 1996). It is worth noting that the thickness and
appearance of the JZ is hormone-dependent and therefore cyclical with the maximal thickness
35
of the JZ being reached during the menstrual phase of the menstrual cycle (Fusi et al. 2006).
Furthermore, prior to menarche, during pregnancy and after the menopause, uterine zonal
anatomy is less distinct (Demas et al. 1986; Brosens et al. 1998; Willms et al. 1995) with the
JZ and the outer myometrium being poorly distinguished. This finding is reversed in
1986). These effects mean that the JZ cannot be measured in a significant proportion of
women; up to 30% of premenopausal women (Bazot et al. 2001) and 50% of postmenopausal
2.5.3 Ultrasound
functional components of the uterus display different acoustic properties, which facilitates
their differentiation on the ultrasound image. On ultrasound, the inner myometrium has been
described as a hypoechoic band or ‘halo’ that regularly encircles the endometrium (Kunz et
al. 2000). While this zone is distinct from both the endometrium and the outer myometrium,
the ultrasonic delineation of uterine zonal anatomy is less clear than on MRI. Ultrasound,
however, has the ability to visualise very clearly the basal endometrial layer, which forms the
actual interface between the inner myometrium and the endometrium. On two-dimensional
ultrasound scan, the EMJ is best seen in the longitudinal section, which enables the
examination of its anterior and posterior aspects. In this view the EMJ is seen as consisting of
two distinctive structures: basal endometrium and inner myometrium. In normal uteri the
(Figure 7).
Figure 7 – A TVUS image showing a longitudinal view of a normal uterus in the proliferative
phase of the cycle. The callipers are placed on the basal endometrial layer which appears as a
regular continuous hyperechoic line. The surrounding inner myometrium appears hypoechoic
in comparison to both the outer endometrial and outer myometrial layers (Naftalin and
Jurkovic 2009).
On ultrasound, as with MRI, the differences in appearance of the inner and the outer
myometrium are influenced by ovarian sex steroid hormone levels. For example, prior to
menarche when the levels of the ovarian sex steroids are low, just as with MRI, the inner and
outer myometrium are indistinct on ultrasound (Newren 1997). There are, however, no
reported ultrasound studies of the cyclical changes seen within the EMJ (Naftalin and
Jurkovic 2009).
With the development of 3D ultrasound has come the ability to create a 3D reconstruction of
uterine anatomy in the coronal plane. This allows ultrasound assessment of both the lateral
37
and fundal aspects of the EMJ, which were otherwise impossible to see clearly on standard B-
mode ultrasound imaging. The ability to see the entire lateral borders of the EMJ in a single
view has, literally, added a new dimension to the ability to visualise the EMJ on ultrasound.
adenomyosis to ultrasound assessment of the uterus (Figures 8a & 8b). They took various
measurements of the JZ taken using a 3D coronal view of the uterus including the minimal JZ
thickness (JZmin), the maximal JZ thickness (JZmax) and the maximal myometrial thickness,
>8mm and a difference between the JZmin and the JZmax of >4mm to have high diagnostic
accuracy however these measurements have not been tested prospectively and furthermore,
no studies have been performed that attempt to describe a normal range for JZ thickness, as
measured by 3D ultrasound.
38
2.6.1 Adenomyosis
the myometrium. While there is still much that is poorly understood about the condition, it is
accepted that it often involves the EMJ, while some would consider it a disease of the EMJ.
Determining the history of adenomyosis, as with many other aspects of the disease, is fraught
with difficulties. It remains unclear as to when it was first described with Scroen (1690),
Rokitansky (1860) and Cullen (1896) all being credited (Benagiano and Brosens 2006).
Further difficulty stems from the fact that for some time, adenomyosis and endometriosis
were considered to be the same condition. The first detailed descriptions of adenomyosis
came from Cullen in 1896 (Cullen 1896). He subsequently dedicated an entire book to the
condition, entitled ‘Adenomyoma of the uterus’ (Cullen 1908). It was Frankl who first used
the term ‘adenomyosis’ explaining “I have chosen the name of adenomyosis, which does not
either in the musculature or the mucosa of this region”. He also noted continuity between
adenomyosis and the endometrium, suggesting an endometrial origin to the disease (Frankl
1925). It was with Sampson’s classical description of peritoneal endometrium and the first
use of the term ‘endometriosis’ two years later, that the conditions started to be considered as
two separate entities (Sampson 1927). The modern definition of adenomyosis – ‘benign
invasion of the endometrium into the myometrium’- was provided by Bird et al. in 1972 (Bird
et al. 1972).
40
The precise pathogenesis of adenomyosis remains unknown with many theories being
proposed. The most widely held theory is that it results from invagination of endometrial
tissue, across the EMJ, into the myometrium. There are numerous histological and ultrasound
reports of endometrial tissue being seen in continuity with adenomyosis within the
myometrium (Frankl 1925; Ferenczy 1998; Naftalin and Jurkovic 2009; Verma et al. 2009)
that would appear to corroborate this theory. Other suggested mechanisms for the disease
include de novo development of endometrial tissue from mullerian remnants, although this is
thought to apply more to adenomyosis found in extra-uterine sites, such as the recto-vaginal
Even if endometrial invagination is the cause, there is still significant uncertainty about what
factors might trigger this invasion. As with most chronic conditions, the aetiology is likely to
be multi-factorial involving some or all of the factors described below. The ‘invasive
potential’ of endometrial tissue has been investigated as a possible cause. In-vitro studies
have shown that endometrial cells have a similar invasive potential to metastatic bladder cell
lines (Gaetje et al. 1995). Others have looked for differences between normal endometrial
glands and ‘adenomyotic’ endometrial glands found in the myometrium. Lei et al. found
receptor mRNA in endometrial glands found in foci of adenomyosis, compared with normal
endometrial glands (Lei et al. 1993). A similarly increased hcg/LH receptor expression has
been found in endometrial cancer cells when compared to normal endometrium (Lei et al.
choriocarcinomas (Lin et al. 1994). It is possible therefore that this increased receptor
expression may be related to the potential of endometrial tissue to invade into the
Myometrial characteristics may have a role in this endometrial invasion. The EMJ is unusual
in lacking a sub-mucosal layer. Most muscle-mucosa interfaces within the body, having a
distinct subjacent histologically recognizable sub-mucosal layer that protects the underlying
tissue from invasion (Marcus 1961, Emge 1962). The absence of this layer might explain why
invasion can occur, but does not explain why it happens in particular areas of the
Endometrium may cross the EMJ at areas of myometrial ‘weakness’. A few theories of how
myometrial ‘weakness’ might occur have been proposed. Surgery provides a mechanical
model for this. Many studies have looked for an association between adenomyosis and
pregnancy. All these operations involve operating across or close to the EMJ and could easily
create defects in the EMJ or myometrium. Indeed, in the case of Caesarean section, it would
be impossible to perform the operation without breaching the EMJ. Defects in the
myometrium following Caesarean section are clearly visible on ultrasound and have been
reported in the literature (Ofili-Yebovi et al. 2008). Studies, however, have not consistently
found an association between Caesarean delivery and adenomyosis (Bergholt et al. 2001;
Harris et al. 1985). Uterine curettage might create defects in the myometrium through which
endometrial tissue might subsequently pass or could even push endometrial tissue through the
EMJ and into the myometrium at the time of surgery. Adenomyosis has been elicited in
pregnant rabbits by curetting one uterine horn and leaving the pregnancy in the other horn
(Lewinski 1931). In human studies, several authors (Levgur et al. 2000; Vavilis et al. 1997;
Curtis et al. 2002) have found an association between adenomyosis and previous surgical
increase the risk of EMJ trauma, perhaps explaining the association reported between
42
adenomyosis and uterine instrumentation in pregnancy, but not outside of pregnancy (Levgur
Since adenomyosis is more common in parous women, mechanical events at parturition have
been considered to be the main pathogenenic factors for the development of adenomyosis
(Kitawaki 2006). However there are few data to support that it is parturition rather than
pregnancy per se that is the cause. Certainly the physiological process of trophoblast
invasion, common to all pregnancies, involves invasion up to the EMJ. MR images during a
conception cycle have shown focal changes within the EMJ (Turnbull et al. 1995) and it is
known that trophoblast invasion is able to progress beyond the EMJ, albeit pathologically, in
cases of placenta accreta, increta and percreta. Perhaps the process of trophoblast invasion, in
some women, alters the EMJ leaving it susceptible to adenomyosis in the future.
spontaneously form. This theory holds that chronic peristalsis or periods of hyperperistalsis in
the inner myometrium cause EMJ microtrauma and that a cycle of permanent
combination of hyperperistalsis and overt trauma to the EMJ would physically force basal
endometrial tissue into the myometrium (Leyendecker et al. 2009) causing adenomyosis. The
increased presence of oestrogen plays a key role in this hypothesis. Adenomyosis has been
1989), endometriosis (Kunz et al. 2000), and endometrial hyperplasia (Bergholt et al. 2001).
It also appears to be most prevalent in women of reproductive age and regresses after the
menopause (Kitawaki 2006). This has led some researchers to investigate the role of
oestrogen in the pathogenesis of adenomyosis. It has been reported that oestrogen receptors
are always found in adenomyotic tissue (Tamaya et al. 1979). Other investigators have found
43
that adenomyotic tissue contains aromatase, an enzyme that catalyses the conversion of
tissue may contribute to overall oestrogen concentrations (Urabe et al. 1989). Further
evidence of this local production of oestrogen comes from a study that looked at oestrogen
levels in both peripheral and menstrual blood in women with and without adenomyosis.
While there was no difference in the oestrogen levels in peripheral blood, there were
significantly increased oestrogen levels in the menstrual blood of women with adenomyosis
A genetic predisposition to adenomyosis has been suggested from early reports suggesting
heredity (Emge 1962; Arnold et al. 1995) however few studies have investigated the genetics
three cases of adenomyosis (Pandis et al. 1995). Similarly Kitawaki found that the PP
genotype is less frequently observed in women with endometriosis and adenomyosis when
compared with women with neither condition (Kitawaki et al. 2001). Wang et al. 2002 found
2.6.1.3.1 Histology
beyond the EMJ and up until relatively recently, histopathological examination of the uterus
was the only way to diagnose the condition. While recent advances in imaging make an
accurate, non-invasive diagnosis possible, almost all the published studies of the diagnostic
accuracy of these imaging techniques have used histology as the gold standard. There are,
44
however, substantial disadvantages to the continued use of histology for the diagnosis of
adenomyosis.
There remains significant disagreement as to the depth of infiltration required for the
diagnostic criteria to be met. It has been suggested that units of microscopic fields should be
used for this depth, however reported depths vary and include half a low-power field of view
(Kurman 1994), one low-power field of view (Rosai 1989), one medium-power field of view
(Gompel and Silverberg 1985) and one high-power field of view (Entmann 1988).
Furthermore, there is significant variation in the size of microscopic fields when different
microscopes are used (Ellis and Whitehead 1981) leading to the suggestion that a different
measure should be used. The depth of infiltration as a proportion of the total uterine wall
thickness has been proposed with depths greater than 25% (Ferenczy 1998) and greater than
one third of the total thickness being used in the literature (Hendrickson & Kempson 1990),
however uterine wall thickness is not uniform throughout the uterus, particularly in the
infiltration of endometrial glands into the myometrium (>1mm, >3mm & >5mm) for the
diagnosis of adenomyosis and showed that the reported prevalence varied from 11.5%–18.2%
(Bergholt et al. 2001). Further variation was found depending on whether or not the presence
of myometrial hyperplasia was used as a diagnostic criterion. This followed on from the
study by Bird et al that showed that the reported prevalence of adenomyosis varied depending
Histopathological grading systems for severity of adenomyosis have been proposed. Bird &
Molitor both used a histological system to grade the severity of adenomyosis based on depth
of infiltration, whereby infiltration of endometrial tissue to the inner myometrium only was
graded ‘slight’, infiltration to the middle third of the myometrium was termed ‘moderate’ and
45
infiltration to the outer third was termed ‘extensive’ (Bird et al. 1972; Molitor 1971) . Bird et
al. also used a histological system to grade the degree of myometrial involvement. Here, 1-3
endometrial glands per low-power field was graded ‘slight’, 4-9 endometrial glands per low-
power field was graded ‘moderate’ and 10 or more endometrial glands per low-power field
was termed ‘marked’ (Bird et al. 1972). While these grading systems add an extra level of
subtlety to the histological diagnosis of adenomyosis, they have not been prospectively
evaluated, nor have their inter- and intra-observer variability been evaluated.
problems not only in the diagnosis of the disease, but also in the investigation of the disease.
Most studies looking at associations with the condition have compared the prevalence of the
and those without a history of menorrhagia, and then looked for statistical significance.
Analysis and comparison of different studies is difficult when different diagnostic criteria are
being used, making it difficult to draw firm conclusions about the condition when studied in
this way. Even where standardised diagnostic criteria are used it has been suggested that
awareness of the condition amongst individual pathologists could confer a further source of
variance with the frequency of diagnosis of adenomyosis varying from 12-58% among 15
different hospitals, and from 10-88% among 25 different histopathologists (Seidman and
Kjerulff 1996). One explanation for this might be that histopathologists may see but not
the primary condition. This phenomenon may be exacerbated by the fact that once diagnosed
post-hysterectomy, the condition has already been cured and so a diagnosis of adenomyosis
will not influence future clinical management. This links to another fundamental problem
for the condition. This drawback of histological diagnosis does not apply to non-invasive
diagnostic techniques, which must therefore be used for assessments of the effectiveness of
Finally, as histology remains the gold standard for diagnosis, much of our current knowledge
of the condition comes from histological examination of the entire uterus. There is great
national, international and temporal variation in the use of, and indications for, hysterectomy
(Bergholt et al. 2001; Reid and Mukri 2005). Furthermore, populations of women undergoing
significant demographic variation. All of these factors, directly linked to the use of histology
as gold standard for diagnosis, explain both the significant variation in reported prevalences
of adenomyosis, as well as the lack of consensus in the literature with regard to its clinical
impact.
2.6.1.3.2 Clinical
There are no symptoms or symptom complexes that are pathognomic of adenomyosis and the
and pelvic pain, are non-specific and associated with many other gynaecological pathologies.
Furthermore, adenomyosis is often asymptomatic with 35% of women diagnosed with the
condition in one study not having any symptoms explained by the disease (Benson and
Sneedon 1958). Against this background, it is unsurprising that the accuracy of clinical
confirmed in under half of women who subsequently underwent a hysterectomy (Lee et al.
1984).
47
2.6.1.3.3 Ultrasound
Many investigators have assessed the accuracy of transvaginal ultrasound in the diagnosis of
ultrasound diagnosis with subsequent histological diagnosis. The reported sensitivity varies
from 53%-89% and the reported specificity varies from 50%-99% (Dueholm 2006). The
prevalence of adenomyosis in these studies varies widely which may reflect the differing
histological criteria used, the different populations studied or the varying degree of patient
selection involved. Generally, the more highly selected the patients are, the higher the
sensitivity of diagnosis (Dueholm 2006). Large studies with no selection will, almost
invariably, include women with either large uterine fibroids, or large numbers of fibroids.
Fibroids of this nature are likely to prevent examination of the entire myometrium, meaning
that ultrasound features of adenomyosis may be missed (Bazot et al. 2001). The difficulty in
differentiating adenomyomas and fibroids may also lead to false positive diagnosis of
adenomyosis. The presence of other pathologies might also reduce the accuracy of ultrasound
pre-menopausal women if large enough, are likely to include some women with endometrial
ultrasound (Siedler et al. 1987; Bohlman et al. 1987). Transabdominal ultrasound, however,
does not have sufficient resolution to be able to directly visualise some of the subtle
48
(Bazot et al. 2002). The characteristic gross appearance and individual ultrasound features of
adenomyosis on transvaginal ultrasound derive not only from the presence of endometrial
glands and stroma within the myometrium, but also from the associated muscular
hypertrophy and hyperplasia (Ferenczy 1998). Many of these features of adenomyosis are
subtle and may be missed by those not trained to look for or recognise them. Some authors
have suggested that the learning curve for those already familiar with TVUS to be able to
compounded by the fact that the features of adenomyosis cannot always be seen on hard-copy
images leading some authors to suggest that it must be diagnosed during real-time
The asymmetrical myometrial thickening seen on transabdominal ultrasound can also be seen
on TVUS. Another common feature described is heterogenous, poorly defined areas within
the myometrium (Reinhold et al. 1995) or increased myometrial echotexture (Reinhold et al.
cysts and lacunae (Fedele et al. 1992). Parallel shadowing can sometimes be seen distal to
these myometrial features. Adenomyomas can be seen on TVUS but can be mistaken for
uterine fibroids, with which they will often co-exist. It is particularly important to distinguish
between the two in pre-operative imaging as adenomyomas are less amenable to surgical
resection than uterine fibroids. Adenomyomas tend to be more elliptical than uterine fibroids
and will be less well-circumscribed than uterine fibroids. They will also tend to have less
calcification and less edge-shadowing (Reinhold et al. 1998). The use of Doppler can assist in
distinguishing between adenomyomas and uterine fibroids. Blood flow around fibroids will
be circumferential with minimal or absent blood flow seen within the fibroid, whereas with
49
adenomyomas, blood vessels will be seen following their normal course through the
Table 1 – Ultrasound features of fibroids and adenomyomas that aid differentiation on TVUS.
Fibroid Adenomyomas
effect
imaging
Features seen closer to the endometrium include linear striations and an irregular or indistinct
EMJ. Linear striations are seen as fine hyperechoic lines radiating from the endometrium into
the myometrium. An irregular EMJ has been reported as a feature of adenomyosis on both B-
mode (Reinhold et al. 1998) and 3D imaging (Ahmed et al. 2007). Recently, Exacoustos et al.
used the 3D coronal view of the uterus to visualise the EMJ and measure its thickness, to
assess its usefulness in diagnosing adenomyosis (Exacoustos et al. 2011). They found that
alterations in the EMJ had good diagnostic accuracy for diagnosing adenomyosis. While this
is clearly an area of current research focus, there remain no published studies that describe a
A few studies have looked at which specific ultrasound features are the most accurate in the
diagnosis of adenomyosis. Bazot et al. found that myometrial cysts were the most specific
and sensitive criterion for diagnosing adenomyosis (Bazot et al. 2001). Kepkep et al. found
that myometrial cysts, along with sub-endometrial linear striations and a regularly enlarged
50
globular uterus were the ultrasound features with the highest accuracy (74.3%, 71.4% and
80% respectively). Sub-endometrial linear striations were the feature with the highest
specificity (95.5%) (Kepkep et al. 2007). It should be noted that while there was considerable
overlap in the ultrasound features used in these studies, the features used were not identical.
2.6.1.3.4 MRI
There are a small number of studies assessing the performance of MRI in the diagnosis of
adenomyosis, all of which included women undergoing hysterectomy. They compared pre-
operative MRI diagnosis with subsequent histological diagnosis and showed a sensitivity of
70-86% and a specificity of 86-93% with a mean accuracy of 87.5% (Bazot et al. 2001,
The most widely used feature for diagnosing adenomyosis on MRI is increased JZ thickness.
than 8mm thick (Reinhold et al. 1998). Focal thickening is considered more specific than
caused by physiological inner myometrial contractions. The timing of the MRI must also be
considerably during the menstrual cycle (Masui et al. 2001). The JZ is most clearly visible
during the late secretory phase (Imaoka et al. 2003) and JZ thickness commonly appears to be
>12mm during the menstrual phase, particularly on days 1 and 2. For this reason, some
authors advocate avoiding MRI imaging during the menstrual phase of the menstrual cycle in
51
order to avoid false positive diagnosis of adenomyosis (Tamai et al. 2006). There are further
limitations in using JZ thickness as the sole criterion to diagnose adenomyosis. One study
found that the JZ was unmeasurable in almost a third of the women in their study, 22% of
whom were subsequently diagnosed with adenomyosis on histology (Bazot et al. 2001).
Less common MRI features of adenomyosis that have been reported include areas of low-
signal intensity within the myometrium with ill-defined borders (Reinhold et al. 1996) and
weighted images. If cyclical bleeding occurs within these glands, they become cystic and will
appear as areas of high-signal intensity on T-1 weighted imaging (Outwater et al. 1998).
Rarely, endometrium can be seen to be invading the myometrium, which gives the
visualisation of these direct signs of adenomyosis has been reported, MRI has less-than-ideal
sensitivity in detecting them, for example small myometrial cysts are only detected in 50% of
cases. It has been suggested that this may be because MRI has insufficient spatial resolution
Current opinion is divided as to which imaging modality should be the first-line diagnostic
tool in adenomyosis. The diagnostic accuracies of TVUS and MRI have been compared in
three studies of women undergoing hysterectomy for benign reasons (Table 2). While small
advantages were found with MRI, pooled results show the two techniques to be equivalent
and of intermediate accuracy (Dueholm 2006). A significant difference was found in the
inter-observer variability of the two diagnostic modalities with MRI having good inter-
observer agreement (kappa value = 0.73) and TVUS having only fair inter-observer
agreement (kappa value 0.38) (Dueholm et al. 2002). It may be that due to improvements in
52
the resolution of TVUS machines over the last decade, alongside better training in the
diagnosis of adenomyosis is now better, but no published studies have reassessed the inter-
While TVUS, in the hands of experienced operators had comparable accuracy to MRI, MRI
TVUS should be the first-line diagnostic tool, with MRI reserved for cases where TVUS was
inconclusive (Dueholm 2006). This conclusion may stem from the fact that TVUS is well-
tolerated (Bennett and Richards 2000) and is both cheaper and more easily accessible than
MRI.
Table 2 – Studies comparing the diagnostic accuracy of TVUS and MRI for the diagnosis of
adenomyosis (Dueholm 2006).
Reinhold et al. 1996 Bazot et al. 2001 Dueholm et al. 2001
% (95% CI) % (95% CI) % (95% CI)
TVUS:
Sensitivity 89 (71-97) 65 (48-79) 74 (63-82)
Specificity 89 (80-95) 98 (90-100) 87 (81-91)
PPV 71 (54-99) 93 (75-99) 68 (58-77)
NPV 96 (89-99) 85 (75-91) 89 (84-92)
MRI:
Sensitivity 86 (66-95) 78 (61-89) 78 (68-86)
Specificity 86 (76-92) 93 (84-97) 88 (83-92)
PPV 65 (47-79) 84 (67-93) 70 (60-79)
NPV 95 (87-98) 89 (80-95) 92 (87-95)
2.6.1.3.5 CT
There are limited data on the use of computerised tomography (CT) for the diagnosis of
of whom had also had adenomyosis diagnosed on ultrasound scan, suggested that there were
53
features of adenomyosis that could be seen on CT scan, however the prospectively reported
CT scans failed to diagnose adenomyosis in any of the women (Woodfield et al. 2009).
2.3.1.3.6 Hysterosalpingography
diverticula), extending from the endometrium into the myometrium (Wolf and Spataro 1988)
and irregularity of the uterine contour with small outpouchings of contrast material (Simpson
et al. 2006) (Figure 9). The diagnostic sensitivity is poor, however, and so
1995).
The prevalence of adenomyosis in the general population remains unknown as, so far, it has
only been possible to establish the diagnosis in pathological specimens, which confers a large
selection bias. There is wide variation in the percentage of hysterectomy specimens found to
have adenomyosis with reported prevalences of 5-70% (Azziz 1989). Explanations for this
wide variation include the lack of consensus in the histological criteria used and variation in
The exact clinical importance of adenomyosis remains uncertain (Dueholm 2006). The
dysmenorrhoea, with less commonly reported symptoms including chronic pelvic pain and
difficult. Furthermore, as is the case with endometrial polyps, fibroids and endometriosis,
many women with adenomyosis are asymptomatic (Bird et al. 1972; Benson & Sneedon
The first detailed description of adenomyosis by Cullen over a century ago described a
condition associated with ‘lengthened menstrual periods’ (Cullen 1908). Many investigators
since then have looked for an association between adenomyosis and abnormal uterine
bleeding with conflicting results. While many studies have found an association between the
55
two (Emge 1962; Bird et al. 1972; Benson and Sneedon 1958), many others have not
(Bergholt et al. 2001; Parrazzini et al. 1997; Weiss et al. 2009). Despite the uncertainty
FIGO in 2011 as an aide-memoire for causes of abnormal uterine bleeding (Figure 10)
Figure 10 – Illustration of PALM COEIN mnemonic for the causes of abnormal uterine
bleeding (Munro et al. 2011).
It is not only the association between adenomyosis and abnormal uterine bleeding that is
uncertain. The mechanism by which adenomyosis might cause bleeding symptoms also
remains unclear. The finding that mefenamic acid can reduce menstrual loss suggests that
prostaglandins may play a role (Azziz 1989). Impaired contractility of the adenomyotic
uterus has been suggested as another causative mechanism (Bergeron et al. 2006). Uterine
enlargement secondary to adenomyosis might result in a larger endometrial surface area and
therefore a greater volume of menstrual loss although a study by Rees et al. found no
56
correlation between measured menstrual blood loss and endometrial volume-to-surface ratio
2.6.1.4.2.2 Pain
adenomyosis. Cullen described a condition associated with ‘a great deal of pain’ (Cullen
1908). Many authors have subsequently described an association between adenomyosis and
pain symptoms, largely dysmenorrhoea (Emge 1962; Bird et al. 1972; Azziz 1989; Benson
and Sneedon 1958), although once again, not all investigators have replicated these findings
(Bergholt et al. 2001; Weiss et al. 2009). One prospective study found no difference in either
and 157 controls (Kilkku et al. 1984). Despite the lack of consensus as to the relationship
(Peric and Fraser 2006). Dysmenorrhoea may be caused by uterine irritability and
Historically, adenomyosis has been considered a condition of parous women in their later
reproductive years and so little work has focussed on its effect on reproductive function.
diagnosis alongside an increase in maternal age has led to the condition being encountered
more frequently in fertility clinics. Certainly, it is now accepted that the condition can be
found in nulligravid and nulliparous women. Animal studies have suggested a deleterious
effect on reproductive function with induced adenomyosis in baboons being associated with
57
lifelong infertility (Barrier et al. 2004). This has all contributed to an increasing focus on its
role in reproductive function with some authors proposing that adenomyosis is a significant
of fertility patients, women below the age of 36 with a confirmed diagnosis of endometriosis
and fertile partners, was found to be as high as 90% (Kunz et al. 2005). It has been proposed
that one mechanism through which adenomyosis might have a deleterious effect on fertility is
crucial role in sperm transport through the uterus (Leyendecker et al. 1996). The finding that
adenomyosis has a negative impact on IVF/ICSI conception rates and live pregnancy rates
(Salim et al. 2012; Tahlluri and Tremellen 2012) suggests that adenomyosis may negatively
2.6.2.1 Introduction
Endometrial cancer was recently estimated to be the commonest gynaecological cancer in the
developed world (Sankaranarayanan and Ferlay 2006). While the prognosis is good compared
to other cancers, around 20% of women diagnosed with the condition will not survive beyond
5 years. All but the earliest endometrial cancers, or those developing in foci of adenomyosis,
2.6.2.2 Prevalence
In 2007, 7536 new endometrial cancers were diagnosed in the UK, making it the fourth
disease of post-menopausal women and its incidence is rising in this population, whereas it
2005). This trend is likely to continue secondary to an ageing population, increasing obesity
and a sharp fall in the number of hysterectomies being performed (Amant et al. 2005;
Postmenopausal bleeding, defined as vaginal bleeding occurring at least a year after the last
al. 2005). Prior to menopause, women with endometrial cancer may present with
discharge and pyometra are rarer symptoms and tend to be secondary to advanced cancer
The development of endometrial cancer has been observed to follow two distinct pathways
(Bohkman 1983). Type I cancers, which account for 80-90%, are usually oestrogen-
cancers are largely oestrogen-independent, have a variety of different histologies and tend to
have a higher grade. Type II endometrial cancers therefore tend to have a worse prognosis as
they tend to present later and behave more aggressively. As a significant majority of
endometrial cancers are type I, most of the risk factors for the disease will link in some way
to a relative increase in oestrogen exposure. A list of risk factors and protective factors can be
Table 3 – Risk factors and protective factors for endometrial cancer (Saso et al. 2011).
Endogenous risk factors Increasing age
Obesity and physical inactivity
Early menarche and late menopause
Low parity or infertility
Polycystic ovarian syndrome
Family history
Lynch syndrome (hereditary non-polyposis
colorectal cancer)
Oestrogen secreting tumours (granulosa or
thecal cell tumours of the ovary)
Diabetes mellitus
Hypertension
History of breast cancer
Immunodeficiency
Exogenous risk factors Unopposed oestrogen-only hormone
replacement therapy
Tamoxifen therapy
Previous radiotherapy
Dietary factors
Protective factors Cigarette smoking
Combined oral contraceptive use for at least
one year
Grand multiparity
60
endometrial glands to stroma (greater than 1:1). The WHO histological classification
(Silverberg et al. 2003) is used in the UK. It classifies endometrial hyperplasia on the basis of
the complexity of endometrial glands and the presence of any cytological atypia. Women
with simple and complex endometrial hyperplasia have a risk of developing endometrial
endometrial hyperplasia will have a concurrent adenocarcinoma, and those that do not, have a
In the UK, if women report postmenopausal bleeding, they should be referred urgently to a
gynaecological rapid-access clinic, where they should be seen within two weeks (NICE
2005). A variety of different diagnostic tools have been evaluated in the investigation of
Dilatation and curettage (D&C) used to be the most common method to acquire a sample of
the endometrium for histological analysis. It has fallen out of favour for a variety of reasons,
including its need to be performed under general anaesthetic, its cost, its low sensitivity in
diagnosing intrauterine pathology (Bettocchi et al. 2001) and its relatively high complication
rate. Where a blind endometrial endometrial biopsy is required, D&C has largely been
prototype. Endometrial sampling with a pipelle can be performed in an office setting, without
general anaesthetic, and often without local anaesthetic. A meta-analysis has shown that
pipelle biopsy has a detection rate for endometrial cancer of 99.6% in postmenopausal
women and 91% in premenopausal women. It had a sensitivity of 81% for the detection of
the first-line diagnostic tool, the population in which it is used should have a prevalence of
2.6.2.6.2 Hysteroscopy
Hysteroscopy involves the passage of a thin scope through the cervix, allowing direct
procedure under general anaesthetic, but is increasingly being performed under local
anaesthetic in an outpatient setting where it has been shown to have equivalent rates of
patient satisfaction but a shorter recovery time (Kremer et al. 2000). The advantage of
hysteroscopy over blind endometrial biopsy is that it allows targeted biopsying of suspicious
areas. Even if the endometrial cavity appears normal, it is recommended that an endometrial
biopsy be performed with one study finding that 50% of the endometrial cancers diagnosed
on endometrial sampling, were not identified at hysteroscopy (Lo et al. 2000). A further
advantage of hysteroscopy is that where endometrial polyps are present, a polypectomy can
Hysteroscopy under general anaesthetic has the same cost disadvantages as D&C, as well as
being time-consuming for patients. While outpatient hysteroscopy has economic and clinical
benefits it remains an invasive procedure associated with significant patient discomfort (Tahir
62
et al. 1999). Furthermore, it has a failure rate of up to 10% (Lo et al. 2000). In view of the
invasive nature of outpatient hysteroscopy and its associated costs, transvaginal ultrasound
has been recommended as the preferable first line investigation in women presenting with
unsurprising that it has been extensively investigated as a tool for screening women with
postmenopausal bleeding.
In populations where the incidence of endometrial cancer is below 15%, using TVUS as the
been shown to be more cost-effective than using endometrial biopsy as the first-line
diagnostic tool (Dijkhuizen et al. 2003). In addition to saving money, using TVUS can
35 studies involving 5892 women that evaluated different thresholds to define abnormal
endometrial thickening showed that a cut-off of 5mm had a sensitivity of 96% for
endometrial cancer. Thus a postmenopausal woman presenting with vaginal bleeding with a
cancer with a normal TVUS. The authors concluded that TVUS assessment of endometrial
thickness could reliably identify women with a very low likelihood of endometrial cancer
who could thus avoid endometrial sampling. While the sensitivity of this cut-off for
diagnosing endometrial cancer is very high, the specificity was just 61% (Smith-Bindman et
63
al. 1998). Therefore the positive predictive value of endometrial thickness measurement in
diagnosing endometrial cancer is poor and many women therefore undergo ultimately
concluded that while TVUS assessment of endometrial thickness was a good test for ruling
out endometrial cancer, it was not very good at ruling it in (Gupta et al. 2002). TVUS remains
the standard first-line test in the diagnosis of endometrial cancer, however because of the
limitations of using endometrial thickness alone, many investigators have looked at ways to
Various endometrial ultrasound criteria have been assessed in attempts to improve the
specificity of ultrasound in diagnosing endometrial cancer, with mixed results. While some
have found assessments of endometrial and EMJ morphology useful in differentiating benign
and malignant endometria (Randelzhofer et al. 2002; Epstein and Valentin 2006), others have
There have been similarly contrasting results from studies assessing the use of Doppler to
reported promising results in the use of colour Doppler to aid diagnosis of endometrial cancer
(Bourne et al. 1991). Subsequent studies of colour Doppler flow in both the uterine and
endometrial arteries were however, unable to show that it was useful in discriminating
between benign and malignant endometrial lesions (Sladkevicius et al. 1994; Sheth et al.
1995). The evidence is no more consistent when Doppler has been used to assess the
64
Doppler pattern of vasculature could be observed in more than 80% of cases of endometrial
cancer (Alcazar et al. 2003). Other investigators used an algorithm including power Doppler
they concluded that their algorithm was better than subjective assessment, at differentiating
benign and malignant endometria in women with an endometrial thickness of 5-15mm, this
conclusion did not reach statistical significance (Epstein et al. 2002). Subsequent work by the
same research group was unable to show that using colour Doppler to assess the number of
blood vessels within the endometrium aided the diagnosis of endometrial cancer in women
Gruboeck et al. used compared endometrial thickness and endometrial volume measured by
1996). They found that endometrial volume assessment was a better screening tool than
sensitivity of 100% and a specificity of 99.8% for the diagnosis of endometrial cancer. A
subsequent study again showed a higher sensitivity for endometrial volume than endometrial
thickness (Mansour et al. 2007) although interestingly their cut-off value for endometrial
volume was significantly different to that proposed in the study by Gruboeck et al.
Furthermore, they used D&C as their gold standard which has been shown to be unreliable
(Grimes 1982). Perhaps what is most noteworthy is that despite the early promise of 3D
a relatively small number of papers have subsequently been published on the subject. A
recent review article (Alcazar and Jurado 2011) suggested that most of the published studies
65
showed that endometrial volume was superior to endometrial thickness. One study
measurement.
2.6.2.7 Staging
histopathological criteria, however surgical staging has been shown to have better prognostic
value (Creasman et al. 2006). This led to FIGO updating the staging of endometrial cancer to
more accurately reflect stage-for-stage prognosis (Table 4) (Creasman 2009). About 80% of
women present with stage I disease and can be treated with hysterectomy and bilateral
salpingo-oophorectomy.
stroma
Stage IIIa Tumour invading the serosa of the uterine corpus and/or adnexa
lymph nodes
66
It is clear that there is an increasing focus on the EMJ and what its role in various pathologies
might be. Gynaecologists and ultrasonographers are able to look at this area of the uterus in
greater detail and depth and are even starting to make clinical decisions based on their
assessments. Yet there is a danger that the clinical decision-making is out of step with what
we know about the EMJ and its appearance on ultrasound. Obvious issues worth investigating
are whether ultrasound assessment of the EMJ is reproducible and what clinical and
Adenomyosis, a disease of the EMJ, has been studied for considerably longer than the EMJ
itself and yet still so many aspects of the disease remains unclear or uncertain. While
histology has historically been the primary diagnostic tool for investigating adenomyosis, the
significant reduction in the number of hysterectomies now being performed for benign
disease has blunted its usefulness in investigating the disease. Almost all ultrasound studies
of adenomyosis to date have assessed its diagnostic accuracy. While these studies have
shown that transvaginal ultrasound has good accuracy in diagnosing adenomyosis, few if any
ultrasound studies have attempted to investigate some of the many clinical uncertainties that
remain about the disease. This has perhaps been due to concerns about the reproducibility of
ultrasound diagnosis of adenomyosis. Significant uncertainties remain about the most basic
aspects of the disease including its prevalence and even whether or not it has any clinical
The role of ultrasound in the screening of women with post-menopausal bleeding is more
primary determinant of which women can be safely reassured and which women need
endometrial sampling. Using ultrasound in this way has a high sensitivity for endometrial
cancer but a low specificity meaning that many women undergo ultimately unnecessary
67
transvaginal ultrasound assessment of these women might be able to improve the diagnostic
accuracy of ultrasound and assessment of the EMJ has been suggested as one aspect of the
Given the above, I feel that the aims of this thesis should be to examine the reproducibility of
ultrasound assessment of the EMJ and investigate what factors affect it visualisation, examine
investigate whether their presence is associated with clinical symptoms and lastly, determine
whether assessment of the EMJ can increase the diagnostic accuracy of ultrasound in the
1.1 Setting
1.1.1 The Gynaecological Diagnostic and Treatment Unit, University College Hospital
The work contained in this thesis was carried out in the Gynaecology Diagnostic and
Outpatient Treatment Unit (GDOTU) of University College Hospital between October 2008
and March 2011. Situated in central London, University College Hospital is a teaching
hospital and tertiary referral centre which primarily serves the needs of the people of Camden
and Islington. The trust has an annual turnover of more than £769 million, employs over 6000
staff and has 665 inpatient beds. It sees over 789,000 outpatients a year and has around
125,000 inpatient admissions a year. The hospital was formed in 1994 and became an NHS
foundation Trust in 2004. The Women’s Health department at UCH offers specialist
unit and a specialist clinic for African women. In the financial year 2009/10, there were
11,270 patient attendances at the GDOTU of which 6,487 were women with early pregnancy
problems and 4,783 of which were non-pregnant women with gynaecological problems.
1.2 Ultrasound
In this thesis, all the ultrasound scans were performed by trained gynaecologists on a Voluson
E8 ultrasound machine (GE Medical Systems, Milwaukee, WI, USA) using a 4-9 MHz probe
with three dimensional facility. The scans were all perfomed in lithotomy position using a
standardised protocol. First the uterus was examined in the transverse plane to identify the
cervical canal and the uterine cavity. The probe was then rotated 90o anti–clockwise and the
70
uterus and endometrium were visualised in the longitudinal plane. Care was taken to identify
the point at which the endometrial thickness was greatest before measuring it in millimetres.
If free fluid was present in the endometrial cavity, the fluid was measured separately and
subtracted from the total thickness (Lee et al. 2005). Fibroids were diagnosed based on direct
was diagnosed if any of the following ultrasound features of adenomyosis were present:
imaging (Table 5, Figures 11-17) (Naftalin et al. 2012b). Previously published ultrasound
features of adenomyosis that were not used to diagnose adenomyosis in this thesis include a
heterogenous myometrial echotexture and a globular uterine configuration. These were both
excluded as they had been found to have a low positive predictive value (Bazot et al. 2001).
The JZ measurements taken from 3D coronal views of the uterus proposed by Exacoustos et
al. were not used as they were published after our study had started. Even so we would not
have included them as their accuracy has yet to be prospectively assessed. Endometrial
polyps were diagnosed based on direct visualisation using previously described criteria
(Timmerman et al. 2003). The examination was then concluded by examining both adnexa
and the pouch of Douglas, identifying both ovaries and any endometriotic nodules where
possible.
71
Table 5 – Ultrasound features of adenomyosis used in this thesis (Naftalin et al. 2012b).
Parallel shadowing
Linear striations
Myometrial cysts
Hyperechoic islands
Adenomyomas
Irregular EMJ
s s
s
Figure 13 - Linear striations. A transverse view of the uterus showing a linear striation seen
as thin hyperechoic lines (thin white arrow) extending from the endometrium into the
myometrium (Naftalin et al. 2012b)
73
Figure 14 - Myometrial cysts. A transverse view of the uterus showing several myometrial
cysts (thin white arrows) seen as anechoic lesions within the myometrium (Naftalin et al.
2012b)
endometriotic nodules were visualised on ultrasound scan. Ovarian cysts were classified as
homogeneous low-level internal echoes (‘ground glass’) (Tailor et al. 1999). Endometriotic
nodules were typically visualised as stellate hypoechoic or isoechogenic solid masses with
irregular outer margins (Bazot et al. 2007) which were tender on palpation and fixed to the
All 3-D ultrasound volume acquisitions were performed immediately after the 2D TVUS by
the same operator. The volume acquisition technique was performed in a standardised fashion
using a maximum sweep angle of 120 degrees and the medium quality setting. The uterus
was visualised in the longitudinal plane with the angle of the ultrasound beam and the axis of
the endometrial cavity approaching 90 degrees. In order to minimise artefacts, the depth of
the acquired volume was adjusted to cover the entire uterus with minimal inclusion of
parametrial structures. The volumes were generated by automatic rotation of the mechanical
transducer through 360o. The probe was held steady and the patients were asked to hold their
breath whilst volume acquisition was switched on. Following acquisition, the rendered
volumes were saved to the hard drive of the machine for analysis.
Assessment of 3D uterine volumes was performed offline. A coronal view was obtained
using render mode, by placing a straight or curved line along the endometrial stripe on the
sagittal and transverse views (Panel A and B of the multi-planar view). The multi-planar view
76
was then adjusted until a satisfactory coronal image was obtained of both the endometrial
cavity and the external uterine contour, with visualisation of both interstitial portions of the
fallopian tube. The gradient light and sepia settings were used to optimise the view of the
EMJ, which was visualised as a hypoechoic area surrounding the endometrial cavity.
When using off-line evaluation of stored uterine volumes to diagnose adenomyosis, a detailed
assessment of the entire myometrium was performed looking for the presence of each
individual ultrasound feature of adenomyosis. Both operators were required to manipulate the
rendered views, in whichever way they wanted, until they had visualised the entire
Pictorial Blood Loss Assessment charts (PBACs) were given to premenopausal women to
loss they had each cycle. PBACs use a scoring system to calculate total menstrual loss that
accounts for both the number of sanitary towels or tampons a woman uses during her period
and also the degree to which each item is soiled (Figure 18). A pictorial chart score of >100,
when used as a diagnostic test for menorrhagia, has been shown to have a high specificity and
Premenopausal women were asked to complete an 11-point Numerical Rating Scale (NRS)
(Figure 19) in order to obtain a subjective assessment of how painful they found their periods.
The NRS is a scale where the extremes are no pain and pain as bad as it could be and patients
are asked to put a mark on the scale to represent the intensity of the pain being measured.
Women were given the scale and asked to put a mark on the scale to represent the intensity of
the worst pain they experienced with their last period. NRSs have been shown to be sensitive
(Jensen et al. 1986), simple to use with a low failure rate (Van Tubergen et al. 2002) and are
considered to be preferable to traditional visual analog scales for assessment of pain intensity
(Mannion 2007). They have been shown to have sufficient reliability and validity to be used
>5mm, endometrial sampling was performed. If the endometrium was globally thickened,
and the woman was able to tolerate outpatient endometrial sampling, a pipelle de cornier was
Data were collected and stored in electronic databases (Microsoft Excel 2003). The Statistical
Package for Social Sciences version 15.0 (Statistical Analysis Systems, Chicago, Illinois) was
used to analyse data. Details of individual tests are documented in the relevant chapters. The
The Local Research and Ethics Committee of University College Hospital granted approval
for all studies undertaken. They advised that none of the studies required full formal ethical
approval.
79
III Results
80
1.1 BACKGROUND
physiological and pathophysiological processes within the uterus. It has been suggested that a
careful ultrasound examination of the EMJ junction can yield clinically useful information in
a number of different pathologies and so should become part of the routine ultrasound
In order to obtain clear images of the EMJ, particularly at the lateral and fundal aspects of the
uterine cavity, high resolution ultrasound equipment with 3D imaging facilities is often
required, which has only become available in recent years. There are a small number of
published studies involving assessment of 3D views of the EMJ (Exacoustos et al. 2011;
Alcazar et al. 2009), however little is known about the reproducibility of 3D ultrasound
assessment of the EMJ. The aim of this study was to examine inter- and intra-observer
1.2 METHODS
Inter- and intraobserver variability in 3D ultrasound assessment of the EMJ was tested on a
group of 30 women. Real time ultrasound examinations were performed and 3D volumes
were obtained in the manner described in the materials and methods section. The investigator
who performed the ultrasound examinations (Dr Will Hoo) was a specialist in gynaecological
study only non-pregnant women with a normal uterus on ultrasound scan. After selecting the
volumes for the study he did not participate in further reproducibility analysis. All saved
81
volumes were then examined independently by two other investigators (Mr Davor Jurkovic
and Dr Joel Naftalin) who were blinded to each other’s findings. The volumes were examined
using planar reformatted sections and volume rendering. The quality of visualisation of the
EMJ was graded as follows: 1.) Optimal – The EMJ was clearly visible and could be
examined in its entirety, 2.) Satisfactory – Most, but not all parts of the EMJ could be clearly
visualised, 3.) Unsatisfactory – Large parts of the EMJ could not be clearly visualised (Figs
20-22). It was considered that EMJ’s graded as unsatisfactory were inadequate for clinical
Statistical analysis was performed, using SPSS software (SPSS Inc., Chicago IL). The inter-
observer and intra-observer agreement for the classification of EMJ visualisation was
1.4 RESULTS
There was complete agreement between the two operators in classifying the visualisation of
the EMJ as being optimal or not. Both operators classified 16 EMJs as optimal, 8 as
satisfactory and 2 as unsatisfactory. There was a discrepancy between the two observers in 4
cases. In two of these, operator 1 classified two cases as satisfactory which operator 2 had
described as unsatisfactory. In the other two cases, the reverse occurred. The inter-observer
agreement was good with a kappa value of 0.77 (Table 6). The intra-observer agreement was
excellent for observer 1 with a kappa value of 0.83 (Table 7) and good for observer 2 with a
Figure 20 - Coronal view of uterus with EMJ visualisation classified as optimal (Naftalin et
al. 2012a)
Figure 21 - Coronal view of uterus with EMJ visualisation classified as satisfactory (Naftalin
et al. 2012a)
Operator 2
Operator Optimal Satisfactory Unsatisfactory Total
1 Optimal 16 0 0 16
Satisfactory 0 8 2 10
Unsatisfactory 0 2 2 4
Total 16 10 4 30
k=0.77 (good agreement)
95%CI (0.58 – 0.96)
Standard error of kappa = 0.097
DIMENSIONAL ULTRASOUND
2.1 BACKGROUND
The EMJ is thought to play an important role in both physiological and pathophysiological
processes within the uterus. Its appearance on ultrasound is known to be altered in the
presence of certain pathologies, for example adenomyosis (Naftalin and Jurkovic 2009) and
invasive endometrial cancer (Randelzhofer et al. 2002). It is not known, however, whether
physiological factors affect its ultrasound appearance. The aim of this study was to identify
demographic and physiological factors which might affect the quality of visualisation of the
EMJ on 3D ultrasound.
2.2 METHODS
This was a prospective observational study of women attending our gynaecology clinic. In all
women, indication for the scan, age, parity, date of the last menstrual period, menstrual
pattern and the use of exogenous hormones was recorded and stored on a dedicated database
months in women ≥ 40 years old. Ultrasound examinations were performed in the manner
described in the materials and methods section. The examination was then concluded by
examining the adnexa and identifying both ovaries. The presence of a corpus luteum was
menstrual cycles, whose ovaries contained a corpus luteum were classified as being in the
luteal phase of the cycle, and the remaining women with regular menstrual cycles were
We included in the study only women with a normal uterus on ultrasound scan. Those with
evidence of any myometrial or endometrial pathology, pregnant women and those in whom
the ovaries could not be seen clearly were excluded. Various demographic and physiological
variables were recorded and we analysed their effect on the quality of EMJ visualisation on
3D volume rendering.
Statistical analysis was performed, using SPSS software (SPSS Inc., Chicago IL).
Spearman’s rank correlation was used to examine the association of EMJ visualisation with
age, parity and endometrial thickness. The Kruskal-Wallis test was used to examine the
association between EMJ visualisation and the stage of menstrual cycle and the Mann-
Whitney test was used to examine the association between EMJ visualisation and menopausal
status. Subsequently, the joint effect of the various factors upon EMJ visualisation was
2.4 RESULTS
413 consecutive, non-pregnant women were examined by a single operator (JN). 312 women
(75.5%) were excluded due to the presence of uterine pathology and the remaining 101
(24.5%) were included in data analysis. The principal indications for ultrasound examination
for the women included in data analysis are presented in Table 9. In 47/101 (46.5%) of the
women, visualisation of the EMJ was classified as optimal, in 42/101 (41.6%) as satisfactory
and in 12/101 (11.9%) as unsatisfactory. Spearman’s rank correlation showed that the ability
86
to visualise the EMJ was significantly affected by a women’s age, parity, and endometrial
The Kruskal-Wallis test did not show a significant effect of the stage of the menstrual cycle
or menopausal status on the quality of EMJ visualisation (Table 11). A subsequent analysis
assessing menopausal status only, using the Mann-Whitney test, showed a significant
The joint effect of the various factors on EMJ visualisation was examined in a multivariable
analysis. A backwards selection procedure was used to retain only the statistically significant
variables. The results indicated that only parity and endometrial thickness were significantly
associated with EMJ visualisation. After adjusting for the effects of these two variables, there
was no significant difference in EMJ visualisation between pre and post-menopausal women
and the previously noted association between age and EMJ visualisation was no longer found
to be significant.
The size of effect of each variable upon EMJ visualisation, in the form of odds ratios, can be
seen in Table 13. These indicate the odds of being in the next best visualisation category
endometrial thickness. The results suggest that increasing parity is negatively associated with
EMJ visualisation, whereby for each additional child delivered, the odds of being in the next
best visualisation category were almost halved. The results for endometrial thickness suggest
that increasing endometrial thickness is associated with better EMJ visualisation, a 5-mm
87
increase in endometrial thickness being associated with a three-fold increased risk of being in
Table 10 – Result of Spearman’s rank correlation in assessing the effect of age, parity and
endometrial thickness on EMJ visualisation (Naftalin et al. 2012a)
Table 11 – Result of Kruskal-Wallis test in assessing the effect of stage of menstrual cycle on
EMJ visualisation (Naftalin et al. 2012a)
Table 12 – Result of Mann-Whitney test in assessing the effect of menopausal status on EMJ
visualisation (Naftalin et al. 2012a)
Table 13 – Results of multivariable analysis assessing the joint effect of the various factors
on EMJ visualisation (Naftalin et al. 2012a)
3.1 BACKGROUND
The ability to diagnose adenomyosis without having to perform a hysterectomy has helped
our understanding of the disease. There remains controversy, however, as to which imaging
modality should be the first-line diagnostic tool. Ultrasound is relatively cheap, widely-
accessible and well-tolerated and has been shown to have comparable accuracy to MRI in the
lower inter-observer variability (kappa=0.38) than MRI (kappa= 0.73) in the only published
study to compare reproducibility of diagnosis in the two modalities (Dueholm et al. 2002).
Furthermore, some authors have claimed that, unlike MRI, the ultrasound diagnosis of
adenomyosis can only be made during a real-time scan, as the ultrasound features of
adenomyosis cannot be reliably identified from static images (Reinhold 1999). The aim of
this study was to assess the inter- and intra-observer variability in ultrasound assessment of
a) real-time ultrasound scans and evaluation of the uterus from a stored 3D uterine
volume (same operator performing scan and stored volume assessment but 3 years
apart)
c) the same operator evaluating the same stored uterine volumes on two separate
occasions
90
3.2 METHODS
Out of a total of 985 archived 3D uterine volumes taken from women consecutively scanned
women between January 2009 and January 2010 by the same operator, 36 were selected by
one of the investigators (Dr Kate Pateman) for the examination of reproducibility of
ultrasound diagnosis of adenomyosis. The volumes were selected to ensure a good case mix
including normal uteri and those with adenomyosis. Those with adenomyosis were selected
to ensure a wide range in both the number and type of ultrasound feature of adenomyosis.
Volumes were not selected if it were not possible to adequately assess the entire
myometrium. Reasons for this included the presence of an IUCD, multiple large fibroids and
poor quality of stored volumes. The reproducibility assessments were performed more than 3
years after the original real-time scans in order to minimise bias in the assessment of intra-
3D uterine volumes. The first and second assessment of 3D stored uterine volumes (both
assessments by Dr Joel Naftalin) were performed two weeks apart, and in a different order
from the first assessment, (the order being selected by Dr Kate Pateman who played no
further part in ultrasound assessment), again, in order to reduce bias. A third assessment of
the stored volumes was then performed by a third investigator (Mr Davor Jurkovic) who was
blinded to the results of all previous ultrasound assessments of the uteri. This was in order to
Statistical analysis was performed, using SPSS software (SPSS Inc., Chicago IL). Intra- and
inter-observer agreement was assessed for the diagnosis of adenomyosis, assessment of the
91
adenomyosis and for the classification of each ultrasound feature of adenomyosis. Weighted
and unweighted kappa analysis was used to assess the level of agreement in all cases.
3.4 RESULTS
The median age of the 36 women included in the data analysis was 41 (inter-quartile range:
35-47.75). 10/36 [27.7% (95% CI: 13.2% to 42.4%)] women were nulligravid and 12/36
[33.3% (95% CI: 17.9% to 48.7%)] were nulliparous. 6/36 [16.7% (95%CI; 4.5% to 28.8%)]
women were menopausal. The indications for ultrasound scans are listed in Table 14. A total
of 22/36 [60.1% (95% CI: 44.1% to 76.1%)] women had at least one ultrasound feature of
adenomyosis at their original real-time ultrasound scan. The total number of ultrasound
features seen on different scans can be seen in Table 15. 12/36 (33.3%) women had uterine
There was good intra-observer agreement, both when the observer was comparing real-time
scan diagnosis of adenomyosis to diagnosis from stored uterine volumes, and when the
observer was comparing two assessments of stored uterine volumes performed on two
separate occasions, with kappa values of 0.67 and 0.83 respectively (Tables 16 and 21). There
remained a good level of intra-observer agreement when comparison was made of the
of 0.64 and 0.77 (Tables 17 and 22). There was excellent intra-observer agreement (kappa =
0.83) in the subjective assessment of severity of adenomyosis between the two evaluations of
When two different operators assessed stored uterine volumes, there was good inter-observer
agreement for the diagnosis of adenomyosis (kappa = 0.61) (Table 18), the number of
92
ultrasound features of adenomyosis seen (linear-weighted kappa = 0.63) (Table 19) and
Table 19b – Table showing the kappa values for inter-observer agreement between the
presence of individual ultrasound features of adenomyosis (operator 1 and 2)
Ultrasound feature Kappa value (95% CI)
Asymmetrical thickening 0.771 (0.53-1)
Parallel shadowing 1 (1-1)
Linear striations 0.571 (0.29-0.85)
Myometrial cysts 0.487 (0.22-0.753)
Hyperechoic islands 0.478 (0.135-0.822)
Adenomyomas 0 (0-0)
Irregular EMJ 0.650 (0.398-0.903)
CLINIC
3.1 BACKGROUND
adenomyosis has presented many difficulties in accurately assessing its prevalence. The lack
of clear and uniform histological criteria raises concerns about the reproducibility of
histological diagnosis of adenomyosis and partially explains the variation in the proportions
Furthermore, the reliance on histology for diagnosis introduces a heavy selection bias as only
women who have undergone a hysterectomy can be diagnosed with the disease. This bias has
been further amplified by the reduction in the number of hysterectomies being performed for
benign disease (Reid and Mukri, 2005), resulting in the population of women from which
conclusions are drawn becoming increasingly less representative of the general population.
Continuous improvements in the resolution of TVUS have now enabled a more detailed
assessment of uterine architecture. This has facilitated the detection of subtle features of
adenomyosis, which could not have been seen with older equipment. TVUS, along with MRI,
has recently been shown to have good levels of accuracy in the pre-operative diagnosis of
adenomyosis (Dueholm 2006). TVUS is relatively inexpensive, widely available and well-
tolerated by patients. The aim of this study was to assess the prevalence of adenomyosis in a
3.2 METHODS
This was a prospective observational study of women attending our general gynaecology
clinic between January 2009 and January 2010. In all women, demographic data were
recorded and a detailed clinical history was taken prior to undertaking the ultrasound scan.
This included women’s age, ethnicity, body mass index (kg/m2), smoking history, age at
menarche, gravidity and parity (number of all prior pregnancies: miscarriages, terminations
of pregnancy and live births including mode of delivery), breastfeeding history (months of
usage) and menopausal status. Body mass index was calculated based on self-reported weight
and height. Women who were not certain of these measurements had their height and weight
previously on laparoscopy or on ultrasound scan within our department using the criteria
hysterectomy, ultrasound findings were compared with the final histological diagnosis.
1971).
demographic and clinical variables and the presence of adenomyosis, using logistic
regression. Initially the individual effect of each factor upon the outcome was assessed in a
series of univariable analyses. Subsequently the joint effect of the variables was examined in
a multivariable analysis. Before the multivariable analysis, variance inflation factors (VIFs)
98
were used to examine the colinearity between the variables. Statistical analysis was
performed using SPSS software (SPSS Inc., Chicago IL). Kappa analysis was used to
adenomyosis.
3.4 RESULTS
A total of 1066 consecutive women attended for clinical visits. None of them were pre-
menarchal or pregnant. 45/1066 [4.2% (95%CI: 3.8%-5.6%)] women were excluded from the
data analysis as they were unable to undergo a transvaginal scan. A further 36/1066 [3.4%
hysterectomy. The median age of the 985 women included in the final data analysis was 40
(inter-quartile range: 32-48). 387/985 [39.3% (95% CI: 36.3%-42.4%)] women were
nulligravid and 529/985 [53.7% (95% CI: 50.6%-56.8%)] were nulliparous. 174/985 [17.7%
(95%CI: 15.4%-20.2%)] women were menopausal. The indications for clinical visits are
listed in Table 24. The diagnoses following ultrasound assessment are listed in Table 25. A
total of 206/985 [20.9% (95% CI: 18.5% - 23.6%)] women were diagnosed with
The results of the univariable analysis examining associations of demographic and clinical
factors with adenomyosis are shown in Table 27. The multivariable analysis (Table 28)
showed that age, gravidity and pelvic endometriosis were all significantly associated with the
peak between the ages of 40 and 59, after which the prevalence decreased. Women with a
99
Of the 985 women, 45 [4.6% (95% CI: 3.4%-6.1%)] underwent hysterectomy within two
years of their ultrasound scans. Of the 45 women who underwent hysterectomy, 19 did so for
suspected gynaecological malignancies, 9 for menorrhagia, 6 for pelvic organ prolapse, 5 for
urinary symptoms, 2 for pain symptoms and a further 2 had a hysterectomy prophylactically
with uterine cancer (12 women with endometrial cancer and 2 with uterine sarcomas) or very
large fibroids (4 women) were not used for comparison between TVUS and histology as their
pathologies became the primary focus of histological examination. The invasive nature of the
uterine cancers interfered with assessment of the EMJ and the overall uterine size of those
women with very large numbers of fibroids made it difficult to obtain systematic
representative sections from every part of the pathological specimens. The sensitivity and
(95% CI: 52.3%-94.9%) and 81.3% (95% CI: 57.0%-93.4%). The positive predictive value
was 75% (95% CI: 42.8%-93.3%) and the negative predictaive value was 86.7% (95% CI:
58.4%-97.7%). A kappa analysis showed a good level of agreement between histology and
(0.32-0.91)].
100
Fibroids 47 (22.8)
Endometriosis 10 (4.9)
Polycystic ovaries 10 (4.9)
Adnexal tumours 17 (8.3)
Thick endometrium in postmenopause 1 (0.5)
Endometrial polyps 2 (1.0)
Pelvic adhesions 1 (0.5)
Major congenital uterine anomalies 0 (0)
Two or more pathologies 40 (19.4)
No additional pathology 78 (37.9)
Table 27 – Results of univariable analysis looking at associations between demographic and clinical factors and
adenomyosis (Naftalin et al. 2012b)
Variable Category/term Adenomyosis, n (%) Odds ratio (95% CI) p-value
Agea Linear term 65.3 (19.4, 220) <0.001
Square term
Ethnicity Caucasian 119/640 (19) 1
Asian 25/80 (31) 1.99 (1.19, 3.32)
Afro-caribbean 35/149 (23) 1.34 (0.88, 2.06)
Oriental 8/38 (21) 1.17 (0.52, 2.61)
Middle eastern 10/40 (25) 1.46 (0.69, 3.07)
Mixed/other 7/38 (18) 0.99 (0.43, 2.30) 0.14
Smoking (pack years) 0 84/426 (20) 1
1-10 56/290 (19) 0.97 (0.67, 1.42)
>10 31/116 (27) 1.48 (0.92, 2.39) 0.21
BMIb (kg/m2) 1.20 (1.03, 1.41) 0.02
Gravidity 0 39/387 (10) 1
>1 165/598 (28) 3.40 (2.33, 4.95) <0.001
Gravidity (detailed) 0 39/387 (10) 1
1 38/187 (20) 2.28 (1.40, 3.70)
2 35/131 (27) 3.25 (1.96, 5.41)
3-5 65/220 (30) 3.74 (2.41, 5.81)
>6 27/60 (45) 7.30 (3.98, 13.4) <0.001
Parity 0 75/529 (14) 1
1 38/170 (22) 1.83 (1.18, 2.83)
2 50/151 (33) 3.14 (2.06, 4.78)
>3 44/135 (33) 3.07 (1.98, 4.75) <0.001
Vaginal deliveries 0 91/607 (15) 1
1 39/150 (26) 1.99 (1.30, 3.06)
2 45/127 (35) 3.11 (2.03, 4.77)
>3 29/101 (29) 2.28 (1.41, 3.71) <0.001
Caesarean deliveries 0 166/869 (19) 1
>1 38/116 (33) 2.06 (1.35, 3.15) 0.001
Miscarriages 0 141/772 (18) 1
>1 63/213 (29) 1.85 (1.30, 2.61) 0.001
ERPC or STOP 0 119/705 (17) 1
>1 85/280 (30) 2.15 (1.56, 2.96) <0.001
Breastfeeding <6 months 32/112 (29) 1
> 6 months 34/102 (33) 1.19 (0.76, 1.87) 0.44
Age at menarche 1.02 (0.93, 1.12) 0.71
Use of intrauterine No 100/519 (19) 1
contraceptive devices Yes 44/151 (29) 1.72 (1.14, 2.60) 0.01
Time on combined oral 0 77/328 (24) 1
contraceptive pill (years) <1 22/162 (14) 0.51 (0.30, 0.86)
1-5 46/215 (21) 0.88 (0.58, 1.34)
5-10 38/174 (22) 0.91 (0.58, 1.41)
>10 21/106 (20) 0.80 (0.47, 1.38) 0.15
Time on progesterone- 0 149/793 (19) 1
only contraception (years) <1 24/75 (32) 2.03 (1.21, 3.40)
1-5 21/87 (24) 1.37 (0.81, 2.31)
>5 10/30 (33) 2.15 (0.99, 4.70) 0.01
Menopausal status No 169/811 (21) 1
Yes 35/174 (20) 0.96 (0.64, 1.44) 0.83
Endometriosis No 179/922 (19) 1
Yes 25/63 (40) 2.73 (1.61, 4.64) <0.001
Fibroids No 127/639 (20) 1
Yes 74/346 (21) 1.08 (0.78, 1.49) 0.63
a
– Odds ratio given for 10-unit increase in explanatory variable
b
– Odds ratio given for 5-unit increase in explanatory variable
103
Gravidity 0 1
1 1.83 (1.09, 3.06)
2 2.46 (1.44, 4.30)
3-5 2.66 (1.62, 4.28)
6+ 4.90 (2.57, 9.35) <0.001
Endometriosis No 1
Yes 4.06 (2.25, 7.33) <0.001
4.1 BACKGROUND
periods (Cullen 1908). Several later studies reported similar findings (Emge et al. 1962; Bird
et al. 1972; Benson and Sneedon, 1958), but others have not shown significant differences in
the prevalence of adenomyosis between women with and without a history of menorrhagia
(Bergholt et al. 2001; Levgur et al. 2000; Parrazzini et al. 1997; Weiss et al. 2009). Most of
diagnose adenomyosis and compare it to clinical symptoms. The main problem with the use
of histology for the diagnosis of adenomyosis in these studies is the heavy selection bias
difficult to account for confounding variables such as concomitant uterine fibroids which
TVUS has recently been used for the non-invasive diagnosis of adenomyosis (Kepkep et al.
2007) and to study its prevalence (Naftalin et al. 2012b). There have been no large scale
prospective studies using non-invasive techniques to assess the link between adenomyosis
and clinical symptoms. The aim of this study was to investigate the possible association
4.2 METHODS
This was a prospective observational study of premenopausal women attending our general
gynaecology clinic. In all women, a detailed clinical history was taken prior to undertaking
the ultrasound scan. Women were asked about the frequency and duration of menstrual
periods and about any episodes of intermenstrual or postcoital bleeding. The amount of
menstrual loss was assessed subjectively by asking whether they felt their periods were
105
excessively heavy or not. We also asked a subgroup of women to complete a PBAC in order
to obtain semi-quantitative information about the amount of menstrual loss. Women were
advised to complete the chart during their next period and then to return it back to the
Women who were unable to undergo a TVUS or had previously undergone a hysterectomy
and those with a history of amenorrhoea or oligomenorrhoea with a cycle length greater than
60 days were excluded from the study. Women using contraceptives or taking medications
that would affect menstrual flow, women who attended for ultrasound scan during their IVF
cycle and those who underwent hysterectomy prior to their next period following the scan
Statistical analysis was performed in two stages, first for subjective assessment of
menorrhagia and then for the semi-quantitative assessment of menstrual loss. Regression
methods were used to examine possible associations between various demographic and
clinical variables and menorrhagia. The subjective measure was a binary outcome, and so the
analysis of this outcome was performed using logistic regression. The PBAC scores were
measured on a continuous scale and so linear regression was used for the analysis. The scores
were found to have a heavily positively skewed distribution and so were given a log
The analyses themselves were performed in two stages. Initially the separate association of
each factor with the outcome was examined in a series of univariable analyses. Subsequently
the joint effect of the variables upon each outcome was assessed in a multivariable analysis.
To limit the number of variables in this analysis, only factors with a univariable p-value of
106
<0.2 were considered for this stage of the analysis. A backwards selection procedure was
used to retain only the statistically significant variables in the final model. As menstrual loss
was analysed on a log scale, the results are summarised in the form of ratios whereby the
ratios represent the PBAC values when the symptoms was present relative to when it was
absent. A Kappa analysis was used to analyse the agreement between the subjective
assessment of menorrhagia and the PBACs, where a PBAC score >100 was considered to be
4.4 RESULTS
A total of 892 consecutive premenopausal women attended for clinic visits between January
2009 and January 2010. 178 women were excluded (Figure 23) and 714 were entered into the
data analysis. Their median age was 38 (IQR 30-43). 305 women [42.7% (95% CI. 39.1%-
46.4%)] women were nulligravid and 424 [59.4% (95% CI. 55.7% - 63.0%)] were
nulliparous. Principal indications for ultrasound scans are listed in Table 29. The diagnoses
following ultrasound assessment are listed in Tables 30 & 31. All 714 women were entered
into data analysis for subjective assessment of menorrhagia. 529 women were asked to
complete PBACs and the analysis of the semi-quantitative assessment of menstrual loss was
performed in the 304 women who returned their charts. There was moderately good
assessment of menstrual loss, where a PBAC score of >100 was considered to be consistent
The results of the univariable analysis examining the associations of demographic and
clinical variables with subjective assessment of menorrhagia are shown in Table 33. The
multivariable analysis (Table 34) showed that BMI, gravidity, fibroids, in particular sub-
107
mucous fibroids and endometrial polyps were all significantly associated with menorrhagia.
Adenomyosis, when assessed as a binary outcome, was not significantly associated with
between the number of features of adenomyosis on ultrasound scan and the volume of
menstrual loss expressed as a PBAC score, with each additional feature of adenomyosis being
associated with an average 22% [95% CI. 6% - 42% (p=0.005)] increase in the PBAC value
(Figure 24).
Two further multivariable analyses were performed to compare the number of different
relationship between the number of ultrasound features of adenomyosis and menstrual loss
(Table 35 – Model 1). The second multivariable analysis (Table 35 - Model 2) compared
women with no adenomyosis, women with <4 and those with >4 ultrasound features of
adenomyosis. This analysis showed women with >4 ultrasound features of adenomyosis, but
not women with <4 ultrasound features of adenomyosis, were significantly more likely to
recorded in the study population can be seen in Table 36. A final analysis looked at the
association between menorrhagia and the specific ultrasound features seen. The outcome
variable in the analysis was PBAC score which was measured on a log scale therefore the
outcomes are expressed as ratios (Table 37). The results for the individual features suggested
that only asymmetrical thickening and irregular EMJ were strongly associated with the PBAC
scores. The presence of these features was associated with a higher PBAC score.
108
Figure 23 – Flowchart showing why women were excluded from data analysis (Naftalin et al. 2014)
892 women
assessed
Excluded from the study (178)
46 – could not tolerate TVUS
35 – prior hysterectomy
94 - Cycles absent or >60 days
3 - other
714 assessed for subjective menorrhagia
Subjective Subjectively
menorrhagia normal
Gravidity 0 1 <0.001
1 0.34 (0.18, 0.64)
2-3 1.01 (0.59, 1.74)
4+ 2.33 (1.26, 4.30)
Model 1
Gravidity 0 1 <0.001
1 0.31 (0.16, 0.60)
2-3 0.84 (0.48, 1.48)
4+ 1.77 (0.92, 3.39)
Model 2
Gravidity 0 1 <0.001
1 0.31 (0.16, 0.59)
2-3 0.91 (0.51, 1.61)
4+ 2.01 (1.04, 3.92)
Table 36 –The number of ultrasound features seen in the study population (n=157) (Naftalin
et al. 2014)
Number of ultrasound features of n (%)
adenomyosis seen
1 18 (11.5)
2 37 (23.6)
3 41 (26.1)
4 32 (20.3)
5 16 (2.2)
6 10 (10.2)
7 3 (1.9)
0 2 4 6 8
Number of adenomyosis features
114
Table 37 – Results of the statistical analysis looking at the effect of the number and type of
ultrasound features on the PBAC assessment of menorrhagia (n=304) (Naftalin et al. 2014)
Outcome Ratio (95% CI) P-value
5.1 BACKGROUND
Original descriptions of adenomyosis reported an association between the disease and ‘a great
deal of pain’ (Cullen, 1908). Several later studies reported similar findings (Emge 1962; Bird
et al. 1972; Benson and Sneedon 1958), but others have not shown significant differences in
the prevalence of adenomyosis between women with and without a history of dysmenorrhoea
(Bergholt et al. 2001; Parrazzini et al. 1997; Weiss et al. 2009). Most of these studies used
and compare it to clinical symptoms. The main problem with the use of histology for the
diagnosis of adenomyosis in these studies is the heavy selection bias incurred (Mehasseb and
TVUS has recently been used for the non-invasive diagnosis of adenomyosis (Kepkep et al.
2007) and to study its prevalence (Naftalin et al. 2012b). There have been no large scale
prospective studies using non-invasive techniques to assess the link between adenomyosis
and clinical symptoms. The aim of this study was to investigate the possible association
5.2 METHODS
This was a prospective observational study of premenopausal women attending our general
gynaecology clinic. In all women, a detailed clinical and demographic history was taken prior
to undertaking the ultrasound scan. In addition, an assessment was made as to how painful
their periods were using an 11-point NRS. Women who were unable to undergo a
116
transvaginal scan or had previously undergone a hysterectomy and those with a history of
amenorrhoea or oligomenorrhoea with a cycle length greater than 60 days were excluded
Regression methods were used to examine factors associated with the subjective assessment
of dysmenorrhoea. As the NRS scores were measured on a continuous scale, linear regression
was used for the analysis. The scores were found to be approximately normally distributed
and thus no transformation of the scores was given. The analysis was performed in two
stages. Initially the separate association of each factor with the outcome was examined in a
series of univariable analyses. Subsequently the joint effect of the variables upon each
outcome was assessed in a multivariable analysis. To limit the number of variables in this
analysis, only factors with a univariable p-value of <0.2 were considered for this stage of the
analysis. A backwards selection procedure was used to retain only the statistically significant
variables in the final model. Two variables, gravidity and parity, were found to have a small
number of very high values. As a result these two variables were categorised for the purposes
of analysis. Statistical analysis was performed, using SPSS software (SPSS Inc., Chicago IL).
5.4 RESULTS
A total of 892 consecutive premenopausal women attended for clinic visits between January
2009 and January 2010. 178 women were excluded (Figure 25) and 714 were entered into the
data analysis. Their median age was 38 (IQR 30-43). 305/714 [42.7% (95% CI. 39.1%-
46.4%)] women were nulligravid and 424/714 [59.4% (95% CI. 55.7% - 63.0%)] were
117
nulliparous. Primary indications for ultrasound scans are listed in Table 38. The diagnoses
The results of the univariable analysis examining the associations of demographic and
clinical variables with subjective assessment of dysmenorrhoea showed that there was a
strong positive association between NRS score and the presence of both endometriosis and
adenomyosis (Table 41). Women with adenomyosis had higher NRS scores, on average 1.1
units higher than those without adenomyosis. Women with endometriosis had NRS scores
that were on average 1.6 units higher than. No other variables were significantly associated
The multivariable analysis (Table 42) showed that, as in the univariable analyses, both
measured by NRS. The presence of either of these conditions was associated with higher pain
scores. After adjusting for the effects of the other variable, the size of effects of each variable
were slightly reduced from the size of effect observed in the univariable analyses. A linear
regression analysis was performed assessing the association between both the number of
ultrasound features of adenomyosis present and the specific ultrasound features seen. The
outcome variable in the analysis was NRS score which was measured on a continuous scale.
The NRS score was found to be approximately normally distributed. Linear regression was
used to, in turn, to examine the effect of the total number of adenomyosis features, and the
individual features, upon the outcome. The analysis of the NRS score included adjustments
for both treatment and endometriosis, as these were thought to be potentially confounding
factors. The shape of the relationship between the total number of features present and the
outcome was examined. If the relationship was not found to be linear (a straight line), a
curved relationship was assumed, which was achieved by adding a squared term into the
118
analysis. The results suggest that the number of ultrasound features of adenomyosis present
was significantly associated with the NRS scores (Table 43). The relationship can be seen in
Figure 26 which shows the fitted relationship between the number of ultrasound features of
adenomyosis present and NRS score. The graph suggests that the number of features was not
strongly associated with NRS score below around 4 features, however once the number of
features was above this level, there was an increase in the pain score with increased number
of features. The results for the individual features suggested that only asymmetrical
thickening and irregular EMJ were strongly associated with the NRS scores. The presence of
these features was associated with a higher NRS score. The largest effect was for irregular
EMJ, where the presence of this symptom was associated with an increase of 1.6 units in the
NRS score. A breakdown of the number of ultrasound features of adenomyosis seen in the
Figure 25 – Flowchart showing why women were excluded from data analysis.
119
Gravidity 0 0 0.99
1 -0.03 (-0.62, 0.57)
2-3 0.02 (-0.53, 0.58)
4+ 0.02 (-0.61, 0.64)
Parity 0 0 0.89
1 -0.20 (-0.82, 0.42)
2 -0.11 (-0.89, 0.68)
3+ -0.17 (-0.75, 0.40)
Adenomyosis No 0 <0.001
Yes 1.07 (0.56, 1.58)
SM fibroids No 0 0.25
Yes -0.37 (-1.02, 0.27)
Endometriosis No 0 <0.001
Yes 1.57 (0.77, 2.37)
Adenomyosis No 0 <0.001
Yes 0.94 (0.43, 1.46)
Endometriosis No 0 0.001
Yes 1.36 (0.56, 2.17)
8
6
0 2 4 6 8
Number of adenomyosis features
122
Table 43 - Results of the statistical analysis looking at the effect of the number and type of
ultrasound features on the subjective assessment of dysmenorrhoea (n=304)
Outcome Term Coefficient (95% CI) P-value
Table 44 – The number of ultrasound features seen in the study population (n=157)
Number of ultrasound features of n (%)
adenomyosis seen
1 18 (11.5)
2 37 (23.6)
3 41 (26.1)
4 31 (19.7)
5 16 (2.2)
6 10 (10.2)
7 3 (1.9)
123
ENDOMETRIAL CANCER
6.1 BACKGROUND
Endometrial cancer is the commonest cancer of the female genital tract in the developed
thickness is commonly used to triage women with post-menopausal bleeding for histological
sampling. The cut-offs for endometrial sampling vary between different authors but >5mm is
a commonly used cut-off. The sensitivity of this cut-off for diagnosing endometrial cancer is
very high but the specificity is just 61% (CI: 59%-63%) (Smith-Bindman et al. 1998).
endometrial cancer is poor and many women therefore undergo ultimately unnecessary
invasive procedures.
A number of attempts have been made to improve the specificity of ultrasound in diagnosing
endometrial cancer. Many studies have assessed whether different endometrial morphologies
are more common in malignant lesions (Epstein et al. 2001; Epstein et al. 2002, Epstein and
Valentin 2006, Randelzhofer et al. 2002). Other authors have looked at various Doppler
parameters to assess whether they aided diagnosis of endometrial cancer (Bourne et al. 1991;
The aim of our study was to assess whether a test that combined ultrasound examination of
endometrial morphology and the integrity of the EMJ, with Doppler examination of the
6.2 METHODS
bleeding who attended our rapid-access clinic. In all women, a clinical history was taken and
Bildverarbeitung GmbH, Munich, Germany). They all underwent clinical assessment which
included speculum examination to exclude local vaginal and cervical abnormalities as a cause
of bleeding prior to a TVUS. A smear test was performed only in women younger than 65
who were not up-to-date with their smears. Women who had not been sexually active and
those with severe atrophic vaginal changes were offered a transrectal scan. Women in whom
transvaginal or transrectal scans were not possible and those in whom ultrasound images of
the uterine cavity were sub-optimal were excluded from the study and advised to undergo
hysteroscopy. Women were also excluded from the study if they were taking hormone
replacement therapy (HRT) or if they had had endometrial sampling performed within the six
stage test was performed at the same time as the initial ultrasound examination. The second
stage test involved a detailed subjective assessment of endometrial morphology, the integrity
of the EMJ alongside a Doppler assessment of the endometrium. The endometrium was
focal pathology was present it was classified as being either regular or irregular. The EMJ
For the purposes of the study, the assessment of endometrial morphology was classified as
suspicious if two criteria were met. The first criterion was that either focal pathology was
present and irregular or, if no focal pathology was present, that the endometrium was
heterogenous in echotexture (Figure 27). The second criterion was that there must be
evidence that any lesion breached the EMJ (Figure 28). With regard to the Doppler
assessment, lesions with no detectable blood supply and those with a single feeding vessel
were classified as benign (Figure 29) whilst those supplied by multiple vessels crossing the
Only women in whom both the endometrial morphology and the colour Doppler assessment
were considered suspicious were classified, for the purposes of the study, as high risk for
endometrial cancer. Patient management continued as per our clinical protocol and the
A database file was set up using Microsoft Excel (Redmond, WA, US) for Windows to
facilitate data entry and retrieval. Data were analysed using 2x2 tables to assess sensitivity
and specificity.
6.4 RESULTS
125 women were assessed between September 2009 and November 2010. Eighteen women
were excluded as they were using hormone replacement therapy. A further 7 women were
excluded from statistical analysis; the endometrium could not be fully assessed on ultrasound
in 4 of them, 2 of them declined surgery and 1 transferred her care to her local hospital
following the ultrasound scan. Thus, 100 women were included in the study. Demographic
126
characteristics of the women included and excluded are shown in Table 45. The median age
of women studied was 57.5 (inter-quartile range: 53-64). 20/100 [20% (95% CI: 12.2%-
27.8%)] women were nulliparous. There was a high burden of co-morbidity with 32% (95%
CI: 22.9%-41.1%) having hypertension, 12% (95% CI: 5.6%-18.4%) being hypothyroid, 12%
(95% CI: 5.6%-18.4%) taking anti-coagulants and 12% (95% CI: 5.6%-18.4%) being
diabetic.
Of the 100 women included, 49 had an endometrial thickness <5mm and no focal pathology.
These women were reassured, discharged and advised to return should they experience any
further vaginal bleeding. A histological diagnosis was obtained in all of the 51 women with
either an endometrial thickness >5mm or focal pathology. The final diagnosis was obtained
by pipelle in 15 cases and in a further 5 cases, pipelle sampling was inadequate and the
10/11 (90.9%) women eventually diagnosed with endometrial cancer were correctly
identified as high risk for endometrial cancer using the second-stage test (Table 46). The one
false negative was a woman with a carcinosarcomatous endometrial polyp. While this had an
unusual appearance on ultrasound, it did not fit the criteria for ultrasound diagnosis of
endometrial cancer according to the study protocol, as the EMJ was intact and only a single
blood vessel could be seen crossing the basal endometrium on colour Doppler assessment.
There were three false positives. All three of these women had fibroids and two of them had
adenomyosis.
The sensitivity and specificity of the second-stage test in diagnosing endometrial cancer were
90.9% (95% CI: 62.3% - 98.4%) and 96.6% (95% CI: 90.1% - 98.9%) respectively. 38
women were classified as low risk for endometrial cancer of whom 37 had benign disease,
giving a negative likelihood ratio of 0.094. Of the 13 women classified as high risk for
127
positive likelihood ratio of 27.0. The effect of the second-stage test on the risk of endometrial
When endometrial morphology alone was assessed, alongside endometrial thickness, the
sensitivity and specificity in diagnosing endometrial cancer were 90.9% (95% CI: 62.3% -
98.4%) and 95.5% (95% CI: 89% - 98.2%). The sensitivity was unchanged when Doppler
assessment was analysed alone, alongside endometrial thickness and the specificity dropped
Figure 27 – Longitudinal view of a uterus with a heterogenous endometrium. The patient was
subsequently diagnosed with endometrial cancer.
128
Figure 28 – Coronal view of a uterus where a hyperechoic tumour can be seen filling the right
fundal portion of the endometrial cavity. A breach in the EMJ can be seen in the right
cornuum (white arrow)
Figure 29 – Longitudinal view of a uterus using B-mode ultrasound with colour Doppler
showing an endometrial polyp with single feeder vessel. The polyp was found to be benign.
129
Figure 30 - Longitudinal view of a uterus using B-mode ultrasound with colour Doppler
showing multiple vessels crossing the EMJ at the fundus. A pipelle biopsy subsequently
revealed endometrial cancer.
130
Final diagnosis
Malignant n (%) 11 (11.0) 1 (4) 12 (9.6)
Histological subtype
Endometrioid adenocarcinoma 10
Carcinosarcoma 1
Stage of Malignancies
I 7
II 1
III 2
IV 1
131
Table 46 – Table showing how the endometria of women subsequently diagnosed with
endometrial cancer were classified at the time of their original ultrasound scan.
IV Discussions
133
JUNCTION
1.0 DISCUSSION
In this study, there was complete agreement between operators in classifying how well the
satisfactory and unsatisfactory views. The discrepancies between operators occurred where
judging whether most of the EMJ can be seen or not is more subjective and hence more likely
to suffer from inter-observer variability, than judging whether all of the EMJ can be seen.
Despite the observed variability, the overall reproducibility of examination was very good
with kappa values between 0.70 and 0.83. This indicates that assessment of the EMJ on 3D
assessment of the regularity or integrity of the EMJ is increasingly being used to make
clinical diagnoses, mostly for the ultrasound diagnosis of adenomyosis (Ahmed et al. 2007;
Exacoustos et al. 2011) but also for the diagnosis of endometrial cancer (Randelzhofer et al.
could be that the classification system used in this study was entirely arbitrary however there
was no pre-existing classification system for assessment of the EMJ that could have been
used. Furthermore, a similar approach has been used in the past when assessing
(Yazbek 2010). It must be remembered that these results apply only to women with normal
134
uteri. Further work is needed to see if our findings are reproducible in different settings and
In conclusion, this study shows that assessment of EMJ visualisation has both good inter- and
DIMENSIONAL ULTRASOUND
2.0 DISCUSSION
This study showed that the ability to analyse the EMJ improves with increasing endometrial
thickness. This finding is consistent with MRI studies that show that EMJ thickness increases
in parallel with, although not to the same extent as, endometrial thickness (Novellas 2011).
Ultrasound studies have shown that endometrial echogenicity also increases in parallel with
endometrial thickness, particularly in the luteal phase of the cycle (Fleischer 1986). This
would increase the visual contrast between the endometrium and the myometrium, which
A more practical reason why increasing endometrial thickness enables better EMJ
image. With a thin endometrium, curvature or asymmetry of the cavity can make it harder to
find a plane through which the EMJ can be seen continuously. A thicker endometrium, and
Other work, including MRI studies, has shown that the EMJ changes in both appearance and
size at different stages of the menstrual cycle (McCarthy et al. 1986; Janus et al. 1988;
Wiczyk et al. 1988). While our results were unable to show that stage of cycle had a
significant effect on EMJ visualisation, this may be because the numbers were too small to
determine a difference between the proliferative stage of the cycle and the luteal phase of the
cycle, once post-menopausal women, women taking the pill and women with irregular cycles
We also found that the ability to see the EMJ decreases with increasing parity. The finding
that parity has an effect on the EMJ is not unexpected. We know that the EMJ is involved in
and changed by placentation (Brosens et al. 2010) and that there are differences in the
power Doppler angiography (Raine-Fenning et al. 2004). One might surmise that this effect
was due to the presence of early or undiagnosed adenomyosis, a condition for which
increased parity is thought to be a risk factor and which is known to affect the EMJ. This is
purely speculative however, as none of the women included in the statistical analysis had any
between age and sub-endometrial vascularity (Raine-Fenning et al. 2004). MRI studies have
reported a change in EMJ size as age increases (Novellas 2011). We found that age did not
studies are difficult however, as they either used different imaging modalities or assessed
subtly different aspects of the EMJ. These two difficulties endure throughout the literature
Further work is needed to look at what factors, both physiological and pathological, affect the
EMJ.
137
DIAGNOSIS OF ADENOMYOSIS
3.0 DISCUSSION
There was good intra-observer variability when comparing real-time B-mode ultrasound scan
assessment and assessment of stored 3D uterine volumes for the diagnosis of adenomyosis,
with a kappa value of 0.67. There was also good inter-observer variability when two different
adenomyosis, with a kappa value of 0.61. The intra- and inter-observer variability remained
was assessed there were seven disagreements in diagnosis. In all seven of these cases, the
adenomyosis was subjectively classified as mild meaning that there was complete agreement
severe. Given that data from this thesis suggests that adenomyosis only becomes clinically
significant, at least with regard to menorrhagia and dysmenorrhoea, until more than 2
ultrasound features are present, this means that there was complete agreement in the
The main strength of this study is that it was a prospective study with pre-defined objectives
that assessed both inter- and intra-observer agreement. Furthermore, it not only assessed
A potential weakness is that the numbers are relatively small. Another criticism might be that
the prevalence of adenomyosis in the population studied was much higher (61.1%) than is
138
likely to be present in a general gynaecology clinic. This was done in order to ensure
inclusion of stored 3D uterine volumes with a wide range in the number of ultrasound
There has only been one other study assessing the inter-observer variability in diagnosis of
inter-observer agreement (kappa=0.38) than we found in our study (Dueholm et al. 2002).
The study in question collected their data around ten years prior to data collection in our
study and it may be that technical improvements in TVUS during that time period have led to
adenomyosis.
Consistent with this, is our finding that the intra-observer agreement was better when
comparing two assessments using stored 3D volumes, then when comparing real-time
ultrasound scan and an assessment using a stored uterine volume. The higher resolution of
real-time ultrasound scan may have enabled visualisation of some of the more subtle
ultrasound features that were not able to be visualised subsequently on 3D stored volumes.
This may be one of the reasons why some authors have stated that real-time ultrasound
scanning is mandatory for the accurate diagnosis of adenomyosis (Reinhold et al. 1996). Our
finding that there was good intra-observer agreement between real-time ultrasound scan and
stored 3D uterine volume assessment, performed over 3 years apart suggests that accurate
diagnosis is possible without real-time ultrasound. This has clinical relevance as significant
adenomyosis. If the diagnosis can be made from assessment of stored 3D uterine volumes,
139
then less experienced sonographers who are uncertain of a diagnosis could store a 3D uterine
volume for assessment by an experienced gynaecological sonographer at a later date. This has
implications for service provision as it means that experienced sonographers do not have to
made. Furthermore, patients would not need to undergo a second transvaginal ultrasound scan
in order to confirm the presence of adenomyosis, if the diagnosis can be made on stored
uterine volumes.
adenomyosis was generally good with 3 of the seven features displaying moderate agreement,
2 displaying good agreement and one displaying perfect agreement. Two of the three features
with the highest inter-observer variability were asymmetrical myometrial thickening (kappa
value 0.77) and an irregular EMJ (kappa value 0.65). Data later on in this thesis shows that
the presence of these two ultrasound features is independently associated with both
dysmenorrhoea and increasing PBAC-assessed menstrual loss. Future studies should assess
CLINIC
4.0 DISCUSSION
The overall prevalence of adenomyosis in our study population was 20.9%. The prevalence
increased with age reaching a peak of 32% in women aged 40-49. The prevalence was not
that the presence of adenomyosis was significantly associated with age, gravidity and
endometriosis.
The main strength of this study is that it was a large prospective study with pre-defined
objectives and clear diagnostic criteria. All examinations were performed by a single
observer using high quality, top of the range equipment, which ensured a consistent approach
variability. We have also recorded a large number of demographic and clinical variables
which has enabled us to assess their possible effects on the prevalence of adenomyosis. A
also performed in a detailed, standardised fashion. The good agreement between pre-
confirms that targeted ultrasound examination can be used in clinical practice for non-
populations of women who underwent hysterectomy. The sample sizes were typically very
141
small and they included mainly women with severe symptoms, who were more likely to have
adenomyosis than asymptomatic women and those with mild symptoms. In view of this it is
likely that the prevalence of adenomyosis in these studies was overestimated. Our estimate of
population of women. As expected the prevalence of adenomyosis in our study was less than
that in most recent studies (Weiss et al. 2008; Yeniel et al. 2007; Parazzini et al. 2009). In
order to establish a true prevalence, a screening study involving a large number of unselected
women would be required, but even then self-selection of women would provide a source of
bias as those with past or present concerns about their gynaecological health would be more
likely to volunteer for screening. Our estimate is therefore likely to be slightly higher than the
gynaecology clinic.
Our finding of good agreement between ultrasound and histology has significant implications
for clinical practice. Hysterectomy is rarely performed in modern practice for benign
indications and it is neither practical nor realistic to use histology as a gold standard, in future
clinical studies of adenomyosis. TVUS and MRI are the only non-invasive diagnostic
women attending outpatient clinics. MRI is much more expensive, time consuming and less
accessible than ultrasound. In addition, previous studies have not demonstrated that MRI
studies have shown that ultrasound diagnosis of adenomyosis is sensitive and specific enough
to employ this technique for in-vivo studies of adenomyosis. The diagnostic criteria we used
have been assessed previously and they were found to be satisfactory (Kepkep et al. 2007). It
is therefore likely that in the future, TVUS will be the most common and often the only
142
method, which will be used to make the diagnosis of adenomyosis and monitor its response to
conservative treatment.
endometriosis. Indeed, up until the 1920s they were considered to be part of the same entity.
One recent study (Kunz et al. 2005) suggested that adenomyosis and endometriosis may be
peristaltic activity within the inner myometrium. A number of studies have confirmed an
association between adenomyosis and endometriosis (Bird et al. 1972; Emge 1972), but many
other have not (Vavilis et al. 1997; Kilkku et al. 1984; Vercellini et al. 1995; Weiss et al.
2009). A possible explanation for these differences is a tendency to look for the association
affected by both adenomyosis and endometriosis may have been successfully treated for
endometriosis in the past. As a result they could be free of active endometriosis at the time of
hysterectomy, which would typically take place sometime later. Furthermore, three of the
studies that found no link between adenomyosis and endometriosis were retrospective. There
are many potential methodological problems with retrospective studies, which could lead to
endometriosis on histological examination of the uterus alone and the risk of under-reporting
incidental endometriosis at the time of surgery and subsequent histological examination, even
if the ovaries and fallopian tubes had been removed at the operation. We tried to overcome
these difficulties by performing a prospective study and by taking into account both a past
Increasing age up to the menopause has long been considered a risk factor for adenomyosis.
Molitor reported that adenomyosis becomes more common in later reproductive years with a
decline in the frequency of diagnosis after menopause, however age has not consistently been
shown to be associated with the disease and more recent studies evaluating age as an
independent variable have not found an association (Bergholt et al. 2001; Vercellini et al.
1995; Weiss et al. 2009). These studies, however, are limited in their ability to assess age as
who tend to present a relatively narrow age range. The advantage of using a non-invasive
technique like ultrasound is that it can be applied to a much broader population of women.
For example, in Bergholt’s study just 31.2% of women were under the age of 45, whereas in
our study 65.6% of women were under the age of 45. Our findings are therefore more likely
to provide reliable information about the link between age and prevalence of adenomyosis.
Many pregnancy-related factors have been linked with adenomyosis including parity
(Parazzini et al. 1997; Kilkku et al. 1984; Vavilis et al. 1997; Vercellini et al. 1995),
caesarean delivery (Vavilis et al. 1997; Whitted et al. 2000) and terminations of pregnancy
(Curtis et al. 2002; Levgur et al. 2000; Vavilis et al. 1997). Again, other studies have not
replicated these findings (Bergholt et al. 2001; Parazzini et al. 1997; Panganamamula et al.
2004; Weiss et al. 2009). The univariate analysis in our study suggested that gravidity, parity,
caesarean delivery were all associated with adenomyosis. After multivariate analysis only
gravidity was found to be significantly associated with adenomyosis, although parity was not
included in the multivariate analysis as analysis suggested it was co-linear with the other
variables. This finding suggests that it may be the presence of a pregnancy rather than the
144
specifics of what occurs in any given pregnancy that may play a role in the development of
adenomyosis.
Body mass index, intrauterine contraceptive device use, use of the progesterone-only
contraceptive pill, vaginal or caesarean section delivery, miscarriage and either evacuation of
significantly associated with adenomyosis prior to the multivariate analysis. It is likely that
age accounted for most of these trends and that once the data were adjusted for age the
significance was no longer seen. An important finding was the absence of a significant
difference in the prevalence of adenomyosis between pre- and post-menopausal women. The
the prevalence in the group of women aged 40-49, when the condition was found to be most
prevalent. This indicates that adenomyosis tends to regress after menopause, but still remains
(Kitawaki 2006). Kitawaki also noted that no studies have shown that use of the combined
oral contraceptive pill causes regression of adenomyosis. Our data adds further weight to this
and showed that there was no association between use of the combined oral contraceptive pill
Adenomyosis is a common condition and yet little is known about its aetiology, natural
history and clinical significance. This was largely due to the inability to make a conclusive
and accurate diagnosis of adenomyosis in the past using non-invasive diagnostic methods.
Our study, and other recent studies, has shown that transvaginal ultrasound is an accurate
method to diagnose adenomyosis. Due to its wide availability and acceptability, ultrasound
women. Future research should try to elucidate its natural history and to examine possible
145
This information should help to develop more effective preventative and treatment strategies
5.0 DISCUSSION
Our results did not show a significant association between the presence of adenomyosis and
correlation between amount of menstrual loss and the number of ultrasound features of
fibroids, in particular sub-mucous fibroids, endometrial polyps, gravidity and BMI. Sub-
mucous fibroids were found to have the strongest association with menorrhagia.
The main strength of our study was that ultrasound rather than histology was used to
diagnosis uterine pathology which helped to reduce selection bias. This also allowed the
inclusion of a relatively large number of women with a greater range of symptoms and
was a prospective study with clearly defined inclusion criteria and a standardised approach to
the ultrasound examinations which were all performed by a single highly-trained operator
While two different assessments of menstrual loss were used, both methods had limitations.
The subjective binary assessment of menorrhagia is simple to measure and easy to assess in a
large population, however studies have shown that self-assessed menorrhagia may not be an
accurate measure of excessive menstrual blood loss (Chimbira et al. 1980). Nevertheless, the
(NICE 2007) for clinicians. PBACs offer a relatively simple alternative to the more arduous
must be remembered however, that they are not as accurate and remain a subjective
147
assessment of menstrual blood loss. Furthermore, there are limitations to the way they were
used in our study. It has been estimated that women may experience 20%-40% variation in
menstrual loss between different periods (Hallberg & Nilsson 1964). The fact that PBACs
were only used for one menstrual cycle in our study may therefore have limited the validity
of the PBAC assessment. Another limitation in our use of PBACs is the fact that women
filled in the charts based on usage with their own sanitary wear, which will be of variable
absorbency across the study population. Studies have generally addressed this issue by
providing standardised sanitary wear. We chose not do so for reasons of practicality and cost.
Despite these limitations the ease of use of PBACs enabled us to make a semi-quantitative
quantitative assessment of menstrual blood loss, their use allowed us to take account of the
severity of menorrhagia in the study population.There was a fair level of agreement between
There is a lack of consensus in the literature regarding the relationship between adenomyosis
and menorrhagia. This is not surprising bearing in mind that the majority of studies were
These studies used differing criteria for the diagnosis of adenomyosis and few of them
attempted to quantify severity of disease. In addition, none of the studies controlled for the
presence of concomitant pathology and their potential effect on the volume of menstrual loss.
Our study has clearly shown that severity of adenomyosis, as measured by the number of
different ultrasound features of adenomyosis seen, correlates with the amount of menstrual
loss. The severity of adenomyosis is difficult to express in quantitative terms as the lesions
are often poorly defined and they may be disseminated throughout different parts of the
assess severity of disease in their retrospective study (Levgur et al. 2000). While this study
had relatively small numbers and used retrospective case note analysis to define menorrhagia,
it was still able to uncover an association between severity of adenomyosis and menorrhagia.
Not only did our study show a positive association between the number of ultrasound features
of adenomyosis seen and increasing PBAC-assessed menstrual loss, it also showed that some
irregular EMJ were both independently associated with PBAC assessed menstrual loss. It is
not surprising that asymmetrical myometrial thickening has a greater effect on symptoms
than other ultrasound features, as it is by definition, only seen when the disease is severe
enough to have affected an entire wall of the uterus. This is in contrast to some of the other
features, such as linear striations, that may affect only a small volume of the uterus.
Irregularity of the EMJ may have a greater impact on menstrual loss than other features
because any pathological effect is occurring at the interface where blood loss occurs, in
contrast to myometrial cysts, for example, that by definition occur some distance from the
endometrium. Despite the fact that some features appear to have a greater impact on
menstrual loss than others, we think that it is better to express severity of adenomyosis semi-
woman as an indirect measure of severity of disease. Any proposed system to formally grade
The recognition that the severity of a condition is important when assessing clinical impact
has already been adopted in clinical practice when studying the effect of fibroids on
menstrual loss. It has been generally accepted that fibroids cause menorrhagia and that their
149
size and location determines their clinical significance (NICE 2007). Our study has also
confirmed that the location of fibroids is a critical diagnostic feature as submucous fibroids
were found to have a much more severe effect on menstrual loss than fibroids in other
locations. It is also known however, that the majority of fibroids are asymptomatic (Divakar
between fibroids and menorrhagia (Parker 2007). While early reports (Miller et al. 1953)
ascribed heavy periods to submucous fibroids only, others have found that neither the
al. 2004). This study was however, relatively small and did not have enough numbers to
assess the effect of submucous fibroids. A larger study in which the population had a higher
prevalence of fibroids found an association between both length of menses and “gushing
bleeding” and the size of fibroids but not the number or their location (Wegienka et al. 2003).
This study however, used telephone interviews as a means of assessing patient symptoms.
Our study had a large sample size, used high quality ultrasound to assess the exact location of
the fibroids and used both objective and semi-quantitative methods to measure menstrual
loss. It is likely therefore, that our findings that fibroids are associated with heavy periods and
that this association is stronger with sub-mucous fibroids, are accurate. A long-standing
potentially confounding effect that both conditions will have on each other, with both the
prevalence and the burden of both conditions being positively associated with advancing age
(Naftalin et al. 2012b; Mavrelos et al. 2010). By combining a thorough ultrasound assessment
looking for all uterine pathologies with multiple demographic and clinical factors before
using multivariate logistic regression analysis, our study was able to account for this
Other variables found to be associated with menorrhagia in our study include endometrial
polyps, increasing gravidity and increasing BMI. While endometrial polyps are frequently
cited as a cause of menorrhagia (Munro et al. 2011), many studies have merely found a
and extrapolated causation. The only study that compared symptomatic women to
abnormal menstrual bleeding, however this study included women with prolonged periods
concluded that small endometrial polyps are frequently asymptomatic (Clevenger-Hoeft et al.
1999). One study used PBACs to measure menstrual loss before and after performing
hysteroscopic polypectomy and found that post-procedure, there was a significant reduction
in menstrual loss (van Dongen et al. 2009). This suggests that endometrial polyps contribute
significantly to menstrual loss and is in keeping with our finding that they are significantly
While there are little data assessing the effect of increasing BMI on menorrhagia, it is known
that the peripheral conversion of adrenal and gonadal androgens to oestrogens in peripheral
tissue is greater in obese women (Siiteri 1987). The increased endometrial proliferation
menstrual flow. Our study cannot explain the association between increasing gravidity and
menorrhagia. It could be postulated that the increased blood loss may be due to the increase
in uterine size seen with increasing gravidity (Verguts et al. 2013), however Rees et al. found
6.0 DISCUSSION
independent positive correlation with dysmenorrhoea. There was also a positive correlation
between the number of ultrasound features of adenomyosis seen and NRS score for painful
periods.
The main strengths of our study were that ultrasound was used to diagnosis adenomyosis,
minimising the heavy selection bias seen when histology is used to assess symptomatology in
the past. This also allowed for the inclusion of a relatively large number of women. All the
scans were performed using top of the range equipment by a single operator who was
prospectively looking for the presence of adenomyosis. A further strength of the study was
the use of a validated, reproducible pain scoring system to assess the extent of
the majority of women studied however, in those women in the study population who
underwent hysterectomy there was good agreement between ultrasound and histological
Our finding that adenomyosis was significantly associated with pain symptoms, is neither
new, nor surprising. The first detailed description of adenomyosis by Cullen over a century
ago described one of the main symptoms as being a ‘great deal of pain’ (Cullen 1908). Many
subsequent authors have described a similar clinical picture involving painful periods in
women with adenomyosis (Emge 1962; Bird et al. 1972; Benson and Sneedon 1958).
However, several authors have found no association between the presence of adenomyosis
and pain-related symptoms (Bergholt et al. 2001; Parazzini et al. 1997; Weiss et al. 2009).
152
An important contributor to these conflicting reports is the use of histology as the means to
diagnose adenomyosis. Pain symptoms have historically been a common indication for
hysterectomy. Thus the hysterectomized population are significantly more likely to have pain
symptoms than those women with an intact uterus. This makes it harder to show a significant
looking only at perimenopausal women undergoing hysterectomy (Weiss et al. 2009) having
histological examination to have adenomyosis and those who did not, concluded that
adenomyosis was not a “disease per se, but rather a normal variant”. This study, as with most
other studies on the subject, used retrospective case note analysis to assess pain symptoms
and assessed them as a binary outcome only. By using a quantitative assessment of pain our
study was able to take account of severity of dysmenorrhoea in the data analysis and hence
dealing with the confounding effect of endometriosis. Both conditions are a recognised cause
of dysmenorrhoea and studies have revealed a strong association between the two conditions
(Naftalin et al. 2012b). By performing a thorough pelvic ultrasound assessment looking for
the presence of ultrasound features of adenomyosis as well as direct and indirect features of
endometriosis, prior to using multivariable logistic regression analysis, our study was able to
ENDOMETRIAL CANCER
7.0 DISCUSSION
We have shown that a second-stage ultrasound test applied to women presenting with
postmenopausal bleeding and either an endometrial thickness >5mm or focal pathology, can
significantly improve the specificity of ultrasound diagnosis of endometrial cancer. There are
women with postmenopausal bleeding. It allows more efficient triaging of women with
postmenopausal bleeding for invasive diagnostic testing. Without application of the second-
stage test, women identified with focal endometrial lesions would normally have to wait for a
hysteroscopy, which might take weeks, before reaching a tissue diagnosis. The identification
of women with focal endometrial lesions with appearances suggesting a higher risk of
endometrial cancer, facilitates same-day outpatient endometrial sampling, for example pipelle
biopsy, which has been shown to have a sensitivity of 99.6% in detecting endometrial cancer
(Dijkhuizen et al. 2000). This would speed up the diagnostic process and reduce the time
from presentation to treatment in those women, while reducing the total number of
hysteroscopies required. This would both reduce the overall risk associated with diagnostic
invasive procedures while also reducing service costs and waiting times.
The post-test odds of endometrial cancer in women with homogenous, avascular endometria
and an intact EMJ are low (0.025). While this study is insufficient to conclude that an
endometrial sample would not be required in this group, it could provide significant
reassurance to patients and reduce the time-pressure for endometrial sampling in women
154
found to be low risk for endometrial cancer, despite having a thickened endometrium.
Endometrial sampling could even be avoided in this group if, due to other co-morbidities, the
Various endometrial ultrasound criteria have been assessed in attempts to improve the
Randelzhofer et al. agreed with our finding that endometrial morphology and regularity of the
EMJ were useful criteria to differentiate benign and malignant endometria (Randelzhofer et
al. 2002). In contrast, other investigators (Epstein et al. 2001; Epstein et al. 2002) concluded
in two separate studies that there was significant overlap of ultrasound morphology between
benign and malignant endometrial lesions. A later study by the same research group (Epstein
and Valentin 2006) did find that heterogeneous echogenicity and an irregular surface of
endometrial lesions on B-mode ultrasound scan were useful criteria for diagnosing
endometrial malignancy in women with thickened endometria, but only when there was fluid
within the uterine cavity. Differences in study design and population may explain why their
conclusions differ from ours. Our population (mean age 59 years v 65 years) was younger
and had a greater proportion of malignancies staged 2 or above (36.4% v 9.1%). Their study
population also included women taking HRT whereas both our study and the study by
Randelzhofer excluded patients taking HRT (Randelzhofer et al. 2002). Lastly, in their
analysis, heterogeneous endometrium was close to statistical significance (P=0.08) and as the
authors themselves concluded, it may just have been that their study was underpowered to
There have been similarly contrasting results from studies assessing the use of Doppler as a
means to improve the accuracy of ultrasound in diagnosing endometrial cancer. Early studies
using colour Doppler reported promising results in the diagnosis of endometrial cancer.
155
Bourne et al. used colour Doppler to measure and compare the pulsatility indices (PI) of the
uterine arteries in 34 women with postmenopausal bleeding. They found that the PI was
reduced in the 17 women subsequently found to have endometrial cancer and concluded that
Doppler had great potential in the assessment of uterine pathology (Bourne et al. 1991). It is
unclear however, from their methods, how women were selected for the study. Furthermore,
the prevalence of endometrial cancer in the study population (50%) was much greater than in
most other studies of women with postmenopausal bleeding. Subsequent studies of Doppler
flow both in the uterine and endometrial arteries (Sladkevicius et al. 1994; Sheth et al. 1995)
have been unable to show that Doppler is useful in discriminating between benign and
Timmerman et al. showed that using colour Doppler to assess the distribution of blood
vessels supplying focal endometrial lesions was helpful in the diagnosis of endometrial
polyps (Timmerman et al. 2003), but they excluded women with a suspicion or confirmed
endometrial cancer. Alcazar et al reported that in more than 80% of cases of endometrial
cancer, a particular power Doppler pattern of vasculature could be observed (Alcazar et al.
2003). Epstein et al. used an algorithm including power Doppler assessment of endometrial
vascularity to estimate the risk of endometrial malignancy. They concluded that their
algorithm was better than subjective assessment at differentiating benign and malignant
endometria in women with an endometrial thickness of 5-15mm, although this conclusion did
not reach statistical significance (Epstein et al. 2002). Subsequent work by the same research
group was unable to show that using colour Doppler to assess the number of blood vessels
within the endometrium aided the diagnosis of malignancy in women with postmenopausal
bleeding (Epstein and Valentin 2006). In contrast to our study however, they assessed the
number of vessels seen within the endometrium as a whole. It may be that in order for colour
156
assessment of the number of vessels crossing the EMJ at the site of any endometrial
Any test including assessment of endometrial morphology and/or Doppler examination will
be limited by the fact that these methods are subjective. Furthermore, there were a relatively
small number of women included our study. While, these results would need to be
clinical setting, we have nevertheless shown that a large increase in the specificity of
This thesis has explored aspects of the ultrasound assessment of the EMJ. It has shown that a
feasible to use in clinical practice. Endometrial thickness and parity have been shown to be
significantly associated with quality of EMJ visualisation. These findings however, only
relate to normal uteri and further work is required to assess what pathological variables affect
EMJ visualisation.
In contrast to other work, it was found that there was a good level of intra- and interobserver
agreement in the ultrasound diagnosis of adenomyosis. This was the case when real-time
ultrasound assessments were compared with assessments made from stored uterine volumes,
as well as when both assessments were made from stored volumes. Arguments against the
use of TVUS for the pre-operative diagnosis of adenomyosis have centred on inadequate
levels of inter-observer agreement and the reported necessity of real-time images to make the
diagnosis. This finding strengthens the case for TVUS to be the pre-operative imaging
modality of choice. It is also helpful to the clinician and to the patient, allowing a second
opinion to be sought, in cases of uncertainty, without recourse to a second scan. Further work
adenomyosis when two real-time scans are performedon the same occasion.
TVUS was used to estimate the prevalence of adenomyosis in women attending a general
gynaecology clinic in a large prospective observational study. The prevalence was estimated
to be 20.9%. It was also found that age, gravidity and pelvic endometriosis were all
significantly associated with the presence of adenomyosis. Better estimates of the prevalence
of adenomyosis using TVUS could help improve understanding of the burden of the disease,
Furthermore, more accurate estimates of the prevalence of adenomyosis will lead to more
159
accurate assessment of the associations of the disease and will therefore aid studies in the
TVUS was also used to investigate whether adenomyosis was associated with menstrual
analysis showed that while adenomyosis was not significantly associated with menorrhagia
when assessed as a binary outcome, when severity of disease was taken into account, there
was a significant association. In both studies, severity of disease was based on the number of
ultrasound features of adenomyosis seen. While this classification system has revealed
insights into the relationship between adenomyosis and menstrual symptoms, its validity
Lastly, the role of a second-stage ultrasound test incorporating assessment of the EMJ in the
investigated. Its use was found to significantly increase the specificity of ultrasound while
having a minimal effect on sensitivity. It must however be noted that the sample size was
small.
This thesis has, I hope, set a new benchmark for the ultrasound assessment of both the EMJ
ultrasound assessment with a more detailed analysis of the EMJ and the individual ultrasound
features of adenomyosis, this thesis has increased our understanding of the EMJ,
adenomyosis and paved the way for a new way of triaging women with post-menopausal
160
bleeding. It should also facilitate future work on adenomyosis and the EMJ. Key areas for
grading system for the severity of adenomyosis, the role of adenomyosis in subfertility and a
comparison of the current model of assessing women with post-menopausal bleeding with the
the second-stage test used in this thesis to assess women with post-menopausal bleeding.
Application of the ultrasound assessment used in this thesis to subfertile women could help
determine how severity of adenomyosis affects fertility and also the impact of individual
women who then conceive could provide novel information on the impact of adenomyosis on
obstetric outcomes.
161
References
Ahmed AI, Mahmoud AEA, Fadiel AA, Frederick N. Comparison of 2-, 3D and Doppler
ultrasound with histological findings in adenomyosis. Fertil Steril 2007; 88: S82.
Alcázar JL, Castillo G, Mínguez JA, Galán MJ. Endometrial blood flow mapping using
transvaginal power Doppler sonography in women with postmenopausal bleeding and
thickened endometrium. Ultrasound Obstet Gynecol 2003 Jun;21(6):583-8.
Arnold LL, Meck JM & Simon JA. Adenomyosis: evidence for genetic cause. Am J Med
Genet 1995; 55:505-506.
Azziz R. Adenomyosis: Current Perspectives. Obstet Gynecol Clin North Am 1989 Mar;
16(1): 221-235.
Baba, K, Okai T. Basis and principles of three - dimensional ultrasound. Three - dimensional
ultrasound in Obstetrics and Gynaecology. K. Baba and D. Jurkovic. 1997, London,
Parthenon.
Barrier BF, Malinowski MJ, Dick EJ, Hubbard GB, Bates GW. Adenomyosis in the baboon
is associated with primary infertility. Fertil Steril 2004 Oct;82 Suppl 3:1091-4.
162
Bennett CC, Richards DS. Patient acceptance of endovaginal ultrasound. Ultrasound Obstet
Gynecol 2000 Jan;15(1):52-5.
Bergholt T, Eriksen L, Jacobsen M, Hertz JB. Prevalence and risk factors of adenomyosis at
hysterectomy. Hum Reprod 2001;16:2418–2421.
Bird CC, McElin TW & Manalo-Estrella P. The elusive adenomyosis of the uterus. Am J
Obstet Gynecol 1972; 112: 583-593.
Birnholz JC. Ultrasonic visualization of endometrial movements. Fertil Steril 1984; 41:157-
158.
163
Bohlman ME, Ensor RE, Sanders RC. Sonographic Findings In Adenomyosis Of The Uterus.
Am J Roentgenol 1987; 148(4): 765-766.
Bourne TH, Campbell S, Steer CV, Royston P, Whitehead MI, Collins WP. Detection of
endometrial cancer by transvaginal ultrasonography with color flow imaging and blood flow
analysis: a preliminary report. Gynecol Oncol 1991 Mar;40(3):253-9.
Bray F, Dos Santos Silva I, Moller H, Weiderpass E. Endometrial cancer incidence trends in
Europe: underlying determinants and prospects for prevention. Cancer Epidemiol Biomarkers
Prev2005;14:1132-42.
Brosens JJ, Barker FG, de Souza NM. Myometrial zonal differentiation and uterine junctional
zone hyperplasia in the non-pregnant uterus. Hum Reprod Update 1998; 4: 496-502.
Chimbira TH, Anderson AB, Turnbull AC. Relation between measured menstrual blood loss
and patient's subjective assessment of loss, duration of bleeding, number of sanitary towels
used, uterine weight and endometrial surface area. BJOG 1980; 87(7): 603-9.
Clark TJ, Mann CH, Shah N, Khan KS, Song F, Gupta JK. Accuracy of outpatient
endometrial biopsy in the diagnosis of endometrial hyperplasia. Acta Obstet Gynecol Scand
2001; 80:784–93.
Creasman W. Revised FIGO staging for carcinoma of the endometrium. Int J Gynaecol
Obstet 2009;105:109.
164
Creasman WT, Odicino F, Maisonneuve P, Quinn MA, Beller U, Benedet JL, Heintz AP,
Ngan HY, Pecorelli S. Carcinoma of the corpus uteri. FIGO 26th Annual Report on the
Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet 2006 Nov;95 Suppl
1:S105-43.
Cullen TS. Adeno-myoma Uteri diffusum benignum. Johns Hopkins Hosp Rep 1896; 6: 133.
Cullen TS. Adenomyoma of the uterus. Philadelphia & London: W.B. Saunders; 1908.
Curtis KM, Hillis SD, Marchbanks PA, Peterson HB. Disruption of the endometrial-
myometrial border during pregnancy as a risk factor for adenomyosis. Am J Obstet Gynecol
2002;187:543–544.
Daels J. Uterine contractility patterns of the outer and inner zones of the myometrium. Obstet
Gynecol 1974; 44: 315-326.
Demas BE, Hricak H, Jaffe RB. Uterine MR imaging: Effects of hormonal stimulation.
Radiology 1986; 159: 123-126.
Dijkhuizen FP, Mol BW, Brölmann HA, Heintz AP. The accuracy of endometrial sampling
in the diagnosis of patients with endometrial carcinoma and hyperplasia: a meta analysis.
Cancer 2000; 89: 1765–72.
Dijkhuizen FP, Mol BW, Brolmann HA, Heintz AP. Costeffectiveness of the use of
transvaginal sonography in the evaluation of postmenopausal bleeding. Maturitas 2003;
45:275–82.
Divakar H. Asymptomatic uterine fibroids. Best Practice & Research Clinical Obstetrics and
Gynaecology 2008. ;22(4):643–654.
165
Emge L. The elusive adenomyosis of the uterus. Am J Obstet Gynecol 1962; 83:1541–63
Ellis PS, Whitehead R. Mitosis counting--a need for reappraisal. Hum Pathol 1981
Jan;12(1):3-4.
Entmann SS. Uterine Leiomyoma And Adenomyosis. In Jones HW,Wentz AC, Burnett LS
(eds.). Novak’s Textbook Of Gynecology. Baltimore: William & Wilkins; 1988, p. 443.
Fusi L, Cloke B, Brosens JJ. The uterine junctional zone. Best Prac Res Clin Obstet
Gynaecol 2006; 20: 479-491.
Gompel C & Silverberg SG. The Corpus Uteri. Pathology In Gynecology And Obstetrics.
Philadelphia: J.B. Lippincott;1985, pp. 208-209.
Grimes, DA. Diagnostic dilation and curettage: a reappraisal. Am J Obstet Gynecol 1982;
142(1): 1-6.
Hallberg L, Nilsson L. Constancy of individual menstrual blood loss. Acta Obstet Gynecol
Scand 1964; 43: 352-9.
Harris WJ, Daniell JF, Baxter JW. Prior cesarean section. A risk factor for adenomyosis? J
Reprod Med 1985 Mar;30(3):173-5.
Hendrickson MR, Kempson RL. Nonneoplastic Conditions Of The Myometrium And Uterine
Serosa, Surgical Pathology Of The Uterine Corpus. Philadelphia: W.B.Saunders; 1990, pp.
452-453.
Higham J, O’Brien PMS, Shaw RW. Assessment of menstrual blood loss using a pictorial
chart. Br J Obstet Gynecol 1990;97:734-739.
Hoskins PR, Criton A (2003). Colour Flow Imaging. Diagnostic Ultrasound. P. R. Hoskins,
A. Thrush, K. Martin and T. A. Whittingham. London, Greenwich Medical Media.
Hricak H, Alpers C, Crooks LE, Sheldon PE. Magnetic resonance imaging of the female
pelvis: initial experience. Am J Roentgenol 1983 Dec;141(6):1119-28.
Ijland MM, Evers JL, Dunselman GA, van Katwijk C, Lo CR, Hoogland HJ. Endometrial
wavelike movements during the menstrual cycle. Fertil Steril 1996;65:746-749.
Janus CL, Wiczyk HP, Laufer N. Magnetic resonance imaging of the menstrual cycle. Magn
Reson Imaging 1988; 6: 669–674.
Jensen MP, Karoly P, Braver S. The measurement of clinical pain intensity: a comparison of
six methods. Pain 1986 Oct;27(1):117-26.
Jurkovic D. Three-dimensional ultrasound in gynecology: a critical evaluation. Ultrasound
Obstet Gynecol 2002;19:109-117.
168
Koff AK. Development of the vagina in the human fetus. Contrib Embryol 1933; 24: 59-91.
Kremer C, Duffy S, Moroney M. Patient satisfaction with outpatient hysteroscopy versus day
case hysteroscopy: randomised controlled trial. BMJ 2000 Jan 29;320(7230):279-82.
Kurman RJ. Mesenchymal Tumors Of The Uterus. 4th edn. New York: Springer Verlag;
1994.
Lara-Muñoz C, De Leon SP, Feinstein AR, Puente A, Wells CK. Comparison of three rating
scales for measuring subjective phenomena in clinical research. I. Use of experimentally
controlled auditory stimuli. Arch Med Res 2004 Jan-Feb;35(1):43-8.
Lee NC, Dicker RC, Rubin GL & Ory HW. Confirmation Of The Preoperative Diagnoses For
Hysterectomy. Am J Obstet Gynecol 1984; 150(3): 283-287.
Lee JK, Gersell DM, Balfe DM, Worthington JL, Picus D, Gapp G. The uterus: in vitro MR-
anatomic correlation of normal and abnormal specimens. Radiology 1985; 157: 175-9.
Lei ZM, Rao CV, Lincoln SR, Ackermann DM. Increased expression of human chorionic
gonadotropin/human luteinizing hormone receptors in adenomyosis. J Clin Endocrinol Metab
1993 Mar;76(3):763-8.
Lewinski H. Beitrag Zur Frage Der Adenomyosis. Zentralbl Gynakol 1931; 55: 2163.
Leyendecker G, Kunz G, Kissler S, Wildt L. Adenomyosis and reproduction. Best Prac Res
Clin Obstet Gynaecol 2006; 20: 523-546.
170
Lieng M, Qvigstad E, Dahl GF, Istre O. Flow differences between endometrial polyps and
cancer: a prospective study using intravenous contrast-enhanced transvaginal color flow
Doppler and three-dimensional power Doppler ultrasound. Ultrasound Obstet Gynecol 2008
Dec;32(7):935-40.
Lin J, Lei ZM, Lojun S, Rao CV, Satyaswaroop PG, Day TG. Increased expression of
luteinizing hormone/human chorionic gonadotropin receptor gene in human endometrial
carcinomas. J Clin Endocrinol Metab 1994 Nov;79(5):1483-91.
Lo KW, Yuen PM. The role of outpatient diagnostic hysteroscopy in identifying anatomic
pathology and histopathology in the endometrial cavity. J Am Assoc Gynecol Laparosc 2000
Aug;7(3):381-5.
Lyons EA, Taylor PJ, Zheng XH, Ballard G, Levi CS, Kredentser JV. Characterization of
subendometrial myometrial contractions throughout the menstrual cycle in normal fertile
women. Fertil Steril 1991; 55: 771-4.
Mannion AF, Balagué F, Pellisé F, Cedraschi C. Pain measurement in patients with low back
pain. Nat Clin Pract Rheumatol 2007 Nov;3(11):610-8.
Mansour GM, El-Lamie IK, El-Kady MA, El-Mekkawi SF, Laban M, Abou-Gabal AI.
Endometrial volume as predictor of malignancy in women with postmenopausal bleeding. Int
J Gynaecol Obstet 2007 Dec;99(3):206-10.
171
McNay M, Fleming J. Forty years of obstetric ultrasound 1957–1997: from A-scope to three
dimensions. Ultrasound Med Biol 1999;25:3–56.
Miller NF, Ludovici PP, Dontas E. The problem of the uterine fibroid. Am J Obstet Gynecol
1953 Oct;66(4):734-46.
Munro MG, Critchley HO, Fraser IS; FIGO Menstrual Disorders Working Group. The FIGO
classification of causes of abnormal uterine bleeding in the reproductive years. Fertil Steril
2011 Jun;95(7):2204-8.
Munsick RA. Dickinson's sign: focal uterine softening in early pregnancy and its correlation
with the placental site. Am J Obstet Gynecol 1985 Aug 1;152(7 Pt 1):799-802.
Nasri MN, Shepherd JH, Setchell ME, Lowe DG, Chard T. The role of vaginal scan in
measurement of endometrial thickness in postmenopausal women. Br J Obstet Gynaecol
1991 May;98(5):470-5
National Institute for Health and Clinical Excellence. Referral guidelines for suspected
cancer. 2005. www.nice.org.uk/nicemedia/pdf/cg027niceguideline.pdf.
National Institute for Health and Care Excellence Heavy menstrual bleeding (CG44).
London: National Institute for Health and Care Excellence;2007.
Office for National Statistics. Cancer registration statistics England 2007. 2009.
www.statistics.gov.uk/StatBase/Product.asp?vlnk=7720.
O’Rahilly R. Prenatal human development. In Wynn R (ed.). Biology of the Uterus. New
York: Plenum Press; 1977, 35-57.
Outwater EK, Siegelman ES & Van Deerlin V. Adenomyosis: current concepts and imaging
considerations. Am J Roentgenol 1998; 170: 437- 441.
Panganamamula UR, Harmanli OH, Isik-Akbay EF, Grotegut CA, Dandolu V, Gaughan JP.
Is prior uterine surgery a risk factor for adenomyosis? Obstet Gynecol 2004;104:1034–1038.
Parazzini F, Vercellini P, Panazza S, Chatenoud L, Oldani S, Crosignani PG. Risk factors for
adenomyosis. Hum Reprod 1997;12:1275–1279.
Peric H, Fraser IS. The symptomatology of adenomyosis. Best Practice & Research Clinical
Obstetrics and Gynaecology 2006 ;20(4):547-555.
Raine-Fenning NJ, Campbell BK, Kendall NR, Clewes JS, Johnson IR. Quantifying the
changes in endometrial vascularity throughout the normal menstrual cycle with three-
dimensional power Doppler angiography. Hum Reprod 2004; 19: 330–338.
174
Rees MC, Dunnill MS, Anderson AB, Turnbull AC. Quantitative uterine histology during the
menstrual cycle in relation to measured menstrual blood loss. BJOG 1984; 91(7): 662-6.
Reinhold C, Atri M, Mehio A, Zakarian R, Aldis AE, Bret PM. Diffuse Uterine
Adenomyosis:Morphologic Criteria And Diagnostic Accuracy Of Endovaginal Sonography.
Radiology 1995; 197(3):609-614.
Roguin A. Christian Johann Doppler: the man behind the effect. Br J Radiol 2002
Jul;75(895):615-9.
Seidman JD, Kjerulff KH. Pathologic findings from the Maryland Women's Health Study:
practice patterns in the diagnosis of adenomyosis. Int J Gynecol Pathol 1996 Jul;15(3):217-
21.
Sheth S, Hamper UM, McCollum ME, Caskey CI, Rosenshein NB, Kurman RJ. Endometrial
blood flow analysis in postmenopausal women: can it help differentiate benign from
malignant causes of endometrial thickening? Radiology 1995 Jun;195(3):661-5.
Siedler D, Laing FC, Jeffrey RB, Wing VW. Uterine Adenomyosis. A Difficult Sonographic
Diagnosis. J Ultrasound Med 1987; 6(7): 345-349.
Silverberg SG, Kurman RJ, Nogales F, Mutter GL, Kubik-Huch RA, Tavassoli FA. Tumors
of the uterine corpus. In: Tavassoli FA, Devilee P, editors. Pathology and genetics of tumours
of the breast and female genital organs. World Health Organization classification of tumours.
Lyon, France: IARC Press; 2003. p. 217-32.
Tahir MM, Bigrigg MA, Browning JJ, Brookes ST, Smith PA. A randomised controlled trial
comparing transvaginal ultrasound, outpatient hysteroscopy and endometrial biopsy with
inpatient hysteroscopy and curettage. Br J Obstet Gynaecol 1999 Dec;106(12):1259-64.
Tamaya T, Motoyama T, Ohono Y, Ide N, Tsurusaki T & Okada H. Steroid receptor levels
and histology of endometriosis and adenomyosis. Fertil Steril 1979; 31: 396-400.
Tetlow RL, Richmond I, Manton DJ, Greenman J, Turnbull LW, Killick SR. Histological
analysis of the uterine junctional zone as seen by transvaginal ultrasound. Ultrasound Obstet
Gynecol 1999;14:188-193.
Thalluri V, Tremellen KP. Ultrasound diagnosed adenomyosis has a negative impact on
successful implantation following GnRH antagonist IVF treatment. Hum Reprod 2012
Dec;27(12):3487-92.
Turnbull LW, Manton DJ, Horsman A, Killick SR. Magnetic resonance imaging changes in
uterine zonal anatomy during a conception cycle. Br J Obstet Gynaecol 1995; 102: 330-331.
Verguts J, Lieveke A, Bourne T, Timmerman D. Normative data for uterine size according to
age and gravidity and the possible role of the classical “golden ratio” for defining optimal
uterine proportions. Ultrasound Obstet Gynecol 2013:10. doi: 10.1002/uog.12538. [Epub
ahead of print]
Verma SK, Lev-Toaff AS, Baltarowich OH, Bergin D, Verma M, Mitchell DG.
Adenomyosis: Sonohysterography with MRI correlation. Am J Roent 2009;192:1112-1116.
Wang PH, Shyong WY, Lin CH, Chen YJ, Li YF, Chao HT & Yuan CC. Analysis of genetic
aberrations in uterine adenomyosis using comparative genomic hybridization. Anal Quant
Cytol Histol 2002; 24: 1-6.
Wegienka G, Baird DD, Hertz-Picciotto I, Harlow SD, Steege JF, Hill MC, Schectman JM,
Hartmann KE. Self-reported heavy bleeding associated with uterine leiomyomata. Obstet
Gynecol 2003 Mar;101(3):431-7.
Weiss G, Maseelall P, Schott LL, Brockwell SE, Schocken M, Johnston JM. Adenomyosis a
variant, not a disease? Evidence from hysterectomized menopausal women in the Study of
Women’s Health across the Nation (SWAN). Fertil Steril 2009;1:201–206.
Wetzstein R, Renn KH. Zur Anordnung der glatten Muskulatur im Corpus uteri des
Menschen. Verh Anat Ges 1970;64:461-468.
178
Whitted R, Verma U, Voigl B, Mendez L. Does cesarean delivery increase the prevalence of
adenomyosis? A retrospective review. Obstet Gynecol 2000;95:S83.
Wiczyk HP, Janus CL, Richards CJ, Graf MJ, Gendal ES, Rabinowitz JG, Laufer N.
Comparison of magnetic resonance imaging and ultrasound in evaluating follicular and
endometrial development throughout the normal cycle. Fertil Steril 1988; 49:969–972.
Willms AB, Brown ED, Kettritz UI, Kuller JA, Semelka RC. Anatomic changes in the pelvis
after uncomplicated vaginal delivery: evaluation with serial MR imaging. Radiology 1995;
195:91–94
Wolf DM, Spataro RF. The current state of hysterosalpingography. Radiographics 1988
Nov;8(6):1041-58.
Woodfield CA, Siegelman ES, Coleman BG, Torigian DA. CT features of adenomyosis. Eur
J Radiol 2009 Dec;72(3):464-9.
Yazbek J, Ameye L, Testa AC, Valentin L, Timmerman D, Holland TK, Van Holsbeke C,
Jurkovic D. Confidence of expert ultrasound operators in making a diagnosis of adnexal
tumor: effect on diagnostic accuracy and interobserver agreement.Ultrasound Obstet Gynecol
2010; 35: 89–93.
Appendix
Work stemming from, but not included in this thesis, resulted in the following publication: