High Frequency BJT Model & Cascode BJT Amplifier: ESE319 Introduction To Microelectronics
High Frequency BJT Model & Cascode BJT Amplifier: ESE319 Introduction To Microelectronics
Why!
Because of internal transistor
capacitances that we have ignored
in our low frequency and mid-band models.
f Hz
fL f H (log scale)
BW = f H − f L≈ f H GBP=∣ Av−mid∣ BW
Kenneth R. Laker, update 01Oct14 KRL 3
ESE319 Introduction to Microelectronics
C
vbe
C =C de C je≈C de 2 C je 0 ≈C de
C0 C je0
C = C je = IC
V CB
m
V EB
m
C de=g m F = F Note C= i dt
1 1 VT dv
0cb 0eb C ≈2 C 0
Cde = base-charging (diffusion) cap
Non-linear, voltage controlled
m = junction grading coefficient 0.2 to 0.5) τF = forward-base transit time
Kenneth R. Laker, update 01Oct14 KRL 5
ESE319 Introduction to Microelectronics
Cπ
Cµ
C
Multisim Simulation
C
2 pF
RS
50 b c vo
RB v be
vs r C g m v be RC Mid-band gain @ 100 kHz
50 k 2.5 k 12 pF 40 mS v be 5.1 k
e
vs RB r C v be g m v be RC
Miller's Theorem 1
Z=
C j 2 f C
RS b c I Z −I
vo
+ +
i v -i
vs RB r C be g m v be RC <=> V be Vo
Av−mid V be
- -
e
R B∥r ≫ R S Vo
=A v−mid =−g m RC
V be
v o vo
Av−mid = ≈ =−g m RC
v s v be
Miller's Theorem
I =I1 Z I 2 =−I I 1= I I 2 =−I
+ + + +
V1 Av V 1 V2 <=> V1 Z1 Z2 V 2 =Av V 1
- - - -
V 1−V 2 V 1− Av V 1 V1 V1 V1 Z
Z 1= = =
I = I 1=
Z
=
Z
=
Z
=> I1 I 1− Av
1− Av 1
Z 1=
1 j 2 f C 1− Av
V 2− V 2
V 2 −V 1 Av V2 V2 V2 Z
−I =I 2= = = Z 2= = = ≈ Z if A >> 1
Z Z Z => I 2 −I 1 v
1 1−
1− Av
Av Ignored in
V2 V2 1
Z 2= = ≈ practical
I 2 −I j 2 f C circuits
RS b V be c I R =−g m V be I C
Vo C
IR or
V be V o =I R RC =−g m V be I C RC
C
Vs RB r C g m V be RC C
where
e 1
IC =V be−V o
j 2 f C
1g m RC j2 f C v be
IR C
IC = V be Vs RB r C g m V be RC
1 j2 f R C C
e
1g m RC j2 f C
IC = V be ≈ 1 g m R C j2 f C V be = j2 f C eq V be
1 j2 f R C C
2 f RC C ≪1
IC IC
C C
RS
b V be c Vo
RS b V be c Vo
IR C
IR C
Vs RB r C g m V be RC Vs RB r g m V be
C RC
C C eq
e e
C eq =1− Av C =1 g m RC C
1g m RC =10.040⋅5100=205
C eq =205⋅2 pF ≈410 pF
Vs RB r v be g m V be '
C ro RC R L R L =r o∥ R C∥R L
e
C
R B∥r '
'
V =V s
s
RS b V be IC c Vo
R B∥r R S
'
R S =r∥ RB∥R S '
RB r v be g m V be
Vs C '
RL
e
Thevenin Equiv.
Kenneth R. Laker, update 01Oct14 KRL 17
ESE319 Introduction to Microelectronics
Simplified HF Model
C
'
R
'
IC R L =r o∥ R C∥R L
S b c Vo '
V be R S =r∥ RB∥R S
'
R B∥r
'
Vs RB r C g m V be ' V s =V s
RL R B∥r R S
e Miller's Theorem
'
RS b c Vo
IC V be
g m V be
RB Cr
'
Vs C eq '
RL
C eq =1g m RC C e
C tot =C C eq C tot
Kenneth R. Laker, update 01Oct14 KRL 18
ESE319 Introduction to Microelectronics
Simplified HF Model
'
RS
b c Vo '
IC
V be R L =r o∥ R C∥R L
g m V be '
RB Cr R S =r∥ RB∥R S
'
V s C eq '
RL
'
RB∥r
e V s =V s ≈V s
R B∥r R S
C tot
C tot =C 1g m R C C
V be =
1/ j2 f C tot
1/ j2 f C tot R S '
V s' ∣∣
Vo
Vs
dB
' '
Vo −g m R L −g m R L
A v f = ≈ =
V s 1 j 2 f C tot R'S f
1 j
fH
' 1
Av−mid =−g m R L and H f =
2 C tot R'S
Kenneth R. Laker, update 01Oct14 KRL 19
ESE319 Introduction to Microelectronics
Multisim Simulation
C
2 pF
RS
50 b c vo
RB r v be g m v be
vs C RC
50 k 2.5 k 12 pF 40 mS v be 5.1 k Mid-band gain @ 100 kHz
e
gm V b
short-circuit
current
I b=
1
r
j2 f C C V b @ node C: I c = g m − j2 f C V b
(ignore ro)
Leads to a new relationship between the Ib and Ic:
Ic g m − j2 f C
β(jf) → hfe jf = =
Ib 1
j2 f C C
r
Kenneth R. Laker, update 01Oct14 KRL 22
ESE319 Introduction to Microelectronics
jf =
1− j2 f
gm
C
=
g m r 1− j
f
fz g m r =
1− j
f
fz
f dB
20log10
1 j2 f C C r
1 j
f
f 1 j
f
f f
f f z
1 j
f
f 1 j
f
f
Kenneth R. Laker, update 01Oct14 KRL 25
ESE319 Introduction to Microelectronics
1 j
f
f 1 j
f
f
f
And for f / f >>1 (but < f / f z ): ∣ jf ∣≈ =
f
f
f
f
Unity gain bandwidth: ∣ jf ∣=1⇒ ¿ ¿| f = f =1⇒ f T = f
f T
f (MHz)
fβ fT
Multisim Simulation
Vb v-pi Ic
1 Ohm
Ib
Vc
1 Ohm
v-pi
mS
Simulation Results
Theory:
Low frequency |β(jf)| f T = f =455 MHz
Important for
Current Gain (AI) High (β) low (about 1)
Cascode
Input Resistance High (RB||βRE) low (re)
Q1 i e1 E1
i E1 B2
CE Stage E1 i c2 R in1 =low
R2 i C2 V CC i b2 C2
RRs S Cin i B2 C2 RRs S vvbe2 g m vv 2
RC
Q2 r2 2
m2 be2
B2 vs
i E2
vs R3
E2 E2
RE CE RB i e2 RE
Stage
=R∥R
RRB B=R 2∥R 3
2 3
RS
'
b
IC V be
c Vo
∣∣
Vo
Vs
dB
g m V be
RB Cr
'
Vs C eq '
RL
e
C tot
1 2
4. Given RE, IE2 and VBE2 = 0.7 V calc. R3.
I E2 =I C2=I E1= I C1 ⇒ I C1= I E2≈ I E2
5. Need to also determine R1 & R2.
R1 VCC-ICRE-
RC I R
C C
V C1
1.7
Q1 Q1
VVCE1
CE1
=V RC−I
=ICCC CR
–1–I R−V CE2 −I C R E
C CE
1.0
Q2 =12 V Q2 V =1 =12 V
CE2
ICRE+0.
RE
7 ICR
E