Si5350C B
Si5350C B
Description
The Si5350C generates free-running and/or synchronized clocks selectable on each
of its outputs. A dual PLL + high resolution MultiSynthTM fractional divider
architecture enables this user-definable custom timing device to generate any of the
specified output frequencies at any of its outputs. This allows the Si5350C to replace
a combination of crystals, crystal oscillators, and synchronized clocks (PLL). Custom
pin-controlled Si5350C devices can be requested using the ClockBuilder web-based
part number utility (www.silabs.com/ClockBuilder).
20-QFN
Multi
Synth CLK0
0
XA
Multi
Synth CLK1
10-MSOP XB
OSC PLLA 1
Multi
Synth CLK2
XA 2
Multi PLLB
Synth CLK0 Multi
OSC 0 Synth CLK3
PLLA CLKIN 3
XB Multi
Synth CLK1 Multi
1 Synth CLK4
PLLB 4
Multi
CLKIN Synth CLK2 P0 Multi
2 Synth CLK5
5
P1 Control
Multi
Control Logic Synth CLK6
P0 P2
Logic 6
Si5350C P3 Multi
CLK7
Synth
7
Si5350C
2 Rev. 0.75
Si5350C-B
TABLE O F C ONTENTS
Section Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.1. Si5350C Replaces Multiple Clocks and XOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.2. Applying a Reference Clock at XTAL Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.3. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4. Configuring the Si5350C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
4.1. Crystal Inputs (XA, XB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. External Clock Input Pin (CLKIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3. Output Clocks (CLK0–CLK7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4. Programmable Control Pins (P0–P3) Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1. 20-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2. 10-pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1. 20-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
7.2. 10-Pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Rev. 0.75 3
Si5350C-B
1. Electrical Specifications
Table 2. DC Characteristics
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Enabled 3 outputs — 20 35 mA
IP0 Pin P0 — — 30 µA
4 Rev. 0.75
Si5350C-B
Table 3. AC Characteristics
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85°C)
Rev. 0.75 5
Si5350C-B
6 Rev. 0.75
Si5350C-B
Rev. 0.75 7
Si5350C-B
2. Typical Application
2.1. Si5350C Replaces Multiple Clocks and XOs
The Si5350C is a clock generation device that provides both synchronous and free-running clocks for applications
where power, board size, and cost are critical. An example application is shown in Figure 1. Any other combination
is possible.
Free-running
Clocks
XA CLK0 Ethernet
Multi 125 MHz PHY
Synth
0
27 MHz OSC PLL
Multi CLK1 48 MHz
XB USB
Synth
1 Controller
VIN = 1 VPP
Multi
25/27 MHz Synth
XA PLLA
0
0.1 µF OSC Multi
Synth
1
XB PLLB
Multi
Note: Float the XB input while driving Synth
N
the XA input with a clock
8 Rev. 0.75
Si5350C-B
2.3. HCSL Compatible Outputs
The Si5351 can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is
set to 2.5 V (i.e., VDDOA must be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on).
The circuit in the figure below must be applied to each of the two clocks used, and one of the clocks in the pair
must also be inverted to generate a differential pair.
ZO = 50 R1
Multi
PLLA Synth
0 0 511
Multi
Synth Note: The complementary -180 degree
N
out of phase output clock is generated
using the INV function
Rev. 0.75 9
Si5350C-B
3. Functional Description
The architecture of the Si5350C generates up to eight non-integer-related frequencies in any combination of free-
running and/or synchronous clocks. A block diagram of both the 3-output and the 8-output versions are shown in
Figure 4. Free-running clocks are generated using the on-chip oscillator + PLL, and the clock input pin (CLKIN)
provides an external input reference for the synchronous clocks. Each MultiSynthTM is configurable with two
frequencies (F1_x, F2_x). This allows a pin controlled glitchless frequency change at each output (CLK0 to CLK5).
VDD VDDO
10-MSOP
MultiSynth 0
XA PLL F1_0
OSC R0 CLK0
A F2_0
XB FS
PLL MultiSynth 1
CLKIN B F1_1
R1 CLK1
F2_1
FS
MultiSynth 2
Control F1_2
P0 Logic R2 CLK2
F2_2
FS
MultiSynth 3
GND
VDD
20-QFN
MultiSynth 0 VDDOA
F1_0
R0
XA PLL F2_0 CLK0
OSC FS
A
XB MultiSynth 1
F1_1 CLK1
PLL R1
CLKIN B F2_1
FS
MultiSynth 2 VDDOB
F1_2
R2
F2_2
CLK2
FS
MultiSynth 3
F1_3 CLK3
R3
F2_3
FS
MultiSynth 4 VDDOC
F1_4
R4
F2_4
CLK4
FS
MultiSynth 5
P0 F1_5 CLK5
R5
F2_5
P1 FS
Control
Logic
P2 MultiSynth 6
VDDOD
F1_6 R6
P3 CLK6
MultiSynth 7 CLK7
F1_7 R7
GND
10 Rev. 0.75
Si5350C-B
4. Configuring the Si5350C
The Si5350C is a factory-programmed custom clock generator that is user definable with a simple to use web-
based utility (www.silabs.com/ClockBuilder). The ClockBuilder utility provides a simple graphical interface that
allows the user to enter input and output frequencies along with other custom features as described in the following
sections. All synthesis calculations are automatically performed by ClockBuilder to ensure an optimum
configuration. A unique part number is assigned to each custom configuration.
CL XA
XB
CL
Optional additional CL CL Optional internal
external load load capacitors
capacitors 6 pF, 8 pF, 10 pF
(< 2 pF)
Rev. 0.75 11
Si5350C-B
An optional spread spectrum enable pin (SSEN) is configurable to enable or disable the spread spectrum feature.
See “4.4.1. Spread Spectrum Enable (SSEN)” for details.
Reduced
Center
Am plitude
Frequency
and EM I
Am plitude
fc fc
No Spread
D ow n Spread
Spectrum
12 Rev. 0.75
Si5350C-B
27 MHz
FS0
Free-running Frequency XA XB
Bit Level
0 F1_0: 74.25 MHz
Free-running Clock
1 74.25 74.25
F2_0: MHz FS0 74.25 MHz or MHz
1.001 CLK0 1.001
Si5350C Video/Audio
FS1 Synchronous Clock
FS1 Processor
Synchronous Frequency CLK1 24.576 MHz or 22.5792 MHz
Bit Level
0 F1_1: 24.576 MHz 54MHz
CLKIN
1 F2_1: 22.5792 MHz
Figure 7. Example of Generating Two Clock Frequencies from the Same Clock Output
Up to two frequency select pins are available on the Si5350C. Each of the frequency select pins can be linked to
any of the clock outputs as shown in Figure 8. For example, FS_0 can be linked to control clock frequency
selection on CLK0, CLK3, and CLK5; FS_1 can be used to control clock frequency selection on CLK1, CLK2, and
CLK4. Any other combination is also possible.
The Si5350C uses control circuitry to ensure that frequency changes are glitchless. This ensures that the clock
always completes its last cycle before starting a new clock cycle of a different frequency.
FS
MultiSynth 1 CLK1 New frequency starts
FS_0 Output Frequency FS_0 at its leading edge
0 F1_0, F1_3, F1_5 FS
MultiSynth 2 CLK2
1 F2_0, F2_3, F2_5
FS Frequency_A Frequency_B Frequency_A
MultiSynth 3 CLK3
FS
CLKx
MultiSynth 4 CLK4
FS_1
FS_1 Output Frequency
0 F1_1, F1_2, F1_4 FS
MultiSynth 5 CLK5
1 F2_1, F2_2, F2_4 Full cycle completes before
CLK6 changing to a new frequency
Cannot be controlled
by FS pins
CLK7
Rev. 0.75 13
Si5350C-B
4.4.4. Output Enable (OEB_0, OEB_1, OEB_2)
Up to three output enable pins (OEB_0/1/2) are available on the Si5350C. Similar to the FS pins, each OEB pin
can be linked to any of the output clocks. In the example shown in Figure 9, OEB_0 is linked to control CLK0,
CLK3, and CLK5; OEB_1 is linked to control CLK6 and CLK7, and OEB_2 is linked to control CLK1, CLK2, CLK4,
and CLK5. Any other combination is also possible. If more than one OEB pin is linked to the same CLK output, the
pin forcing a disable state will be dominant. Clock outputs are enabled when the OEB pin is held low.
The output enable control circuitry ensures glitchless operation by starting the output clock cycle on the first leading
edge after OEB is asserted (OEB = low). When OEB is released (OEB = high), the clock is allowed to complete its
full clock cycle before going into a disabled state. This is shown in Figure 9. When disabled, the output state is
configurable as disabled high, disabled low, or disabled in high-impedance.
CLK3
OEB_1 Output State OEB_1 OEB CLKx
0 CLK Enabled
1 CLK Disabled CLK4
OEB OEBx
CLK5
OEB
14 Rev. 0.75
Si5350C-B
4.5.4. External Crystal Load Capacitors
The Si5350C provides the option of using internal and external crystal load capacitors. If external load capacitors
are used, they should be placed as close to the XA/XB pads as possible. See “AN551: Crystal Selection Guide” for
more details.
4.5.5. Unused Pins
Unused control pins (P0–P3) should be tied to GND.
Unused CLKIN pin should be tied to GND.
Unused XA/XB pins should be left floating. Refer to "2.2. Applying a Reference Clock at XTAL Input" on page 8
when using XA as a clock input pin.
Unused output pins (CLK0–CLK7) should be left unconnected.
4.5.6. Trace Characteristics
The Si5350C features various output drive strength settings. It is recommended to configure the trace
characteristics as shown in Figure 10 when the default high output drive setting is used.
ZO = 50 ohms
R = 0 ohms
CLK
(Optional resistor for
EMI management)
Length = No Restrictions
Figure 10. Recommended Trace Characteristics with Default Drive Strength Setting
Note: Jitter is only specified at default high drive strength.
Rev. 0.75 15
Si5350C-B
5. Pin Descriptions
5.1. 20-pin QFN
18 VDDOC
19 CLK4
17 CLK5
16 CLK6
20 VDD
XA 1 15 CLK7
XB 2 14 VDDOD
GND
P0 3 PAD 13 CLK0
P1 4 12 CLK1
P2 5 11 VDDOA
VDDOB 10
7
9
8
6
CLKIN
CLK3
P3
CLK2
Figure 11. Si5350C 20-QFN Top View
16 Rev. 0.75
Si5350C-B
5.2. 10-pin MSOP
VDD 1 10 CLK0
XA 2 9 CLK1
XB 3 8 GND
P0 4 7 VDDO
CLKIN 5 6 CLK2
Rev. 0.75 17
Si5350C-B
6. Ordering Information
Factory-programmed Si5350C devices can be requested using the ClockBuilder web-based utility available at:
www.silabs.com/ClockBuilder. A unique part number is assigned to each custom configuration as indicated in
Figure 13.
Blank = Bulk
R = Tape and Reel
GT =10-MSOP
GM =20-QFN
B = Product Revision B
XXXXX = Unique Custom Code . A five character code will be
assigned for each unique custom configuration
18 Rev. 0.75
Si5350C-B
7. Package Outline
7.1. 20-Pin QFN
Rev. 0.75 19
Si5350C-B
7.2. 10-Pin MSOP
20 Rev. 0.75
Si5350C-B
NOTES:
Rev. 0.75 21
Si5350C-B
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
22 Rev. 0.75