0% found this document useful (0 votes)
301 views9 pages

SDCDSC

This document summarizes the design of footings and a strap beam for a multi-story building. Key details include: the footing designs for columns A and B, including dimensions, reinforcement requirements and thickness checks; reinforcement design for the strap beam considering flexure and shear; and relevant code provisions for shear capacity and reinforcement ratios.

Uploaded by

Anish Neupane
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
301 views9 pages

SDCDSC

This document summarizes the design of footings and a strap beam for a multi-story building. Key details include: the footing designs for columns A and B, including dimensions, reinforcement requirements and thickness checks; reinforcement design for the strap beam considering flexure and shear; and relevant code provisions for shear capacity and reinforcement ratios.

Uploaded by

Anish Neupane
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 9

P1 500kN P2 1000kN

0.3m 5m
qa 20 200 kN/m3 col1 300.0mm X 300.0mm
gc 2.5 25 kN/m3 col2 400.0mm X 400.0mm
gs 1.8 18 kN/m3
fck 15 N/mm2 fy 415 N/mm2
cover 50 mm
dia 20 mm
Footing Design Taking moment about line P2
Eccentricity,e= 0.90m R1= 609.756kN R2= 890.244kN
For footing A
L1= 2.4m Overall thickness of footing, D 600 mm
B1=R1/ (qa-(gc-gs)D)L1 1.298m say 1.30m

For footing B
Assume square footing size L2 Thus, provide
L2^2=R2/(qa-(gc-gs)D)L1 ### L2= 2.132m L2= 2.200m B2=

Analysis of footing
qu1=R1*1.5/L1*1m ### qu2=R2*1.5/L2*1m ###

Thickness of footing
i. Wide beam shear
For footingA
Assume Pt 0.2 so from table IS456, tc= 0.32 32 t/m x=
Assume in direction of B1, width of strap beam (b) is 500 mm
Shear=tcbd=qu(x-d) Therefore d= 0.2817 m

Assume Pt 0.2 so from table IS456, tc= 0.32 32 t/m2 x=


Assume in direction of B1, width of strap beam (b) is 500 mm
Shear=tcbd=qu(x-d) Therefore d= 0.6727 m >600 So increase depth

Thus increase width of the beam to 700.00mm

Assume Pt 0.3 so from table IS456, tc= 0.38 38 t/m2 x=


Assume in direction of B1, width of strap beam (b) is 700.00mm
Shear=tcbd=qu(x-d) Therefore d= 0.5215 m <600mm depth earlier assumed safe

ii. Two way shear


For column A;
From clause 31.6.3.1 of IS456-2000 Bc=width of column/length of column= 1
ks=Bc+0.5= 1.5 put less than or equal to 1 i.e. 1
tc=ks(0.25)sqrt(fck)(N/mm2)= 0.968245837 N/mm2 96.82458366 t/m2
Critical parameter x d x tc = Pu-qux(critical area - dotted area)
Thus eqn becomes
2(0.15+0.3+d/2 +0.3+ d/2+d/2)xd x96.82=75-38.11(0.3+0.15+ d/2)
d^2 d constant d1 d2
290.47375097 164.291753532 -57.8506098 Thus solving 0.245532773 -0.81113208
So, d= 245.53277254 <600mm depth earlier assumed safe

For column A;
From clause 31.6.3.1 of IS456-2000 Bc=width of column/length of column= 1
ks=Bc+0.5= 1.5 put less than or equal to 1 i.e. 1
tc=ks(0.25)sqrt(fck)(N/mm2)= 0.968245837 N/mm2 96.82458366 t/m2
Critical parameter x d x tc = Pu-qux(critical area - dotted area)
Thus eqn becomes
4(0.4+ d)x d x96.82=150-60.7(0.4+ d)
d^2 d constant d1 d2
387.29833462 215.617781742 -125.720621 Thus solving 0.355747696 -0.91247041
So, d= 355.74769565 <600mm depth earlier assumed safe

Among all the required d values (for wide beam shear and two way shear criteria)
d rqrd= 0.5215 m D reqrd= 581.4736 mm
Dprov= 600 Thus dprov= 550 mm

Reinforcement for flexure for footings


i. Design along the length direction
Compairing the moments at the column faces in both footings A & B
distance at side face on B 0.9 m
M max for footing B= 24.5828714 tm
Mu/bd^2 0.812656906 N/mm2
From table 1 of SP 16,Pt 0.242

ii. Design along the width direction


qu1= ### < ### =qu2
So for design along width direction footing B(qu2) is considered
Mu= 17.071 tm < Mu in longer direction 24.58tm
So,pt= 0.242 i.e. same as reinforcement along longer direction
But from wide beam criteria, Pt 0.3 %
Ast reqrd= 2.145

Design of strap beam


i. Reinforcement for flexure
M max 51.3tm d'/d= 0.1 from table 49 sp16
Mu/bd^2 2.4226682409 N/mm2 Thus pt= 0.83 & pc= 0.12

Ast required on tension face 3195.5 mm2 11 20 3455.7519


Asc required on compression face 462 mm2 4 20 1256.6371

ii. Check for shear


Vmax= 83.2t Tact=Vmax/bd 2.161862528 N/mm2 < M15Tcmax 2.5 N/mm2
Pt prov= 0.897597901
2.200m

400.00mm

850.00mm

750.00mm
75.0t 150.0t

300.0mm 400.0mm

0.3m 2.10m 0.4m 1.1m 1.1m


### ###

83.2t
B E 16.5t F
11.4t D
A H
y= 1.67m G
66.8t
C
63.6t

63.6t = 16.5t
y 2.10m -y
51.3tm

0.00 col face


0.00 0.9
###
### ###
cl. 26.2.1 IS 456:200o pg no 42 cl. 26.2.1 IS 456:200o pg no 43

Table 19
100as/bd M15 M20 M25 M30 M35 M40 and above
<= 0.15 0.28 0.28 0.29 0.29 0.29 0.3
0.25 0.35 0.36 0.36 0.37 0.37 0.38
0.5 0.46 0.48 0.49 0.5 0.5 0.51
0.75 0.54 0.56 0.57 0.59 0.59 0.6
1 0.6 0.62 0.64 0.66 0.61 0.68
1.25 0.64 0.61 0.1 0.11 0.73 0.74
1.5 0.68 0.12 0.14 0.76 0.18 0.79
1.75 0.11 0.75 0.78 0.8 0.82 0.84
2 0.11 0.79 0.82 0.84 0.86 0.88
2.25 0.11 0.81 0.85 0.88 0.9 0.92
2.5 0.11 0.82 0.88 0.91 0.93 0.95
2.75 0.71 0.82 0.9 0.94 0.96 0.98
3 0.71 0.82 0.92 0.96 0.99 1.01
and above

Table 20 M15 M20 M25 M30 M35 M40


Tcmax 2.5 2.8 3.1 3.5 3.7 4

Cl40.2
Overall depth 300 275 250 225 200 175 150
of slab,mm or more or less
k 1 1.05 1.1 1.15 1.2 1.25 1.3
column no
fck M20 row no 2
pt 0.15 1 0.28
0.25 2 0.36
0.50 3 0.48 shear 0.43 0.4345949
0.75 4 0.56 pt #NAME? #NAME?
1.00 5 0.62
1.25 6 0.61
1.50 7 0.12
1.75 8 0.75
2.00 9 0.79
2.25 10 0.81
2.50 11 0.82
2.75 12 0.82
3.00 13 0.82

Overall depth k
300 or more 1 1 2
Interpolation 275 1.05 2 3
127 250 1.1
then 225 1.15
1.3 200 1.2
175 1.25
150 or less 1.3
1 1.5
2
3

You might also like