100% found this document useful (2 votes)
750 views24 pages

Binomial. The.

The document discusses the binomial theorem and its applications. It begins by defining the binomial theorem as the formula used to expand any positive integral power of a binomial expression as a series. It then provides examples of binomial expansions and discusses Pascal's triangle. The key points are: 1) The binomial theorem states that the expansion of (x + y)n is the sum of terms of the form nCrxn-ryr, where nCr are the binomial coefficients. 2) The general term in the expansion is nCrxn-ryr. 3) The theorem was proved by mathematical induction. 4) Applications of the binomial theorem include expansions, finding general and middle terms, and

Uploaded by

parita adhia
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (2 votes)
750 views24 pages

Binomial. The.

The document discusses the binomial theorem and its applications. It begins by defining the binomial theorem as the formula used to expand any positive integral power of a binomial expression as a series. It then provides examples of binomial expansions and discusses Pascal's triangle. The key points are: 1) The binomial theorem states that the expansion of (x + y)n is the sum of terms of the form nCrxn-ryr, where nCr are the binomial coefficients. 2) The general term in the expansion is nCrxn-ryr. 3) The theorem was proved by mathematical induction. 4) Applications of the binomial theorem include expansions, finding general and middle terms, and

Uploaded by

parita adhia
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

MATHEMATICAL INDUCTION & BINOMIAL

FIRST PRINCIPLE OF FINITE INDUCTION:


Suppose that to each n  N there corresponds a proposition (or theorem or formula)
P(n) which is either true or false.
If (i) P(1) is true and
(ii) P (k) is true  P(k + 1) is true  k  N, then P(n) is true for  k  N.

Working Method:
A proof of P(n) by the method of induction involves the following two steps:
Step-1: Show that P(1) is true.
Step-2: Assuming that P(k) is true for some k  N, show that P(k + 1) is true.

Then from the step 1 and 2, it follows that the proposition P(n) holds good  n  N.

ILLUSTRATIONS:
n ( n  1)( 2n  1)
(1) n² = nN
6
(2) 102n1 + 1 is divisible by 11
(3) 72n  42n is divisible by 33
(4) 11n+6 + 122n+9 is divisible by 133
Proof: P(1) = 117 + 1211
= 112 · 115 + 122 · 129 [133 = 112 + 12 = 122 – 11]
= 115 [133 – 12] + 129[133 + 11]
= 133(115 + 129) + 12 · 11[114 – 128]
= 133(115 + 129) –12 · 11[128 – 114]

(5) xn  yn is divisible by x  y where n is a positive integer & is divisible by


x + y if n is even natural number .
n
(6) 22 + 1 ends in the digit 7  n  2 ; n  N .
n
(7)  nCr = 2n for n  1 ; n  N
r 0

(8) If x is not an integral multiple of 2, use mathematical induction to prove that
cos x + cos 2 x + ..... + cos n x = cos n 2 1 x sin nx2 cosec x2 . [JEE’94, 4]
(9) For every natural number n , prove by mathematical induction that
4n + 15 n  1 is divisible by 9 . [REE’94, 6]

Home Work:
n ( n  1)(2n  7)
(1) 1.3 + 2.4 + 3.5 + ...... + n (n + 2) = where n  N.
6
1 1 1 1 n
(2)    .........   where n  N.
2.5 5.8 811
. (3n  1)(3n  2) 6n  4
(3) 3n
2  1 is divisible by 7
(4) 32n + 7 is divisible by 8
(5) n3 + (n + 1)3 + (n + 2)3 is divisible by 9
(6) 5n+3 + 113n+1 is divisible by 17
(7) 52n+1 + 3n+2 2n1 is divisible by 19
(8) 6n+2 + 72n+1 is divisible by 43

Bansal Classes Page # 1


1 1 1 tan (n  1)   tan 
(9)  
cos  cos3 cos  cos5 cos  cos7 
+.... upto n terms = 2 . sin 
 nN

10 n 1  9n  10
(10) 3 + 33 + 333 + ..... + (333.....n times) =  n  N.
27
[Sol. Let P(n) be
10 n 1  9n  10
3 + 33 + 333 +....to n terms = ....(A)
27
Step-I : Let n = 1
Then L.H.S. of (A) = 3 and
10 2  9  10 81
R.H.S. of (A) = = =3
27 27
 (A) is true for n = 1.
Step-II: Suppose P(k) is true,
10 k 1  9k  10
i.e. 3 + 33 + 333 +....to k terms = ....(B)
27
Now 333 .... 3 (3 written k + 1 times)
= 3 × 10k + 3 × 10k – 1 + 3 × 10k – 2 +....+ 3 × 101 + 3 × 100
= 3(10k + 10k – 1 +....+ 101 + 1)
3(10 k 1  1) 3(10 k 1  1)
= = ....(C)
10  1 9
Add 33....3(k + 1 3's) to both sides of (B).
 3 + 33 +....+ 333...(k + 1 terms)
10 k 1  9k  10 3(10 k 1  1)
=  , using (C)
27 9

10 k 1  9k  10  9  10 k 1  9 10 k 1 (1  9)  9(k  1)  10 10 k  2  9(k  1)  10
= = = ....(D)
27 27 27
(D) shows that P(k + 1) is true if P(k) is true.
 Steps I and II show that P(n) is true  n  N. ]
n 4 n 3 11n 2 n
(11)    is a natural number  n  N.
24 4 24 4

Bansal Classes Page # 2


TEACHING NOTES
SYLLABUS:
CBSE: Histroy, statement and proof of the binomial theorem for positive integral indices.
Pascal's triangle, general and middle term in binomial expansion, simple
applications.
AIEEE: Binomial theorem for a positive integral index, general term and middle term,
properties of Binomial coefficients and simple applications.
JEE 2009: Binomial theorem for a positive integral index, properties of binomial coefficients.
BINOMIAL
1 ST LECTURE
(1) Binomial Expression : An algebraic expression consisting of two different terms is
called a Binomial Expression.
1
e.g. (i) x + y (ii) x3 + x2 (iii) x2 +
x2
But x + 3x is not a binomial it is a monomial.
(2) Binomial Theorem : The formula by which any positive integral index (power) of a
binomial expression which can be expanded in the form of a series is known as Binomial
Theorem. (This theorem was given by Newton)

Historical Development:
(x + y)2 = (x + y)(x + y) = x2 + 2xy + y2
(x + y)3 = x3 + 3x2y + 3xy2 + y3
Earlier people used to multiply the brackets to expand the given binomial of known
index. Then came the Pascal's triangle.
(x + y)5 = x5 + x4y + x3y2 + x2y3 + xy4 + y5

(3) Newton's Binomial Theorem Expansion:


(x + y)n = nC0xn + nC1xn – 1 · y + nC2xn – 2 · y2 +.....+ nCrxn – r · yr +.....+ nCn xn – n · yn
T1 = nC0 xn – 0 y0 ; T2 = nC1 xn – 1 y1 ........ etc

Bansal Classes Page # 3


 General term in the expansion of
n
(x + y)n is Tr + 1 = Cr · x n  r · y r  To be remembered.
 Abbreviated form of Binomial theorem is
n
(x + y)n =  n Cr · x n  r · yr
r0

n
Proof: (x + y)n =  n Cr x n r y r
r 0

P(1) is true (verify) k


Let P(k) be true i.e. (x + y)k =  k Cr x k r y r is true
r 0
k 1
To prove P(k + 1) is true i.e. (x + y)k + 1 =  k1C r x k1r y r
r 0

k 1
R.H.S. =  ( k Cr  k C r1) x k1r yr
r 0

 k 1   k 1 
x   k C r x k  r y r   y   k C r 1x k  ( r 1) y r 1 
   
 r 0   r 0 
x P(k)  + *
(for the 1st bracket kCk + 1 = 0 and for 2nd bracket kCr – 1 = 0 for r = 0)
* Let r–1=t
 k 
y   k C t x k  t y t  = y P(k ) 
 
 t 1 
 R.H.S. = (x + y)P(k) = (x + y)(x + y)k = (x + y)k + 1 = L.H.S. Hence proved.]
(4) Observations / General highlights of Binomial Theorem :
(i) Number of terms in the expansion of (x + y)n is (n + 1) i.e. one more than the index.
or we can also say it using beggar method n coins and 2 beggars.
 n + 1C  (n + 1) times.
1
Find the number of terms in the expansion of (x + y + z)8;
[Hint: 8 + 2C2 = 10C2 = 45 Ans. ]
(ii) Sum of the indices of 'x' and 'y' in each term in the expansion of (x + y)n is 'n'.
(iii) nC nC nC
..........nCn are called binomial coefficients or combinatorial coefficients
0, 1, 2,
and may be simply written as C0, C1, C2, ....... Cn.
(x + y)n = nC0 xn y0 + nC1 xn – 1 y + nC2 xn – 2 y2 + ...... + nCn xn – n yn.
Find the sum of all the combinatorial coefficient.
i.e. nC0 + nC1 + nC2 + ...... + nCn = 2n.
Put x = 1 and y = 1 to get sum of all the binomial coefficient.
In (x + 2y)2 find the sum of all the coefficients.
(x + 2y)2 = x2 + 4xy + 4y2
 sum of all coefficient = 1 + 4 + 4 = 9
we can also get it by putting x = y = 1
(1 + 2)2 = 9

Bansal Classes Page # 4


 sum of all binomial coefficients in
(x + y)n = 2n  In this case sum of coefficient = sum of binomial coefficient.
(iv) Binomial coefficients of the term equidistant from beginning and end are equal.
(v) coefficient of xr in the expansion of (1 + x)n is nCr and Tr + 1 = nCr xr
 coefficient of (r + 1)th term = coefficient of xr = nCr in the expansion of (1 + x)n.

(6) Important terms in Binomial expansion:


I. General Term: (Tr + 1)th term is called the general term.

Tr 1  n Cr · x n  r · y r
(A) Particular term :
7
 y
(i) Find the fourth term in the expansion of  2 x   .
 2
(ii) 6 2 3
Find the coefficient of x in (1 + 3x + 3x + x ) 15 [Ans. 45C6]
[Sol.
(i) Tr + 1 = nCr xn – r yr n=7
3
7C  y
T3 + 1 = 3 (2x)4    = – 35 × 2x4y3 = – 70x4y3 Ans.
 2
(ii)  Tr + 1 = 45Cr xr
 r=6  coefficient is 45C6 ]

(B) Term independent of x :


6
 2 1 
(i) Find the term involving x3 in  2 x   .
 3x 

 1 
r
(2)6 r
[Sol. Tr + 1 = 6Cr (2x2)6 – r    = 6Cr · · x12 – 2r – r
 3x  (3) r
 12 – 3r = 3;  3r = 9  r = 3
 T4 or the fourth term will have x3

(2)3 20 8 3 160 3


T4 = – 6C
3 ·
· x3 = – x =– x Ans. ]
33 27 27

12
 2 1
(ii) Find the value of the term is independent of x in the expansion of  x   .
 x
r
1
[Sol. Tr + 1 = 12Cr (x2)12 – r   = 12Cr x24 – 3r ;  24 – 3r = 0  r=8
x
 T9 is independent of x
T9 = 12C8 = 495 Ans. ]

Bansal Classes Page # 5


1
(iii) Find the greatest value of the term independent of x in (x sin  + cos )10,   R
x
r 10
10C 1  C5
[Sol. Tr + 1 = r (x sin )10 – r  cos   = 10Cr x10 – 2r (sin )10 – r (cos )r [Ans. ]
x  25
10 – 2r = 0  r = 5 ;
T6 = 10C5 sin5 · cos5 =
10
1 10C 5
C5
T6 = 5 (sin 2) = (sin 2)5
25 2 5

10
C5
 maximum value = Ans. ]
25
(C) Middle Term :
11
 2 1 
(i) Find the middle term in the expansion of  2 x  
 3x 
[Sol. No. of terms = 12
 6th and 7th are the middle terms. Middle term has greatest binomial coefficient.]
7
 1
(ii) Find the middle term / terms in the expansion of  x   .
 x
[Sol. Number of terms is 8
 middle terms are 4th and 5th term
3 4
7C
1
 1 35
T4 = 3 x4  = 35x; T5 = 7C4 x3   = ]
x x x
2n
 1
(iii) Middle term in the expansion of  x   is
 x
( 2n )! 2 · 6 ·10......(4 n  2)
(A*) (B*)
n!· n! n!
n 1 n  2 nn 2n
(C*) · ...... (D*) [1 · 3 · 5 · ..... (2n – 1)]
1 2 n n!
[Sol. Number of terms = 2n + 1
 middle term is (n + 1)th term
1 ( 2n )!
 Tn + 1 = 2nCn xn · = 2nCn =  (A)
xn n!· n!
2n n !(1· 3..........(2n  1))
=  (D)
n ! n!
1· 2 ·3......n ( n  1)(n  2)...(n  n )
=  (C)
n!· n!
2 · 6......(4n  2)
=  (B) ]
n!

Bansal Classes Page # 6


n
 1 
Q.18bin If the coefficients of the first three terms in the expansion of the binomial  x  4 
 2 x

are in A.P. then which of the following statement(s) is/are correct?


(A*) Number of terms in the expansion of the binomial is 9.
35
(B*) Coefficient of middle term is .
8
(C*) There is no term independent of x.
(D*) The number of terms in the expansion with integral powers of 'x' is 3.
n
 1 
[Sol.  x  1 4  [12th, 14-06-2009, P-1]
 2·x 
n 2
1 1
n
C0  x
n n
 C1 x   n 1
· 3 4  nC2
2x
 x 2 ·
4 x
 ......

n n
nC C1 C2
now 0, , are in A.P..
2 4
n n (n  1) n (n  1) n (n  1)
1, , ; n=1+  (n – 1) =  n=8
2 8 8 8
8 r
 1 2 x 1 4  8 r 
hence we have  x  2  ; Tr+1 = 8 C x 4
r
·x 2 · r
  2
8r r
for integral powers of x,  must be an integer
2 4
16  2r  r 16  3r
 must be an integer  r = 0, 4, 8
4 4
 3 terms with integral power  (D)]
(D) General Problems :
(i) Find the value of (1 + 7 7
2 ) + (1 – 2)
[Sol. (1 + 7 7 = 2[7C0 + 7C2 ( 2 )2 + 7C4 ( 2 )4 + 7C6 ( 2 )6 ]
2 ) + (1 – 2)
= 2[1 + 21 · 2 + 35 · 4 + 7 · 8]
= 2[1 + 42 + 140 + 56]
= 2[239] = 478 Ans. ]

(ii) Find the number of divisors of ( 3 + 3)5 – ( 3 – 3)5.


[Sol. ( 3 + 3)5 – ( 3 – 3)5 = 2[5C0 · 35 + 5C2 · 33 ( 3 )2 + 5C4 · 31( 3 )4]
= 2[243 + 10 · 81 + 5 · 27]
= 2[243 + 810 + 135] = 2 × 1188 = 2376 = 23 33 11  32 Ans.]
(iii) In the expansion of (1 + x)10, the coefficient of (4r + 5)th term is equal to the coefficient
of (2r + 1)th term find r.
[Sol. Tp + 1 = 10Cp xb
T4r + 5 = 10 C4r + 4 x4r + 4 ; T2r + 1 = 10 C2r x2r
 10C 10
4r + 4 = C2r
 4r + 4 = 2r 4r + 4 + 2r = 10
2r = – 4 (rejected) 6r = 6  r = 1 ]
Bansal Classes Page # 7
(iv) If the ratio of 7th term from beginning and 7th term from the end in the expansion of
1
(21 3  31 3 )n is equal to then the value of n is equal to
6
(A*) 9 (B) 11 (C) 7 (D) 10
n 6
[Sol. T7 from beginning = nC6 (21/3)n – 6 (3–1/3)6 = nC6 · 2 3 · 3–2
6 n
T7 from end = nC6 · 3 3 · 22.
n 6
n n  6  6 6 6  n
1 C6 · 2 3 ·3 2 1
Ratio = ;  6n
= ; 2 3 ·3 3 = 2–1 · 3–1
6 6
n
C6 · 3 3 · 22

n  12  12  n
=–1 and =–1
3 3
n – 12 = – 3  n = 9 n = – 3 + 12 = 9
 n = 9 Ans. ] n
 1
(v) If the sum of all the coefficients in the expansion of  x   is 4096 then find the
 x
greatest binomial coefficient.
[Sol. 2n = 4096;  n = 12
 No. of terms = 13
 Middle term is 7th and middle term has greatest binomial coefficient i.e. 12C6.]
20
 13 1 
(vi) In the expansion of  4  1 4  which of the following hold good?
 6 
(A*) number of irrational term = 19 (B*) middle term is irrational
(C*) number of rational term = 2 (D) none
r 40  2 r r r 160 11r  r
20 1 3 20  r  1  20
 
[Sol. Tr + 1 = C r ·( 4 )  14 = Cr ·2 3 ·2 4 ·3 4 = 20
Cr ·2 12 ·3 4
6 
160  11r r
for rational terms and – must be integer, r  [0, 20]
12 4
r
for to be an integer r Î {0, 4, 8, 12, 16, 20}
4
160  11r
for to be an integer r  {8, 20}
12
 common solution is r = 8 or r = 20
 only 9th and 21st terms are rational.
 remaining 19th term are irrational and middle term is 11th which is irrational
 A, B, C are all correct. ]
(vii) In the expansion of y = 1 + (1 + x) + (1 + x)2 + ....... (1 + x)19.
if the coefficient of xp is the greatest coefficient then find the value of p (p  N).
(1  x )20  1 (1  x )20  1
[Sol. y = =
1  x 1 x
Now coefficient of xp in y is same as coefficient of xp+1 in (1 + x)20 – 1
Bansal Classes Page # 8
which is 20Cp+1 and it is greatest
 p + 1 = 10  p = 9 Ans. ]
(viii)101/bin If the expansion, (3x8 – 2x6 + x5 + 2x4 – x2 + 1)5  a0 + a1x + a2x2 + ......+a40x40,
20
then the sum  a 2r equals
r 0

(A) 1056 (B*) 528 (C) 508 (D) 1058


[Sol. Put x = 1 a0 + a1 + a2 + ...... + a40 = 45 = 1024 [11th, 25-01-2009, P-2]
Put x = –1 a0 – a1 + a2 + ...... + a40 = 25 = 32
20
2(a0 + a2 + ....... + a40) = 1056;  a 2r = 528 ]
r 0
Note: an + bn is divisible by (a + b) only if n is odd.
e.g. 1125 + 1225 when divided by 23 leaves the remainder zero.
(E) NUMERICALLY GREATEST TERM:
EXAMPLES:
1
(1) If x = find the greatest term in the expansion of (1 + 4x)8.
3
[Sol. Replace x|x|
8
Tr 1 Cr (4 | x |) r (r  1)!(9  r )!| 4 x | 9r 4
Consider = 8 r 1 = = 
Tr Cr 1(4 | x |) r!(8  r )! r 3

Tr 1 36  4r
 Tr = 3r ; Tr + 1  Tr so log as 36 – 4r  3r; 36  7r

The value of r consistent with the inequality.


T2 > T1 ; T3 > T2 ; T4 > T3 ; T5 > T4 ; T6 > T5 ; T7 < T6
 T6 is numerically greatest terms.
5
8C  4
T6 = 5 (4x)5 = 8C
5   ]
 3

(2) If x = 1 find numerically the greatest term in the expansion of (3 – 2x)9.


9
Tr 1 Cr (3)9 r (2x )r (r  1)!(10  r )!| 2 x | (10  r )2 20  2r
[Sol. T = 9 9  r 1 r 1 = = =
r C r 1 (3) (2x ) (9  r )! r! 3 3r 3r

Tr 1 
T according as 20 – 2r 3r
Tr  r
20  5r or 4  r
T2 > T1 ; T3 > T2 ; T4 > T3 ; T5 = T4 ;
T6 < T5
 T4 and T5 are numerically greatest terms. ]

Bansal Classes Page # 9


10
 3x 
(3) If 4th term T4 in the expansion of  2   has maximum numerical value. Find the
 8 

 64   64 
range of 'x'. [Ans. x    ,2    2,  ]
 21   21 
2
 3x 
[Sol. Given (1) T4 > T3 and (2) T4 > T5 : Tr + 1 =10Cr 210 – r  
 8 

3 4
3 | x |  10 3| x | 4!· 6!· 2  3 | x |  4 · 2 3 | x |
Solving (2) 10C (2)7 
 6
 > C4(2)   ;  
3
 8   8  3!· 7! >  8  ; 7 > 8

64 64  64 64
> | x |;  |x|<  x
21 21 21 21

3 2
 3 | x |  10 3| x | 
Solving (1) 10C3 27   > C2 28  
 8   8 

2!·8! 3 | x |
·
3!· 7! 8 > 2  | x | > 2
x  (– , – 2)  (2, )
 64   64 
 (1)  (2) is x    ,  2    2,  ]
 21   21 
n
 x 2
(4) Find the index 'n' of the binomial    if the 9th term of the expansion has
 5 5
numerically the greatest coefficient (n  N). [Ans. n = 12]
n r 2
nC x 2
[Sol. (1) T9 > T10 & (2) T9 > T8 ; Tr + 1 =  
2 5
 
5

n 8 8 n 9 9
nC 
x  2 x  2
(1) 8 5
   > nC9    
  5 5 5
don't consider x.
n! x n! 2 9
 ; put x = 1 to get > 2  9 > 2n – 16  n < 12 · 5
8 ! n  8 ! 5 9 ! n  9  ! 5 n 8
n 8 8 n 9 7 n 9 n 8
x  2 x  2 n  7 2 1
(2) nC  
8 5   > nC7     ; · > 
  5 5 5 8 5 5

2n  14 1
or
8 ·5 > 5 ; 2n – 14 > 8  2n > 22  n > 11

 n = 12 (n  N) ]

Bansal Classes Page # 10


(G) BINOMIAL COEFFICIENT:
If C0, C1, C2, ...... Cn are combinatorial coefficient in the expansion of (1 + x)n : n  N
then
(i) (1 + x)n = C0 + C1x + C2x2 + C3x3 + ........ + Cnxn
Put x = 1
 sum of all the binomial coefficient in the expansion of (1 + x)n is 2n.
C0 + C1 + C2 + ........ + Cn = 2n
(ii) Put x = – 1
C0 – C1 + C2 – C3 + ........ (–1)nCn = 0
 C0 + C2 + C4 + ....... = C1 + C3 + ......... = 2n – 1

EXAMPLES:
(2n)!
(1) Prove that C02  C12  C22  C32  .......  C2n = 2nCn = (To be remembered)
n!n!
[Sol. (1 + x)n = C0 + C1x + C2x2 + .................. + Cnxn
(x + 1)n = C0xn + C1xn–1 + C2xn–2 +........ + Cnx0
coefficient of xn in (1 + x)n × (1 + x)n will give C02  C12  C22  .......  C 2n
and coefficient of xn in (1 + x)2n is also equal to 2nCn
 C02  C12  C22  C32  .......  C2n = 2nC
n Hence proved ]

(2) Find the sum


S = C0C1 + C1C2 + C2C3 + ..........Cn–1Cn.
[Sol. (1 + x)n = C0 + C1x + C2x2 + .......... + Cnxn
(x + 1)n = C0xn + C1xn–1 + C2xn–2 +........ + Cnx0
————————————————————
(1 + x)2n = (C0 + C1x + C2x2 + .... + Cnxn) (C0xn + C1xn–1 + C2xn–2 +.....+ Cnx0)
now C0C1 + C1C2 + C2C3 + ..........Cn–1Cn appears in the coefficient of xn – 1 or
xn + 1 in (1 + x)2n
i.e. it is 2nCn–1 or 2nC
n+1

(2n )! (2n )!
i.e. =
(n  1)!(n  1)! (n  1)!(n  1)! ]

(3) Find the sum of the series (using Fredril Karl Gauss)
S = 1 · nC1 + 2 · nC2 + 3 · nC3 + ........... + (n – 1) nCn – 1 + n · nCn.
[Ans. n · 2n – 1]
[Sol. Method-I:
S = 0 · nC0 + 1 · nC1 + 2 · nC2 + ........... + n · nCn
S = n · nC0 + (n – 1) · nC1 + (n – 2) · nC2 + ........... + 0 · nCn
—————————————————————————
2S = n [ nC0 + nC1 + nC2 + ..........+ nCn ]
n n
 S= ·2  S = n · 2n  S = n · 2n – 1 Ans.
2

Bansal Classes Page # 11


Method-II: Algebraic Method
Tr = r · nCr
n n r · n! n n · (n  1)! n
n
S =  r · Cr =  r!(n  r )! =  (r  1)!(n  r )! =  n 1Cr 1
n
r 1 r 1 r 1 r 1
S = n [ n–1C0 + n–1C1 + n–1C2 + ....... n–1Cn–1 ]
 S = n · 2n – 1 Ans.
Method-III: Calculus Method
(1 + x)n = nC0 + nC1x + nC2x2 + .......... + nCnxn
differentiation of an identity is also an identity
 n(1 + x)n – 1 = nC1 + 2 · nC2x + 3 · nC3x2 + .......... + n · nCnxn – 1
now put x=1
then C1 + 2C2 + 3C3 + .......... + nCn = n · 2n – 1 Ans. ]
(4) Find the sum (Fredril Karl)
S = 1C0 + 2C1 + 3C2 + 4C3 + ...... + (n + 1)Cn. [Ans. (n + 2)2n–1]
[Sol. S = 1C0 + 2C1 + 3C2 + ......+ (n + 1)Cn
S = (n + 1)C0 + nC1 + (n – 1)C2 +.............. + 1Cn
————————————————————
2S = (n + 2) [C0 + C1 + C2 + ....... + Cn]
S = (n + 2)2n – 1
OR consider
(1 + x)n = C0 + C1x + C2x2 + .......... + Cnxn
multiply both sides by x
(1 + x)n · x = C0 x + C1x2 + C2x3 + .......... + Cnxn + 1
and differentiate using product rule
[n(1 + x)n – 1 x + (1 + x)n] = C0 + 2C1x + 3C2x2 + .......... + (n + 1)Cnxn
put x = 1
n  n
C0 + 2C1 + 3C2 + .......... + (n + 1)Cn = n · 2n – 1 + 2n =   1 2 = (n + 2)2n–1 ]
2 
(5) Find the sum (Fredril Karl)
S = 1 nC0 + 3 nC1 + 5 nC2 + .......... + (2n + 1)nCn. [Ans. (n + 1)2n]
[Sol. S = 1 nC0 + 3 nC1 + 5 nC2 + .......... + (2n + 1)nCn
S = (2n + 1)nC0 + (2n – 1)nC1 + (2n – 3)nC2 + .................... + 1 nCn
————————————————————————————
2S = (2n + 2) [ nC0 + nC1 + nC2 + ...... + nCn ]
 S = (n + 1)2n Ans. ]
(6) Find the sum (Fredril Karl)
S = 1( nC0 )2 + 3( nC1 )2 + 5( nC2 )2 + .......... + (2n + 1)( nCn )2.
[Ans. (n + 1)2nCn]
[Sol. S = 1( nC0 )2 + 3( nC1 )2 + 5( nC2 )2 + ..... + (2n + 1)( nCn )2.
S = (2n + 1)( nC0 )2 + (2n – 1) ( nC1 )2 + (2n – 3)( nC2 )2 +...... + 1( nCn )2
———————————————————————————————
2S = (2n + 2)( nC0 )2 + (2n + 2)( nC1 )2 + .............................. + (2n + 2)( nCn )2 ]
S = (n + 1) [ C02  C12  ......  C 2n ]
S = (n + 1)2nCn Ans. ]
Bansal Classes Page # 12
N.C.E.R.T

 C0  C1   C1  C2   C 2  C3   C  Cn 
(7)  ×   ×  × .........×  n 1 
 C   C   C   C 
 0   1   2   n 1 

n nC n n n 1 C n
(n  1)(n  1  r )! n (n  1)
r 1  C r
[Sol. P=  = n r
= = 
r 1
n
Cr 1 r 1 C r 1 r 1 r (n  1  r )! r 1 r

1 1 1 1 ( n  1) n
 P = (n + 1)n     ......   = ]
1 2 3 n n!
n 1 n r
(8) If an =  n then find the value of n .
r 0 Cr r 0 Cr

0 1 2 n
[Sol. S = n
 n
 n
 ........  n
C0 C1 C2 Cn

n n 1 n  2 0
S= n
   ........ 
C0 n C1 n C2 n
Cn
———————————————
n n n n n ·an
2S = n
   ........  ; 2S = n · an  S= Ans. ]
C0 n C1 n C 2 n
Cn 2

(9) If (1 + x + x2)n = a0 + a1x + a2x2 + ........ + a2nx2n (n  N), then


(a) a0 + a1 + a2 + a3 + ........ + a2n = 3n put x = 1
(b) a0 – a1 + a2 – a3 + ........ + a2n = 1 put x = – 1

3n  1
(c) a1 + a3 + a5 + ........ + a2n – 1 = ((a)– (b)  c)
2

3n  1
(d) a0 + a2 + a4 + ........ + a2n = ((a)+ (b)  d)
2

(e) a 02 – a12 + a 22 – a 32 ........ + a 22n = an


[Proof: Replace x by – 1/x
n a 2n
 1 1 a1 a2
1    = a – + – ............. –
 x2 x 
0
x x x 2n
(1 + x2 – x)n = a0 x2n – a1 x2n – 1 + a2 x2n – 2 – ...... + a2n ....(1)
(1 + x + x2)n = a0 + a1x + a2x2 + ........ + a2nxn ....(2)
(1)×(2) —————————————————————————

in (1  x 2 )2  x 2 n coefficient of x 2n gives a 02 – a12 + a 22 ...... + a 22n


also [(1 + x2)2 – x2]n = [1 + x4 + 2x2 – x2]n = [1 + x2 + x4]n
= a0 + a1x2 + a2x4 + a3x6 + ....... + a2nx4n
 coefficient of x2n will be an
 a 02 – a12 + a 22 ........ + a 22n = an ]
Bansal Classes Page # 13
(f) a0a1 – a1a2 + a2a3 + ........ = 0
coefficient of x2n + 1 in the expansion of [1 + x2 + x4]n. But in its expansion we always
have x(even power).
 coefficient of x2n + 1 = 0

(g) a0a2 – a1a3 + a2a4 ........ = coefficient of x 2 n  2 x 2 n  2 in [1 + x2 + x4]n


which is an + 1 or an – 1.
n
(10) Prove that:  n Ck sin kx cos(n  k) x = 2n – 1 sin nx
k 0
[Sol. S = 0 · sin 0x · cos nx + nC1 · sin 1x · cos (n – 1)x + ..... + nCn · sin nx · cos 0x
nC

S = nC0 · sin nx · cos 0x + nC1 · sin (n – 1)x · cos 1x + ..... + nCn · sin 0x · cos nx
—————————————————————————————————
2S = nC0 sin (0x + nx) + nC1 · sin x  ( n  1) x  + ............ + nCn · sin nx  0 x 
2S = [nC0 + nC1 + nC2 + ...... + nCn] sin nx
S = sin nx · 2n – 1 ]
(11) Use binomial theorem to prove that 11n – 10n – 1 is divisible by 100  n  N.
[Sol. (10 + 1)n – 10n – 1
(1 + 10)n – 10n – 1
[1 + nC1 (10) + nC2 (10)2 + nC3 (10)3 + ........ + nCn (10)n ] – 10n – 1

100[ n C2  n C3 ·10  ......  n Cn ·10 n  2 ]


 
integer

 always a number divisible by 100. ]


(12) 42n – 15n – 1 is divisible by 225  n  N
[Sol. (1 + 15)n – 15n – 1
[1 + 15n + nC2 (15)2 + nC3 (15)3 + ........ nCn (15)n ] – 15n – 1

225 [ n C2  n C3 ·15  ......  n Cn · (15) n  2 ]



integer

 it is always a number divisible by 225. ]


(13) 25n + 5 – 31n – 32 is divisible by 961.
[Sol. (32)n + 1 – 31n – 32
(1 + 31)n + 1 – 31n – 32
[1 + 31(n + 1) + n + 1C2(31)2 + ...... + n + 1Cn + 1(31)n + 1 – 31n – 32]
961 [ n 1 C 2  n 1C3 · 31  ......  n 1C n 1 · (31) n 1]
  
integer

Hence divisible by 961. ]


(14) Find the coefficient of xr in
y = (x + 2)n–1 + (x + 2)n–2(x + 1) + (x + 2)n – 3(x + 1)2 + ......+ (x + 1)n–1.

  x  1   x  1 3  x  1 
n 1 
y = (x + 2)n – 1 1      .....    ;
  x  2   x  2   x  2  

Bansal Classes Page # 14


  x  1 n 
1    

  x  2   [(x  2)n  ( x  1)n ]
y = (x + 2)n – 1 = (x + 2)n = (x + 2)n – (x + 1)n
n
  x  1  ( x  2)
1  
  x  2  
 

 coefficient of xr in (x + 2)n – (x + 1)n


(2 + x)n – (1 + x)n
coefficient of xr = nCr · 2n – r – nCr
= nCr(2n – r – 1) ]

n  1 r  3 r  7 r  15  r
r n

(15) Evaluate the sum:  (  1) · C r              ......  m terms 
r 0  2   4   8   16  

n r n n r r
r n 1 r n  3 r n 7
[Sol.  ( 1) · C r     ( 1) · C r     ( 1) · C r    .........m terms
r 0  2  r 0  4  r 0 8

n n n n n n
 1  3  7 1 1 1
= 1    1    1    ....m terms =          ...m terms
 2  4  8  2  4 8

n
1 1
=    
2n
1
 
3n
1
 ....   
mn
;    ·
n

 1  1  1 2 mn 2m n  1
= mn n ]
n
2 2 2 2  2  1  1  2 (2  1)
 
2
(16) Coefficient of x2y3z4 in the expansion of (ax – by + cz)9.
[Sol. Tr + 1 = 9Cr(ax – by)9 – r (cz)r
for coefficient of z4 r=4
T5 = 9C4 (ax – by)5 c4 z4
= 9C4 {5C3 (ax)2 (– by)3 } c4 z4
= 9C4 5C3 (ax)2 (– by)3 c4 z4
= – 9C4 5C3 a2 b3 c4 x2 y3 z4
 9! 
 coefficient of x2b3c4 is   a 2 b3c 4  ]
 4!· 3!· 2! 
(17) Coefficient of x4 in the expansion of (2 – x + 3x2)6
[Sol. (2 – x + 3x2)6 = [2 + x(3x – 1)]6
Tr + 1 = 6Cr 26 – r xr(3x – 1)r
r = 2, r = 3, r = 4
r = 2,
T3 = 6C2 24 x2(3x – 1)2
here coefficient of x4 is
6C 24 × 9 = 15 × 16 × 9 = 2160
2
r = 3,
T3 = 6C3 23 x3(3x – 1)3
here coefficient of x4 is
6C 23 × x3 3(3x)(–1)2 = 6C · 8 · 9 = 20 × 72 = 1440
3 3

Bansal Classes Page # 15


r = 4,
T3 = 6C4 22 x4(3x – 1)4
here coefficient of x4 is
6C · 22 · 1 (–1)4 = 15 × 4 × 1 = 60
4
 coefficient of x4 in (2 – x + 3x2)6 is 2160 + 1440 + 60 = 3660 ]
Important concept:

(1) If n  N then prove that the integral part of the number N = 3  7  n is an odd integer..
I

[Sol. N = 3  7 n I  integral part & F  positive fractional part. 0< F<1
F
Consider 3  7 is a positive positive proper fraction

 3  7 n will also be a positive proper fraction say F'.


consider (I + F) + (F')

I + F + F' = 3  7 n + 3  7 n
2  C0 3  C 2 3  7   ........
n n n n 2 2 
 
 I + F + F' = even integer
but I is an integer
 F + F' must also be an integer and 0 < F + F' < 2
 F + F' = 1
 I = Even integer – 1  I = odd integer ]

(2) Find the integral part of (2 + 3 )6.


 
[Sol. Consider 2  3 which is a positive proper fraction F'

(2 + 3 )6 + (2 – 3 )6 = 2[ 6C0 26 + 6C2 24 ( 3 )2 + 6C4 22 ( 3 )4 + 6C6 ( 3 )6 ]


= 2[64 + 15 · 16 · 3 + 15 · 4 · 9 + 27]
I + F + F' = 2[1351] = 2702
again I  integer
 F + F'  integer;  F + F' = 1
 I = 2701 ]

I
(3) Let N = (2 + 3 )6 then the value of N(1 – F).
F
[Sol. F + F' = 1 where F' = (2 – 3 )6
(2 + 3 )6 (F') = [(2 + 3 ) (2 – 3 )]6 = 1 ]

Bansal Classes Page # 16


(4) Show that the integral part of the number N = ( 3 3 + 5)2n + 1 is even (n  N).
I
[Sol. N = ( 3 3 + 5)2n + 1 0<F<1
F
consider ( 3 3 – 5)  F' 0 < F' < 1
( 3 3 + 5)2n + 1 – ( 3 3 – 5)2n + 1
= 2[ 2n + 1C0 ( 3 3 )2n · 51 + 2n + 1C3( 3 3 )2n – 2 · 53.........]
I + F – F' = even integer
–1 < F – F' < 1
but again I is an integer, therefore (F – F')  I but – 1 < F < F' < 1
hence F – F' = 0
I = even integer  IF = 3 3  5  
2 n 1 2 n 1
 · 3 3 5 = 22n + 1. ]

(5) 
If N = 7  4 3 n = p +  (n  N) where p is the integral part of N and p is the
positive proper fraction then find the value of (1 – )(p + ).
[Sol. 7  4 3 n  ' positive proper fraction
and  + ' = 1
 1 –  = '
'(p + ) (7 + 4 3 )n (7 – 4 3 )n = (49 – 48) = 1 Ans. ]
Home work: Exercise-I(A) Q.1 to Q.15, Exercise-1(B) complete.
2n 2n
r
(6) If  a r ( x  2) =  br (x  3) r and ak = 1  r  n then prove that bn = 2n + 1Cn + 1.
r 0 r 0
[Sol. Let x–3=y and x–2=1+y
2n 2n
 a r (1  y)r =  br yr
r 0 r 0
In RHS bn is the coefficient of yn. and
LHS is a0 + a1(1 + y) + a2(1 + y)2 + an(1 + y)n + an + 1(1 + y)n + 1 + ...... + a2n(1 + y)2n
and an = an + 1 = an + 2 = ........ = a2n = 1
 bn is coefficient of yn in (1 + y)n + (1 + y)n + 1 + ..... + (1 + y)2n
 bn = nCn + n + 1Cn + n + 2Cn + .............. + n + nCn
bn = n + 1Cn + 1 + n + 1Cn + n + 2Cn + ...... + n + nC
n
bn = n + 2C + n + 2C + n + 3C + ...... + n + nC
n+1 n n n
bn = n + 3Cn + 1 + n + 3C
n + ................... + n + nC
n
bn = n + nCn + 1 + n + nCn
bn = 2n + 1Cn + 1

Bansal Classes Page # 17


Asking:
(i) Sum of the last ten coefficient in the expansion of (1 + x)19
[Sol. (1 + x)19 = 19C0 + 19C1x + 19C2x2 + ........ + 19C19x19
19
and 19C + 19C1 + 19C2 + ..... + 19C9 + C10  19C11  ......  19C19 = 219
0 
x

 2[19 C10  19C11  19C12  ......  19C19 ] = 219



x
x = 218 ]

(ii) Prove that nC0 + n + 1C1 + n + 2C2 + ........ + n + rCr = n + r + 1Cr.


[Sol. n + 1C0 + n + 1C1 + n + 2C2 + ........ + n + rCr
n + 2C + n + 2C2 + n + 3C3 + ........ + n + rCr
1
n + 3C n + 3C + ........ + n + rC
2+ 3 r
= n + 4C n + r n + r + 1
r–1 + Cr = Cr Hence proved. ]

1 10
(iii) S= C0 – 10C1 + 10C2 · 2 – 10C3 · 22 + ...... + 10C10 29 = ??
2
1 10
[Sol. S = [ C0 – 10C1 · 2 + 10C2 · 22 – 10C3 · 23 + ...... + 10C10 210]
2
1 1
S= (1 – 2)10  S= ]
2 2

(7) Find the sum of all the coefficient of all the integral power of 'x' in the expansion of

1  2 x 40 .
[Sol. 1  2 x 40 = 40C0 + 40C1 ( 2 x )1 + 40C2 ( 2 x )2 + ....... + 40C40 ( 2 x )40
1  2 x 40 = 40C0 + 40C1 (– 2 x )1 + 40C2 (– 2 x )2 + ...... + 40C40 (– 2 x )40
 1  2 x 40 + 1  2 x 40 = 2[40C0 + 40C2 ( 2 x )2 + ....... + 40C40 ( 2 x )40]
put x=1

340  1 40
= C0 + 40C2 · 22 + 40C4 · 24 + ...... + 40C40 · 240 ]
2
Binomial theorem for any index (negative or fractional) i.e. n  Q
|x|<1
n (n  1) 2 n (n  1)(n  2) 3
(i) (1 + x)n = 1 + nx + x  x  ........
2! 3!

n (n  1) 2 n (n  1)(n  2) 3
(ii) (1 + x)–n = 1 – nx + x  x  ........
2! 3!

Bansal Classes Page # 18


n (n  1) 2 n (n  1)(n  2) 3
(iii) (1 – x)n = 1 – nx + x  x  ........
2! 3!

n (n  1) 2 n (n  1)(n  2) 3
(iv) (1 – x)–n = 1 + nx + x  x  ........
2! 3!

|x|<1
(1) (1 + x)–1 = 1 – x + x2 – x3 + ........... 
(2) (1 – x)–1 = 1 + x + x2 + x3 + ........... 
(3) (1 + x)–2 = 1 – 2x + 3x2 – 4x3 + ........... 
(4) (1 – x)–2 = 1 + 2x + 3x2 + 4x3 + ................. 
(5) (1 + x)–3 = 1 – 3x + 6x2 – 10x3 ................... 
(2) (1 – x)–3 = 1 + 3x + 6x2 + 10x3 ................... 

EXAMPLES:
(1) Find the range of x for which this expansion is valid (8 + x)4/3.
4 4 4 4
 x 3  x 3 x
[Sol. (8  x ) 3  83 1 
  ; 161   ; Now < 1; | x | < 8
 8  8 8
–8<x<8 ]

(2) Find General term of (1 – x)–3. [Ans. (r + 2Cr) xr ]

3(4) x 2 3· 4 · 5 x 3
[Sol. (1 – x)–3 = 1 + 3x +   ........ 
2! 3!

3· 4 ·5........(r  1)(r  2) r 1· 2 ·3 · 4........(r  2) x r


Tr + 1 = x =
r! 2· r!

( r  2)! x r (r  2)( r  1) x r r + 2
= = = Cr xr Ans.]
2 r! 2

(3) Write the 8th term in the expansion of (1 + 2x)–1/2

 1  1  2  1  1  1  3
     1(2 x )      1   2 (2 x )
8 2  2  2  2  2
[Sol. (1 + 2x)–1/2 = 1  x      ......
2 2! 3!

 1  1  1   1  r
     1   2 ......   (r  1) (2 x )
Tr + 1 =  2  2  2   2 
r!

 1  1  1  1 
(1) r    1  2 ......  r  1 2r x r
=  2  2  2  2 
r!

Bansal Classes Page # 19


(1) r 1·3·5.......(2r  1)  2r x r (1) r 1· 3· 5.......(2r  1)  x r
= =
2r r ! r!

(1)7 (1·3· 5.......13) x 7


 T8 = ]
7!

(1  1  x 2 ) x 1·3 x 3 1·3 ·5 · 7 x 5
(4) If 0 < x < 1 then prove that =    .......
2 2 2 · 4 6 2 · 4 · 6 · 8 10

1 1 1 x  1 x
[Sol. LHS =
2
2  2 1  x2 =
2
 1 x  1 x 2 =
2

x 1·3 x 3 1·3 ·5 · 7 x 5
=    .......
2 2 · 4 6 2 · 4 · 6 ·8 10
Approximation:
If x is so small so that its square and higher power can be neglected.
5
 2x  12
1    (4  2x )
Find the value of  3 
( 4  x )3 2

 10 x   x 1 2   3 2  x  3 2  10x  x   3x 
[Sol. 1  3   21  2   4 1   = 1   21   4 3 2 1  
      4  3  4   8 

 10 x x  3x   17 x  3x  9 x 17 x 51x 2
1   2 1   3   1   3  
 3 2  8   6  8  8 6 24
= =
8 8 8

(27 x  68x )
3 3 95x 3 95x
= 24 = 8  24 · 8 =  ]
8 8 192
Important :
Coefficient of xr in the expansion of (1 – x)–n, n  N is n + r – 1Cr . (used in P&C)
n (n  1) 2 n (n  1)(n  2) 3
Proof: (1 – x)–n = 1 + nx + x  x  ......
2! 3!

n (n  1)(n  2).......(n  r  1) x r 1· 2 · 3......(n  1)(n  1).......(n  r  1)!x r


Tr + 1 = =
r! (n  1)!r !
Tr + 1 = n + r – 1 Cr · xr
 coefficient of xr is n + r – 1C
r. ]

Bansal Classes Page # 20


EXAMPLES:
(1) Find the coefficient of x10 in (1 – x)–8.
[Hint: 8 + 10 – 1C10 = 17C10 ]

(2) Find the coefficient of x100 in (3 – 5x) (1 – x)–2


[Sol. 3 × coefficient of x100 in (1 – x)–2 – 5 × coefficient of x99 in (1 – x)–2
= 3 × 101C100 – 5 × 100C99 = 3 · 101C1 – 5 · 100C1
= 3 × 101 – 5 × (100)
= 303 – 500 = – 197 ]

BINOMIAL SERIES
1 1 1· 3 1 1· 3· 5 1
(3) Find the sum: S = 1 – ·  ·  ·  .........
2 2 2 · 4 2 2 2 · 4 · 6 23

n (n  1) 2
[Sol. (1 + x)n = 1 + nx + x  .......
2!

1 n (n  1) 2 3
nx = – ....(1) and x = ....(2)
4 2! 32

n 1 3
(2)  (1)2  =
2n 2
 n – 1 = 3n  n = – 1/2,  x = 1/2
1 2 1 2
 1 3 2
 S = 1      Ans. ]
 2 2 3

1 1· 3 1· 3· 5
(4) If x =    ........ find the value of x2 – 2x = ?
3 3 · 6 3· 6 · 9
or find the value of x2 + 2x = ?.
1 1· 3 1· 3· 5
[Sol. y = x + 1 = 1 +    ........
3 3 · 6 3· 6 · 9

n (n  1) 2
 let y = (1 + z)n = 1 + nz + z  .......
2!

1 n (n  1) 2 1· 3
nz = ....(1) and z = ....(2)
3 2! 18

(n  1) 3 9
(2)  (1)2  = ×  n – 1 = 3n;  n = – 1/2
2n 18 2
and n = 1/2,  z = – 2/3
1 2 1 2
 2 1
 y = 1      3
 3  3

Bansal Classes Page # 21


 x+1= 3;  (x + 1)2 = 3
x2 + 2x – 2 = 0 hence proved. ]

EXPONENTIAL SERIES:

x x 2 x3
ex =1+    .........
1! 2! 3!

x x 2 x3 x 4
e–x = 1    .........
1! 2! 3! 4!

 x2 x4 
ex + e–x 2
= 1   ......... 
2 ! 4! 
 

 x x3 x5 
and ex – e–x = 2    ......... 

 1! 3! 5! 
put x=1
1 1 1
e=1+    .........
1! 2! 3!
EXAMPLES:
2 4 6 8
(1) Find S = 1!  3!  5!  7!  .....

[Sol. We have
1 1 1 1 1 1 1
S = 1 + 1!  2!  3!  4!  5!  6!  7 !  .....  

1 1 1 1
         ....
 2 ! 3 !  4 ! 5 !

4 6
expansion of ax = ex ln a 2 + 3 !  5 ! + .............

( x ln a ) ( x ln a ) 2 ( x ln a )3
 ax = ex ln a =1+ 1! + + + ...... ]
2! 3!

(1  22 ) 2 (1  23 ) 3
(2) Find (1 + 2) ln 2 + ln 2 + ln 2 + ........ 
2! 3!

 2 ln 2 (2 ln 2)2 (2 ln 2)3   ln 2 ln 2 2 ln 3 2 

[Sol.  1!    .......  +     ....... 
2! 3!   
   1! 2! 3! 
e2 ln 2 – 1 + eln 2 – 1
4 – 1 + 2 – 1 = 6 – 2 = 4 Ans. ]

Bansal Classes Page # 22


(3) If  and  are roots of the quadratic equation 3x2 – 6x + 2 = 0 then find

   2 3    2 3 
1     
 ...... 1     ...... 
 2 2!·4 3!·8   2 2!·4 3!·8 
  

 ( 2) ( 2)2 ( 2)3   ( 2) ( 2) 2 ( 2)3 



[Sol. 1     ......  1     ...... 
1! 2! 3!  1! 2! 3! 
  
  2
e/2 · e/2 = e 2 = e2 = e Ans. ]

1  2 1  2  2 2 1  2  2 2  23
(4)(a) Find 1 +   + ...... 
2! 3! 4!

n3
(b)  n!
n 1

[Sol.

1  2  2 2  .....2 n 1 2n  1 2n  1
(a) Tn = = (2  1) n ! 
n! n!

2n  
1  2 22 23   1 1 1 
S= 
n!
–  n! = 1  1!  2!  3!  .....  – 1  1!  2!  3!  ..... 
n1 n1    
= e2 – e Ans.

n3 n2 (n 2  1)  1 (n  1) 1 (n  2)  3 1
(b)  n! = (n  1)! (n  1)!  (n  2)!  (n  1)! = (n  2)!  (n  1)!

n 1

1 3 1
= (n  3)!  (n  2)!  (n  1)! = 5e]

LOGARITHMIC SERIES : (Not in syllabus)


Result

 x x 2 x3 x 4 
(1) ln(1 + x) =      .......  ;
 –1 x1
1 2 3 4 
[Proof: y = 1 – x + x2 – x3 + x4 – ........ (diff. coefficient of)
1
y=
1 x
x x
1
 y dx   1  x dx
0 0

x
2
 (1  x  x  x 3  x 4  ......) dx = ln (1 + x)
0

Bansal Classes Page # 23


 x x 2 x3 x 4 
and ln(1 – x) = –      .......  ; – 1  x < 1
1 2 3 4 
 
1 1 1 1
Note: (a) 1      ........  ln 2
2 3 4 5

 x x3 x5 
ln(1 + x) – ln(1 – x) = 2     ....... 

1 2 3 

1 x   x x3 x5 
ln   = 2    .......  ]
1 x  1 2 3 
 
EXAMPLES:
1 1 1
(1) Find the value of S =    ...... .
2·3 4·5 6· 7

1 1 1 1 1 1
[Sol. S =       ......
2 3 4 5 6 7

 1 1 1 1 1 1 
S = – 1        ...... 
 2 3 4 5 6 7 
S = – (ln 2 – 1);  S = 1 – ln 2 ]

1 1 1 1
(2) Find the value of S = 2     ........ .
2 · 2 2 3 · 23 4 · 2 4

1 (1 2) 2 (1 2)3 (1 2) 4
[Sol.     ........
2 2 3 4

  3
ln 1   = ln = ln 3 – ln 2 ]
 2 2

Bansal Classes Page # 24

You might also like