Correlation
Correlation
KRISHNA PRASAD
------------------------------------------------------------------------
                                                                            .
                       8. CORRELATION
                                                                e
                                                              eg
   Definitions:
     1. Correlation Analysis attempts to determine the degree of
                                                            ll
         relationship between variables- Ya-Kun-Chou.
     2. Correlation is an analysis of the covariation between two
                                                      Co
          or more variables.- A.M.Tuttle.
           Correlation expresses the inter-dependence of two sets of
   variables upon each other. One variable may be called as (subject)
                                              MJ
    independent and the other relative variable (dependent). Relative
    variable is measured in terms of subject.
    Uses of correlation:
                                     s,
     1. It is used in physical and social sciences.
     2. It is useful for economists to study the relationship between
         variables like price, quantity etc. Businessmen estimates
                               th
   Scatter Diagram:
               It is the simplest method of studying the relationship
           .
   represented along the horizontal axis and the second variable along
   the vertical axis. For each pair of observations of two variables, we
   put a dot in the plane. There are as many dots in the plane as the
 De
                                               M.Sc.-           PAGE-01
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
           corner to the upper right hand corner then there is
                                                                            .
             Perfect positive correlation. We denote this as r = +1
                                                                 e
                                                               eg
               Perfect positive                       Perfect Negative
               Correlation                             Correlation
                                                             ll
                r = +1
       Y                                   Y
                                                         (r = −1)
                                                       Co
                                               MJ
           O
           O            X axis                  O        X axis
                                                            X
   2. If all the plotted dots lie on a straight line falling from upper
                                     s,
       left hand corner to lower right hand corner, there is a perfect
       negative correlation between the two variables. In this case
       the coefficient of correlation takes the value r = -1.
                                  th
   Merits:
      1. It is a simplest and attractive method of finding the nature
                            ma
   Demerits:
 De
                                                M.Sc.-            PAGE-02
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                                                                 e         .
                                                               eg
      i)     Positive and negative.
      ii)    Linear and non-linear.
                                                             ll
      iii)   Partial and total.
      iv)    Simple and Multiple.
                                                       Co
    Linear and Non-linear correlation:
            If the ratio of change between the two variables is a
    constant then there will be linear correlation between them.
                                              MJ
        Consider the following.
        X         2        4          6         8        10       12
        Y         3        6          9         12       15       18
                                      s,
            Here the ratio of change between the two variables is the
    same. If we plot these points on a graph we get a straight line.
                                  th
  Co-variation:
      pt
                                      195
                                                M.Sc.-           PAGE-03
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
    Karl pearson’ s coefficient of correlation:
                                                                               .
             Karl pearson, a great biometrician and statistician,
    suggested a mathematical method for measuring the magnitude of
                                                                   e
    linear relationship between the two variables. It is most widely
                                                                 eg
    used method in practice and it is known as pearsonian coefficient of
    correlation. It is denoted by ‘ r’ . The formula for calculating ‘ r’ is
                                                               ll
              C ov( x, y )
    (i) r =                where σ x , σ y are S.D of x and y
                σ x .σ y
                                                           Co
         respectively.
                ∑ xy
    (ii) r =
              n σx σ y
                                                    MJ
                   Σ XY
    (iii) r =                    ,         X = x− x , Y = y− y
                 ∑ X2 .∑ Y2
                                          s,
    when the deviations are taken from the actual mean we can apply
                                     th
             Y2 respectively.
        4. Multiply the deviations of x and y and get the total and
            Divide by n. This is covariance.
 De
                cov( x, y )     ∑ ( x − x) ( y - y ) / n
        r =                 =
                 σx.σy          ∑( x − x) 2 ∑( y − y ) 2
                                           .
                                    n           n
                                           196
                                                      M.Sc.-      PAGE-04
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
        The above formula is simplified as follows
                  Σ XY
                                                                             .
       r =                   ,      X = x− x , Y = y− y
                                                                           e
               ∑ X2 .∑ Y2
                                                                         eg
    Example 1:
    Find Karl Pearson’ s coefficient of correlation from the following
                                                                       ll
    data between height of father (x) and son (y).
        X        64       65       66     67       68       69      70
                                                               Co
        Y        66       67       65     68       70       68      72
        Comment on the result.
    Solution:
        x      Y       X = x− x       X2 Y = y − y Y2           XY
                                                     MJ
                       X = x – 67         Y = y - 68
         64      66         -3         9      -2          4        6
         65      67         -2         4      -1          1        2
                                            s,
         66      65         -1         1      -3          9        3
         67      68          0         0       0          0        0
                                        th
         68      70          1         1       2          4        2
          69     68          2         4       0          0        0
                             ma
          70     72          3         9       4        16        12
        469 476              0        28       0        34        25
             469                 476
         x=       = 67 ; y =         = 68
                  of
              7                   7
                   Σ XY             25        25        25
        r =                  =            =         =          = 0.81
                ∑ X2 . ∑ Y2       28 × 34     952      30.85
    Since r = + 0.81, the variables are highly positively correlated. (ie)
             .
                   C ov( x, y )
    We have r =
                     σ x .σ y
                  ∑( x − x)( y −   y)       Σ( xy + x y − yx − x y )
    Cov( x,y) =                         =
                         n                             n
                                            197
                                                       M.Sc.-           PAGE-05
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                 Σxy      yΣx     xΣy      Σx y
              =        -        -       +
                                                                           .
                  n         n      n        n
                                                                 e
                  Σxy                             Σxy
    Cov(x,y) =          − yx - x y + x y        =     − xy
                                                               eg
                   n                               n
            Σx 2       2           Σy 2       2
    σσ xx =
      2 2
                 - x , σσ y = 2 2
                                          - y
                                                             ll
             n                       n
               C ov( x, y )
    Now r =
                                                        Co
                 σ x .σ y
                     Σxy
                           − xy
    r=                n
                                              MJ
           Σx 2       2       Σy 2       2
                 -  x    .          - y 
           n              n                 
                 nΣxy - (Σx) (Σy )
                                      s,
    r =
           [nΣx 2 − (Σx ) 2 ][nΣy 2 - (Σy )2 ]
                                th
    Example 2:
    Calculate coefficient of correlation from the following data.
       X      1      2      3      4       5     6      7     8       9
       Y      9      8      10     12      11    13     14    16      15
                  of
          x             y            x2            y2           xy
          1             9            1             81            9
              .
          2             8            4             64           16
      pt
          3            10            9            100           30
          4            12           16            144           48
          5            11           25            121           55
 De
          6            13           36            169           78
          7            14           49            196           98
          8            16           64            256          128
          9            15           81            225          135
         45           108          285           1356          597
                                      198
                                                M.Sc.-              PAGE-06
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                    nΣxy - (Σx) (Σy )
       r =
                                                                           .
               [nΣx 2 − (Σx ) 2 ][nΣy 2 - (Σy )2 ]
                                                                     e
                     9 × 597 - 45 × 108
        r =
                                                                   eg
              (9 × 285 − (45) ) .(9 × 1356 − (108) )
                                2                    2
                                                                 ll
                     5373 - 4860
        r =
               (2565 − 2025).(12204 − 11664)
                                                           Co
                   513          513
          =                   =      = 0.95
                 540 × 540      540
                                                     MJ
    Working rule (ii) (shortcut method)
                  C ov( x, y )
    We have r =
                     σ x .σ y
                                          s,
                           ∑( x − x)( y −   y)
    where Cov( x,y) =
                                  n
                                    th
      Cov(x,y) =
                                           n
                     1
                 =       Σ [( x - A) ( y - B) - ( x - A) ( y - B)
                   of
                     n
                     - ( x − A)( y − B) + ( x − A)( y − B)]
                                                          Σ( x - A)
              .
                     1
                =       Σ [( x - A) ( y - B) - ( y - B)
      pt
                     n                                        n
                                 Σ( y - B ) Σ( x - A)( y − B)
                     − ( x − A)            +
 De
                                      n               n
                      Σ( x - A)( y - B)                     nA
                                         − ( y − B) ( x −      )
                              n                              n
               =
                                        nB
                     − ( x − A) ( y −      ) + ( x − A) ( y − B)
                                         n
                                            199
                                                     M.Sc.-           PAGE-07
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                            Σ
                         ( x - A)( y - B)
                                                − ( y − B) ( x − A)
                                                                                             .
                   =                 n
                                                                             e
                            − ( x − A) ( y − B ) + ( x − A) ( y − B)
                                                                           eg
                       Σ( x - A)( y - B)
                   =                     − ( x − A) ( y − B)
                               n
                                                                         ll
    Let x- A = u ; y - B = v;            x− A=u ; y−B =v
                           Σuv
                                                                  Co
        ∴Cov (x,y) =             − uv
                             n
                Σu 2     2
                                                        nΣuv − (Σu )(Σv)
      σσxx2 =         − u = σ u2 ∴r =
                  n
                                                        MJ
                                               nΣu 2 − (Σu )2  . (nΣv 2 ) − (Σv)2 
                Σ v 2
                         2
      σ σy 2y =       − v = σ v2
                 n
   Example 3:
                                             s,
   Find Karl Pearson’ s coefficient of correlation from the following
   data between height of father (x) and son (y).
                                      th
       X      64        65      66      67        68     69      70
       Y      66        67      65      68        70     68      72
                                ma
                     X = x – 67         Y = y - 68
        64    66          -3        9       -2         4        6
        65    67          -2        4       -1         1        2
             .
        66    65          -1        1       -3         9        3
        67    68          0         0        0         0        0
      pt
        68    70          1         1        2         4        2
        69    68          2         4        0         0        0
 De
        70    72          3         9        4        16      12
       469 476            0        28        0        34      25
           469               476
       x=      = 67 ; y =         = 68
            7                  7
                Σ XY             25          25       25
       r =                 =             =         =        = 0.81
              ∑ X2 . ∑ Y2      28 × 34       952     30.85
                                                          M.Sc.-              PAGE-08
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                                                                  e          .
                                                                eg
      Example 4:
                                                              ll
      Calculate Pearson’ s Coefficient of correlation.
         X 45 55 56 58 60 65 68 70                            75   80   85
                                                        Co
         Y 56 50 48 60 62 64 65 70                            74   82   90
          X      Y     u = x-A v = y-B u2      v2      uv
          45     56          -20     -14   400     196     280
                                                 MJ
          55     50          -10     -20   100     400     200
          56     48           -9     -22    81     484     198
          58     60           -7     -10    49     100      70
                                          s,
          60     62           -5      -8    25      64      40
          65     64            0      -6     0      36       0
                                   th
          68     65            3      -5     9      25     -15
          70     70            5       0    25       0       0
          75     74           10       4   100      16      40
                             ma
                 11 × 1393 - 2 × (-49)
     r=
      pt
         =                          =              = + 0.92
             15550 × 18114              16783.11
                                          201
                                                 M.Sc.-            PAGE-09
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                                                                              .
                      Example 5
                                                                  e
                                                                eg
                          Calculate the correlation co-efficient for the following
                     heights (in inches) of fathers(X) and their sons(Y).
                                                              ll
                      X : 65 66            67     67     68     69     70     72
                      Y : 67 68            65     68     72     72     69     71
                                                       Co
                     Solution :
                                        X = Σ X = 544 = 68
                                             n     8
                                               MJ
                                        Y = Σ Y = 552 = 69
                                             n     8
                       X        Y x =X− X y=Y− YY              x2     y2       xy
                                     s,
                      65       67         -3        -2         9       4        6
                      66       68         -2        -1         4       1        2
                                 th
                      67       65         -1        -4         1      16        4
                      67       68         -1        -1         1       1        1
                         ma
                      68       72          0         3         0       9        0
                      69       72          1         3         1       9        3
                      70       69          2         0         4       0        0
                      72       71          4         2       16        4        8
                of
                      544 552              0         0       36       44       24
                         Karl Pearson Correlation Co-efficient,
                                            Σxy
           .
                                                            24
                            r(x, y) =                 =              = .603
                                         Σ x Σy
                                            2     2
                                                           36 44
      pt
                  to be positively correlated.
                  Example 6
                        Calculate the correlation co-efficient from the data below:
                    X :      1      2      3     4     5     6     7     8      9
                    Y :      9      8     10    12    11     13    14    16     15
                  Solution :
                          X        Y            X2          Y2           XY
                          1         9            1           81           9
                          2         8            4           64          16
                          3        10            9          100          30
                          4        12           16          144          48
                          5        11           25          121          55
                          6        13           36          169          78
                          7        14           49          196          98
                          8        16           64          256         128
                          9        15           81          225         135
                         45       108          285         1356         597
                                                                                           M.Sc.-   PAGE-10
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
         Example 8:
         Calculate coefficient of correlation from the following data.
                                                                              .
            X      1      2      3      4       5     6      7     8          9
                                                                          e
            Y      9      8      10     12      11    13     14    16         15
                                                                        eg
               x               y               x2                y2      xy
                                                                      ll
               1               9               1                 81       9
               2               8               4                 64      16
                                                               Co
               3              10               9                100      30
               4              12              16                144      48
               5              11              25                121      55
               6              13              36                169      78
                                                     MJ
               7              14              49                196      98
               8              16              64                256     128
               9              15              81                225     135
                                          s,
              45             108             285               1356     597
                                   th
                         9 × 597 - 45 × 108
           r =
                   (9 × 285 − (45) ) .(9 × 1356 − (108) )
                                    2                      2
                   of
                         5373 - 4860
           r =
                   (2565 − 2025).(12204 − 11664)
                       513          513
           .
             =                    =      = 0.95
                     540 × 540
      pt
                                    540
 De
                                                         M.Sc.-        PAGE-11
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                                                                        e            .
                                                                      eg
                                                                    ll
                                                        NΣXY - ΣX ΣY
                                                              Co
                                  r (X,Y) =
                                                    NΣX − ( ΣX) 2 NΣY 2 − ( ΣY) 2
                                                          2
                                                   MJ
                                          =                                                 = .95
                                                   9( 285) − (45) 2 9(1356) − (108) 2
                               ∴ X and Y are highly positively correlated.
                                     s,
                       Example 9
                            Calculate the correlation co-efficient for the ages of
                                th
                        Y : 18 22 23 24 25 26 28                   29 30 32
                       Solution :
                             Let A = 30 and B = 26 then dx = X− Α dy = Y−Β
                of
                           X         Y             dx          dy      d 2x      d 2y       d xdy
           .
                           23        18            -7         -8       49           64       56
      pt
                           27        22            -3         -4        9           16       12
                           28        23            -2         -3        4            9        6
 De
                           29        24            -1         -2        1            4        2
                           30        25             0         -1        0            1        0
                           31        26             1          0        1            0        0
                           33        28             3          2        9            4        6
                           35        29             5          3       25            9       15
                           36        30             6          4       36           16       24
                           39        32             9          6       81           36       54
                                                   11         −3      215       159         175
                                                          NΣdxdy − Σdx Σdy
                                  r (x, y) =       NΣ d x2 − ( Σdx ) 2 NΣd y2 − (Σ dy ) 2
                                                              10(175) − (11)( −3)
                                               =
                                                    10(215) − (11) 2 10(159) − (−3) 2
                                          = 1783 = 0.99
                                            1790.8
                              ∴ X and Y are highly positively correlated. i.e. the ages of
                         husbands and their wives have a high degree of correlation.
                                                                                                    M.Sc.-   PAGE-12
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                                                                      e            .
                   Example 9
                                                                    eg
                         Calculate the correlation co-efficient from the following
                   data
                                                                  ll
                         N = 25,         Σ X = 125,    Σ Y = 100
                         Σ X = 650
                            2            Σ Y = 436, Σ XY = 520
                                            2
                                                              Co
                   Solution :
                         We know,
                                                NΣ XY - ÓXÓY
                                                      MJ
                                  r =
                                           NΣX − (Σ X) 2 NΣ Y 2 − (Σ Y) 2
                                                  2
                 Properties of Correlation:
                 1. Correlation coefficient lies between –1 and +1
                 (i.e) –1 ≤ r ≤ +1
                 of
                            x −x           y −y
                 Let x’ =           ; y’ =
                               σx             σy
                 Since (x’ +y’ )2 being sum of squares is always non-negative.
           .
                   (x’ +y’ )2 ≥0
      pt
                   x’ 2 + y’ 2 +2 x’ y’ ≥ 0
                                              2
                                     y− y            x− x  y− y
                            2
                   x− x
                 Σ          + Σ           + 2Σ                     ≥ 0
 De
                                                               
                   σx              σy              σx   σy 
                 Σ( x − x ) 2   Σ( y − y ) 2     2Σ( x − x ) (Y − Y )
                              +                +                      ≥ 0
                    σ x2           σ y2                σ xσ y
                 dividing by ‘ n’ we get
               1 1                  1 1                   2 1
                  . Σ( x − x ) 2 +     . Σ( y − y ) 2 +       . Σ( x − x) ( y − y ) ≥
              σ x2 n               σ y2 n               σ xσ y n
             0
               1             1             2
                   .σ x 2 +      σ y2 +        .cov( x, y ) ≥ 0
              σ x2          σ y2        σ xσ y
             1 + 1 + 2r ≥ 0
                2 + 2r ≥ 0
               2(1+r) ≥ 0
               (1 + r) ≥ 0
             –1 ≤ r -------------(1)
                                                                                        M.Sc.-   PAGE-13
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                                                                 e          .
            Similarly, (x’ –y’ )2 ≥ 0
                                                               eg
                       2(l-r) ≥0
                          l - r ≥0
                                                             ll
                           r ≤ +1 --------------(2)
            (1) +(2) gives –1 ≤ r ≤ 1
                                                       Co
      Note: r = +1 perfect +ve correlation.
                                               MJ
             r = −1 perfect –ve correlation between the variables.
                      regression coefficients.
      Property 6:    The correlation coefficient of x and y is symmetric.
                     rxy = ryx.
      Limitations:
                 of
         correlation coefficient.
      pt
                                                 M.Sc.-          PAGE-14
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
    Rank Correlation:
                                                                            .
            It is studied when no assumption about the parameters of
    the population is made. This method is based on ranks. It is useful
                                                                 e
    to study the qualitative measure of attributes like honesty, colour,
                                                               eg
    beauty, intelligence, character, morality etc.The individuals in the
    group can be arranged in order and there on, obtaining for each
                                                             ll
    individual a number showing his/her rank in the group. This
    method was developed by Edward Spearman in 1904. It is defined
                  6ΣD 2
                                                            Co
    as r = 1 − 3           r = rank correlation coefficient.
                  n −n
    Note: Some authors use the symbol ρ for rank correlation.
      D2 = sum of squares of differences between the pairs of ranks.
                                                 MJ
    n = number of pairs of observations.
            The value of r lies between –1 and +1. If r = +1, there is
    complete agreement in order of ranks and the direction of ranks is
                                         s,
    also same. If r = -1, then there is complete disagreement in order of
    ranks and they are in opposite directions.
                                   th
                                    2
    and 6 given as 5.5, appeared twice.
             If the ranks are tied, it is required to apply a correction
            .
                       1
    factor which is       (m3-m). A slightly different formula is used
      pt
                      12
    when there is more than one item having the same value.
 De
    The formula is
                           1             1
               6[ΣD 2 +      (m3 − m) + (m 3 − m) + ....]
    r=    1−              12            12
                                  n3 − n
                                         208
                                                   M.Sc.-        PAGE-15
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
           Where m is the number of items whose ranks are common
                                                                           .
    and should be repeated as many times as there are tied
    observations.
                                                               e
    Example 10:
                                                             eg
    In a marketing survey the price of tea and coffee in a town based on
    quality was found as shown below. Could you find any relation
                                                           ll
    between and tea and coffee price.
                                                      Co
         Price of tea     88    90     95 70 60           75    50
        Price of coffee   120   134    150 115 110        140   100
D2
                                                 MJ
      Price of    Rank      Price of     Rank         D
        tea                  coffee
         88         3         120            4        1           1
         90         2         134            3        1           1
                                       s,
         95         1         150            1        0           0
         70         5         115            5        0           0
                                th
         60         6         110            6        0           0
         75         4         140            2        2           4
                          ma
         50         7         100            7        0           0
                                                                 2
                                                                D =6
            6ΣD 2          6×6
    r = 1−         = 1− 3
            n −n          7 −7
                 of
           36
    = 1−        = 1 − 0.1071
          336
    = 0.8929
             .
    Example 11:
    In an evaluation of answer script the following marks are awarded
    by the examiners.
    1st     88     95      70     960      50     80     75     85
    2nd     84     90      88     55       48     85     82     72
                                       209
                                                 M.Sc.-         PAGE-16
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
    Do you agree the evaluation by the two examiners is fair?
                                                                        D2
                                                                                 .
        x           R1            y            R2           D
       88            2           84             4           2            4
                                                                      e
       95            1           90             1           0            0
                                                                    eg
       70            6           88             2           4           16
       60            7           55             7           0            0
                                                                  ll
       50            8           48             8           0            0
       80            4           85             3           1            1
                                                           Co
       85            3           75             6           3            9
                                                                        30
           6ΣD 2        6 × 30
    r = 1−        = 1− 3
                                                    MJ
           n −n
            3
                        8 −8
          180
    = 1−       = 1 − 0.357 = 0.643
          504
                                         s,
    r = 0.643 shows fair in awarding marks in the sense that uniformity
    has arisen in evaluating the answer scripts between the two
    examiners.
                                  th
    Example 12:
    Rank Correlation for tied observations. Following are the marks
                            ma
    Calculate the rank correlation coefficient between the marks of two tests.
    Student     Test 1       R1        Test 2        R2         D         D2
       A           70          3         65          5.5      -2.5       6.25
             .
                                                                         .
    60 is repeated 3 times in test 1.
    60,65 is repeated twice in test 2.
                                                                 e
    m = 3; m = 2; m = 2
                                                               eg
                     1               1     1
            6[ΣD 2 + (m3 − m) + (m3 − m) + (m3 − m)
    r = 1−          12             12     12
                                                             ll
                                  n −n
                                   3
                                                       Co
               1 3           1         1
          6[50 +  (3 − 3) + (23 − 2) + (23 − 2)]
    = 1−      12            12        12
                          103 − 10
         6[50 + 2 + 0.5 + 0.5]
                                              MJ
    = 1−
                 990
         6 × 53     672
    = 1−         =        = 0.68
          990       990
                                      s,
    Interpretation: There is uniformity in the performance of students
                                th
        (c) –1 ≤ r ≤ 0              (d) 1 ≤ r ≤ 2
    2. The coefficient of correlation.
       (a) cannot be negative (b) cannot be positive
       (c) always positive       (d)can either be positive or negative
            .
                ΣXY                            ΣXY
       (a) r =                      (b) r =
                  xy                        n σx σy
 De
                ΣXY
       (c) r =                    (d) none of these
                n σx
    4. If cov(x,y) = 0 then
       (a) x and y are correlated (b) x and y are uncorrelated
       (c) none                   (d) x and y are linearly related
                                       211
                                                M.Sc.-           PAGE-18
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
    5. If r = 0 the cov (x,y) is
                                                                         .
        (a) 0               (b) -1         (c) 1           (d) 0.2
    6. Rank correlation coefficient is given by
                                                                  e
                6ΣD 2              6ΣD 2                  6ΣD 2
                                                                eg
        (a) 1 + 3           (b) 1 − 2              (c) 1 − 3
                n −n               n −n                   n −n
                6Σ D 2
                                                              ll
        (d) 1 − 3
                n +n
    7. If cov (x,y) = σx σy then
                                                        Co
        (a) r = +1          (b) r = 0      (c) r = 2       (d) r = -1
    8. If D2 = 0 rank correlation is
              (a) 0         (b) 1          (c)0.5          (d) -1
                                               MJ
    9. Correlation coefficient is independent of change of
          (a) Origin                (b) Scale
          (c) Origin and Scale      (d) None
    10. Rank Correlation was found by
                                      s,
         (a) Pearson                (b) Spearman
         (c) Galton                 (d) Fisher
                                th
    19 What is correlation?
    20 Distinguish between positive and negative correlation.
    21 Define Karl Pearson’ s coefficient of correlation. Interpret r,
        when r = 1, -1 and 0.
    22 What is a scatter diagram? How is it useful in the study of
        Correlation?
                                      212
                                                 M.Sc.-          PAGE-19
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
    23 Distinguish between linear and non-linear correlation.
                                                                           .
    24 Mention important properties of correlation coefficient.
    25 Prove that correlation coefficient lies between –1 and +1.
                                                               e
    26 Show that correlation coefficient is independent of change of
                                                             eg
       origin and scale.
    27 What is Rank correlation? What are its merits and demerits?
                                                           ll
    28 Explain different types of correlation with examples.
    29 Distinguish between Karl Pearson’ s coefficient of correlation
                                                      Co
       and Spearman’ s correlation coefficient.
    30 For 10 observations x = 130; y = 220; x2 = 2290;
        y2 = 5510; xy = 3467. Find ‘ r’ .
    31 Cov (x,y) = 18.6; var(x) = 20.2; var(y) = 23.7. Find ‘ r’ .
                                             MJ
    32 Given that r = 0.42 cov(x,y) = 10.5 v(x) = 16; Find the
       standard deviation of y.
    33 Rank correlation coefficient r = 0.8. D2 = 33. Find ‘ n’ .
                                     s,
    Karl Pearson Correlation:
    34. Compute the coefficient of correlation of the following score of
                               th
        A and B.
         A     5    10 5        11 12 4            3      2    7    1
                          ma
B 1 6 2 8 5 1 4 6 5 2
            Price 8       10 15 17 20 22 24 25
          Supply 25 30 32 35 37 40 42 45
    36. Find out Karl Pearson’ s coefficient of correlation in the
           .
          Price(Rs.)     11 12 13 14 15 16 17 18 19 20
          Supply(Rs.) 30 29 29 25 24 24 24 21 18 15
 De
                                                                                .
       judgements.
                                                                          e
         Judge A 4       5     1    2     3     6     7    8
                                                                        eg
         Judge B 8       6     2    3     1     4     5    7
                                                                      ll
  47. From the following data, calculate the coefficient of rank
      correlation.
             X     36     56    20   65   42   33   44    50   15    60
                                                               Co
             Y     50     35    70   25   58   75   60    45   80    38
   48. Calculate spearman’ s coefficient of Rank correlation for the
       following data.
                                                    MJ
           X     53 98 95 81 75 71 59 55
           Y     47 25 32 37 30 40 39 45
   49. Apply spearman’ s Rank difference method and calculate
       coefficient of correlation between x and y from the data given
                                          s,
       below.
              X    22     28    31   23   29   31   27    22   31    18
                                     th
              Y    18     25    25   37   31   35   31    29   18    20
   50. Find the rank correlation coefficients.
                               ma
    Marks in 70      68        67    55 60 60        75 63      60        72
    Test I
    Marks in 65      65        80    60 68 58        75 62      60        70
                  of
Test II
      First     80 64 54 49 48 35 32 29 20 18 15 10
      pt
      subject
      Second 36 38 39 41 27 43 45 52 51 42 40 52
 De
subject
                                                         M.Sc.-            PAGE-21
     LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD
------------------------------------------------------------------------
                                                                   e       .
                                                                 eg
                                                               ll
                                                          Co
                                                 MJ
    Answers:
    I.
                                         s,
         1. (a).     2. (d)          3. (b)          4.(b) 5. (a)
         6. (c)      7. (a)          8. (b)          9. (c) 10. (b)
    II.
                                   th
M.Sc.- PAGE-22