Spin-dependent transport in
layered magnetic metals
Patrick Bruno
Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany
Summary:
introduction: what is spin-electronics
giant magnetoresistance (GMR)
tunneling magnetoresistance (TMR)
hot-electron spin-transistor
magnetization switching due to spin-injection
ab initio calculations of perpendicular current GMR
domain wall magnetoresistance
theory of TMR
introduction:
what is spin-electronics ?
what is an electron ?
particle with negative electric charge q = - e
and spin 1/2 (magnetic moment m = µ B )
-- -- -- --
+ =
- - - - - -
electron as seen by an electronician: -- --
- - -
electronics = manipulation of electrons
by using their charge for storage and
processing of information
the spin is (almost) completely neglected
principal electronic device: MOSFET
oxide drain
source
metallic gate (SiO2)
application: semi-conductor (Si) conducting channel
logic gates (2D electron gas)
random access memory
+
- metallic gate
inconvenients:
volatility of the information
energy consumption
limited density of information transistor blocked
electron as seen by a magnetician: -- --
- - -
purpose of magnetism: develop materials in which the electron spins
tend to align parallel to each (magnets)
the charge of the electrons plays a secondary role
application: mass storage of information
(magnetic disks and tapes)
advantages:
non-volatility
high storage density
no energy consumption
inconvenients:
mechanical access to information
Purpose of spin-electronics: ``Teaching electrons new tricks´´
combine electronics and magnetism in order to make new devices
in which both the charge and the spin of the electron play an active role
new fundamental physical questions
new phenomena
new devices and applications
giant-magnetoresistance
Giant magneto-resistance (GMR)
Baibich et al., PRL 61, 2472 (1988)
Binasch et al., PRB 39, 4828 (1989)
ferromagnetic metal (Fe, Co, ...)
current in-plane
(CIP)
non-magnetic metal (Cu, Ru, ...)
current perpendicular
to the plane (CPP)
definition conventions for the magnetoresistance ratio
R AP − RP
A= ``optimistic´´ definition
RP
R AP − RP H
A= ``pessimistic´´ definition
R AP
R AP − RP
A= reasonable definition
R AP + RP
interlayer exchange coupling
Ni80Co20 / Ru / Ni80Co20
Parkin and Mauri, PRB 44, 7131 (1991)
Co / Ru / Co
Parkin et al., PRL 64, 2304 (1990)
GMR without interlayer exchange coupling
Co / Au / Co / Au(111)
T = 80 K
T = 130 K
Barnas et al., Vacuum 41, 1241 (1990)
Exchange biasing to an antiferromagnet
FM
NM
FM
AF
interfacial exchange
interaction
FeNi
Cu
FeNi
FeMn
Diény et al., PRB 43, 1297 (1991)
Biasing by artificial antiferromagnet
free FM layer
pinned FM layer
weak
coupling
strong AF
artificial AF coupling
Applications of GMR: reading head for magnetic disks
Evolution of magnetic storage density
1 GByte drive
mechanism of GMR: spin-dependent scattering
two-current model
ferromagnetic (F) configuration
RF < RAF
antiferromagnetic (AF) configuration
R AF − RF
A≡ can be larger than 50%
R AF + RF
spin-dependent scattering probability
E E
P↓ > P↑ P↑ > P↓
DOS DOS
Fe1-xVx / Au / Co
x=0 x = 0.3
x = 0.3
x = 0.18
Renard et al., PRB 51, 12821 (1995)
tunneling-magnetoresistance
Tunneling magneto-resistance (TMR)
Jullière, Phys. Lett. 54A, 225 (1975)
Moodera et al., PRL 74, 3273 (1995) insulating barrier
ferromagnetic electrodes
Mechanism of tunneling magneto-resistance
parallel (P)
configuration
GP > GAP
antiparallel (AP)
configuration
Applications of TMR: magnetic random access memories (M-RAM)
"bit" lines
tunnel barrier
FM electrodes
"word" lines
hot-electron spin-transistor
hot-electron spin-transistor
Monsma et al. PRL 74, 5260 (1995)
Science 281, 407 (1998)
magnetization switching
due to spin-injection
Magnetization switching due to spin-injection
differential
resistance
AF
F
current density
Myers et al., Science 285, 867 (1999)
Katine et al., PRL 84, 3149 (2000)
ab initio calculations of
perpendicular current GMR
model considered:
ideal lead central region (disorder, ...) ideal lead
M
y
x
M current
L
z
periodic repetition of the supercell in x and y directions
Conductances within the Landauer-Büttiker formalism
0 1 N N+1
C = C↑ + C↓ (spin-colinear case)
e2 1
Cσ = σ
∑ T (k // , ε F )
h N // k
//
transmittance for spin σ, wavevector k// and energy εF : H0,1 G + HN,N +1
1,N
[
T σ (k // , ε F ) = Tr Γ1 G1+,N ΓN GN
−
1 ]
G0(0,0)+ ( 0 )+
GN +1,N +1
( )
Γ1 = i H1,0 G0(0,0)+ − G0(0,0)− H0,1
recursive calculation of
the Green’s function
calculation of the surface Green’s function:
layer addition (or removal) invariance
→ self-consistent (Dyson-like) equation
Computational details:
• density functional theory (local density approximation)
• TB-LMTO method (Green’s function)
well adapted to surface problems
• imaginary energy for GF calculations: 10-7 Ry
• disordered systems:
- 5 x 5 supercell averaged over 5 configurations, or
7 x 7 supercell averaged over 3 configurations
- on-site potential parameters obtained from (layer dependent) CPA method
• k// -integration: 10 000 points in the full fcc(001) SBZ
CF − C AF
• definition of GMR ratio: GMR ≡ C AF
125
100
GMR (%)
Cu∞ / Co / Cu / Co / Cu∞ 75
50
25
0
variable 0 10 20 30 40 50
5 ML
thickness Magnetic layer thickness (MLs)
1.0
Conductances / atom (in units e 2/h)
Cu Co ↑ Co ↓
0.8
F↑
0.6
0.4
0.2
F↓ AF
0.0
0 10 20 30 40 50
Magnetic layer thickness (MLs)
120
GMR (%)
Cu∞ / Co / Cu / Co / Cu∞ 115
110
5 ML 0 10 20 30 40 50 60 70 80 90 100
variable
Spacer layer thickness (MLs)
thickness
0.25
Conductances / atom (in units e 2/h)
F↓
0.24
0.23
AF
0.22
0 10 20 30 40 50 60 70 80 90 100
Spacer layer thickness (MLs)
repeated N+1 times
200
GMR (%)
175
Cu∞ / (Co / Cu / Co / Cu) / Cu∞
15.0
125
100
5 ML 0 2 4 6 8 10 12 14 16 18 20
Number of repetitions
1.0
Conductances / atom (in units e 2/h)
F↑
0.8
0.6
0.4
F↓
0.2
AF
0.0
0 2 4 6 8 10 12 14 16 18 20
Number of repetitions
120
interfaces with ideal
GMR (%)
90
15% interdiffusion
60
interdiffused
30
0 2 4 6 8 10
Cu∞ / Co / Cu / Co / Cu∞ Spacer layer thickness (MLs)
1.0
Conductances / atom (in units e 2/h)
0.8 F↑ (ideal)
5 ML variable
thickness
0.6 F↑ (interdiffused)
AF (interdiffused)
0.4 F↓ (interdiffused)
0.2
F↓ (ideal) AF (ideal)
0.0
0 2 4 6 8 10
Spacer layer thickness (MLs)
120
x= 0 (ideal)
GMR (%)
90
x= 15%
60
x= 50%
30
0 2 4 6 8 10
Cu∞ / Co / Cu(1-x)Pdx / Co / Cu∞ Spacer layer thickness (MLs)
1.0
Conductances / atom (in units e 2/h)
0.8 F↑ (ideal)
5 ML variable
thickness
0.6 F↑ (x=15%)
0.4
AF (x=15%) F↓ (ideal)
0.2
F↓ (x=15%) AF (ideal)
0.0
0 2 4 6 8 10
Spacer layer thickness (MLs)
120
Co
GMR (%)
90
60 Co85Ni15
30
Cu∞ / Co(1-x)Nix / Cu / Co (1-x)Nix / Cu∞ 0 2 4 6 8 10
Spacer layer thickness (MLs)
1.0
Conductances / atom (in units e 2/h)
5 ML variable F↑ (Co85Ni15)
0.8
thickness
0.6 F↑ (Co)
0.4 F↓ (Co85Ni15) AF (Co85Ni15)
0.2
F↓ (Co) AF (Co)
0.0
0 2 4 6 8 10
Spacer layer thickness (MLs)
120
90 Co
GMR (%)
60
30 Co85Cr15
Cu∞ / Co(1-x)Crx / Cu / Co (1-x)Crx / Cu∞ 0 2 4 6 8 10
Spacer layer thickness (MLs)
1.0
Conductances / atom (in units e 2/h)
5 ML variable F↑ (Co)
0.8
thickness
F↑ (Co85Cr15)
0.6
F↓ (Co85Cr15)
0.4 AF (Co85Cr15)
0.2
F↓ (Co) AF (Co)
0.0
0 2 4 6 8 10
Spacer layer thickness (MLs)
domain wall
magnetoresistance
w
A
Bloch wall w∝
K
easy axis
A
Néel wall w∝
2π M 2
250
200
GMR (%)
Co∞ / Co / Co∞ 150
100
50
0
magnetic wall of variable thickness 0 10 20
(linear rotation of magnetization) Domain-wall thickness (MLs)
Conductances / atom (in units e 2/h)
3.0 F (no wall)
2.5
2.0 AF (wall)
1.5
1.0
0.5
0.0
0 10 20
Domain-wall thickness (MLs)
Giant magnetoresistance of ferromagnetic atomic point contacts
atomic point contact
FM configuration
ferromagnetic wire electric current
AF configuration
explaination requires:
• narrow magnetic wall in an atomic point contact
• large resistance due to a narrow wall
geometrical constriction → new kind of magnetic wall:
structure (almost) entirely determined by the constriction geometry
energy = (almost) pure exchange energy
width determined by the characteristic size of the constriction
→ wall can be extremely narrow in an atomic point contact
1.0
0.5
Mz / Ms
unconstrained wall
0.0
-0.5 constrained wall
-1.0
-1.0 -0.5 0.0 0.5 1.0
x / w0
P. Bruno, PRL 83, 2425 (1999)
20 nm X 20 nm
theory of tunneling
magnetoresistance
θ
simple approach: Jullière model
E
assumptions: G = G↑ + G↓
Gσ ∝ ρ1σ (ε F ) ρ2σ (ε F )
GAP − GP
A≡ = P1 P2
GAP + GP
ρ ↑ (ε F ) − ρ ↓ (ε F )
with P≡
ρ ↑ (ε F ) + ρ ↓ (ε F )
DOS
measurement of the spin-polarization by
spin-injection into a superconductor
Soulen et al., Science 282, 85 (1998)
ab initio calculation of tunnel conductance
Ni / vacuum / Ni(001)
J. Henk (MPI Halle)
Fe / MgO / Fe(001)
MgO
Fe
J. Henk (MPI Halle)