0% found this document useful (0 votes)
104 views132 pages

Ut @25.615 Design

The document provides detailed specifications and calculations for a canal and drain system, including discharge requirements, bed width, supply levels, and hydraulic calculations. It outlines flow conditions at various sections, including velocity, area, and head loss calculations. The document also includes design parameters such as side slopes, rugosity coefficients, and dimensions for vents and transitions.

Uploaded by

RaviTeja
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
104 views132 pages

Ut @25.615 Design

The document provides detailed specifications and calculations for a canal and drain system, including discharge requirements, bed width, supply levels, and hydraulic calculations. It outlines flow conditions at various sections, including velocity, area, and head loss calculations. The document also includes design parameters such as side slopes, rugosity coefficients, and dimensions for vents and transitions.

Uploaded by

RaviTeja
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 132

H H H H H H H H H H H H H H H H H H H H

CANAL:

SL.NO. PARTICULARS CANAL @ KM.


25.615
.
1 DISCHARGE ( REQD. ) 9.061 cumecs

2 DISCHARGE ( DES. ) 10.848 cumecs

3 BED WIDTH 5.500 mts.

4 FULL SUPPLY DEPTH 1.500 mts.

5 VELOCITY 0.933 mts/sec

6 BED FALL 1 in 2000

7 COEFFT. OF RUGOSITY 0.025

8 FREE BOARD 0.60 mts

9 SIDE SLOPES 1.5 : 1

10 TOP WIDTH OF BANKS ( LEFT ) 4.000 mts.


(RIGHT ) 4.000 mts.

11 LOSS OF HEAD 0.00 mts.

12 BED LEVEL + 406.295 M

13 FULL SUPPLY LEVEL + 407.795 M

14 TOP BUND LEVEL + 408.395 M

15 SKEW 0

16 SKEW FACTOR 1.000

DRAIN:

1 DEEP BED LEVEL + 407.025 M


2 CATCHMENT AREA 0.218 sq.kms.

3 MAXIMUM FLOOD DISCHARGE 6.221 Cumecs


HHHHHHH HHHHH HHHHHHHHH :

C.A = 0.218 Sq.Km.

As per Dicken's formula

Q = 19.5 x ( 0.218 ) 0.75 ( vide C.D.O.'s guide lines )

= 6.221 Cumecs

HHHHHHHHH :

Deep Bed Level of Drain = + 407.025


C.B.L. = + 406.295
F.S.L. = + 407.795
Since the deep Bed Level of Drain is below F.S.L, Under Tunnel
is proposed for this crossing.

HHHHH HHH HHHHHHHHHHH:

HHHH HHH HHHHHHHHHHHH :

Discharge = 6.221 cumecs

Assumed Velocity in the Barrel = 3.00 m / sec

Area Required = Q / V = 2.074 Sq.mt

Considering a Vent size of 2.50 m x 1.50 m.

No.of Vents required = 0.553 no.

say 1 no.s

Velocity in the Barrel = 1.66 m / sec


H H H H H H H H H H H H H H H
Discharge = 6.22 Cumecs

P = 4.80 x Q 1/2 ( vide cl.8.1.2 of IS 7784 ( part I ) - 1993 )

= 4.80 x 2.494241

= 11.972 m.

Considering 60 % fluming

Width of waterway = 0.6 x 11.972 = 7.183 mts.

However provide 7.200 mts.

However provided 8.6 m width at tail and approach channel

Thickness of End Verticals = 0.3 m


Thickness of Middle Verticals = 0 m
Thickness of Expansion Joint = 0.012 m
Width of Barrel = 2.50 m
D/S Splay of Transitions = 3 : 1
U/S Splay of Transitions = 2 : 1

D/S Splay of Transitions = 7.200 - 2.5 x 3


2

= 7.05 m

U/S Splay of Transitions = 7.200 - 2.5 x 2


2

= 4.7 m
H H H H H H H H H H H H H H H H H H H

Discharge = 6.221 cumecs


Bed width = 7.20 mts.
Bed fall = 1 in 3300
n = 0.025
side slope = 1.5 : 1 1.150
By trial and error d = 1.150 mts.
404.395
Area A = (b+n*d)*d 7.20
Area = 10.264 sq.mt.

Perimeter P = b + ( 1 + n2 ) *2*d
Perimeter = 11.346 mts.

R = A/P
R = 0.905 mts.
R2/3 = 0.935

V = ( 1 / n ) * ( R2/3 ) * ( 1 / S )1/2
V = 0.651 mts/sec

Discharge Q = VxA
Q = 6.685 cumecs > 6.221 cumecs
H H H H H H H H H H H H H H H H H H H H H

FLOW CONDITION AT SECTION 1-1

COEFFICIENT OF RUGOSITY (n) 0.0250

DISCHARGE (Q) 6.221

BED LEVEL (BL) 404.395

SIDE SLOPE (s) 1.500

BED WIDTH (B) 7.200

FLOW DEPTH (D) 1.150 MFL + 405.545

1.5 :1
MFL 405.545

AREA = (B+sD)D 10.264 BL + 404.395

7.200
VELOCITY (V ) = Q / A 0.606

VEL. HEAD = V2 / 2g 0.019(in mtrs)

TEL @ 1-1 = MFL + VEL. HEAD 405.564

PERIMETRE (P) = B + 2D (1 + s2 )1/2 11.346 (in mtrs)


HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.905

SURFACE SLOPE (S) = V2 n2 / R4/3 0.00026 3809.8651289676


FLOW CONDITION AT SECTION 2-2

LENGTH FROM PREVIOUS SECTION(L)


( in mtrs) 0.000

COEFFICIENT OF RUGOSITY (n) 0.018


DISCHARGE (Q)
( in Cumecs) 6.221

BED WIDTH (B) 7.200

SIDE SLOPE (s) 0.000

BED LEVEL 404.395

FLOW DEPTH (D) 1.145 MFL + 405.540

MFL 405.540

AREA = (B+sD)D 8.244 BL + 404.395

7.200
VELOCITY (V ) = Q / A 0.755

VEL. HEAD = V2 / 2g 0.029(in mtrs)


PERIMETRE (P) = B + 2D (1 + s2 )1/2
(in mtrs) 9.490

HYDRAULIC MEAN RADIUS (R) = A / P


( in mtrs) 0.869

SURFACE SLOPE (S) = V2 n2 / R4/3 0.000223


EDDY LOSS(he) = 0.5( V12 - V22 ) / 2g
( in mtrs) 0.005

FRICTION LOSS (H ) 0.000

TEL wrt MFL = MFL + VEL HEAD 405.569 0.000


TEL wrt PREVIOUS TEL = PRE.TEL + EDDY
LOSS +FRI.LOSS 405.569 0.000 <------ Difference in TELs
FLOW CONDITION AT SECTION 3-3

LENGTH FROM PREVIOUS SECTION(L)


( in mtrs) 7.050

COEFFICIENT OF RUGOSITY (n) 0.0180

DISCHARGE (Q) 6.221

BED WIDTH (B)


( in mtrs) 2.500

SIDE SLOPE (s) 0.000

BED LEVEL 404.395

FLOW DEPTH (D) 0.930 MFL + 405.325

MFL 405.325

AREA = (B+sD)D 2.325 BL + 404.395

2.500
VELOCITY (V ) = Q / A 2.676

VEL. HEAD = V2 / 2g 0.365(in mtrs)

PERIMETRE (P) = B + 2D ( 1 + s2 ) 1/2


( in mtrs) 4.360

HYDRAULIC MEAN RADIUS (R) = A / P


( in mtrs) 0.533

SURFACE SLOPE (S) = V2 n2 / R4/3 0.005365


EDDY LOSS(he) = 0.3 ( V12 - V22 ) / 2g
( in mtrs) 0.101
FRICTION LOSS(Hf)
( in mtrs) 0.020

TEL wrt MFL = MFL + VEL HEAD 405.689


TEL wrt PREVIOUS TEL = PRE.TEL + EDDY
LOSS +FRI.LOSS 405.689 0.000 <------ Difference in TELs
LOSS OF HEAD CALCULATIONS INSIDE THE BARREL(using UNWIN's formula)
LENGTH FROM PREVIOUS SECTION(L)
( in mtrs) 20.800

COEFFICIENT OF RUGOSITY (n) 0.018

DISCHARGE (Q) 6.221

BED WIDTH (B) 2.500

SIDE SLOPE (s) 0.000

BED LEVEL 404.395


FLOW DEPTH (D) (ie VENT HEIGHT)
( in mtrs) 1.500
AREA (A) = (Overall "A" of all vents)
( in Sqm) 3.750
PERIMETRE (P) = (Overall "P" of all vents)
( in mtrs) 8.000 BL + 404.395

2.500
VELOCITY (V ) = Q / A 1.659

VEL. HEAD = V2 / 2g 0.140(in mtrs) VENT WAY SECTION


HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.469 vent size= 2.5 x

SURFACE SLOPE (S) = V2 n2 / R4/3 0.002449 150 x 150 HAUNCHES ARE CONSIDERED

f1 (Coef. Of Loss of Head at Entry) 0.505 IN CALCULATING 'A' & 'P'


a (assuming that the walls inside the barrel are
plastered) 0.003160

b 0.03050

f2 (at Entry) = a(1+b/R) 0.00337

Loss of Head inside barrel(h) = (1+f1+f2


L/R)V 2/2g 0.232

TEL @ 4-4 = PRE. TEL + h 405.921


FLOW CONDITION AT SECTION 4-4

COEFFICIENT OF RUGOSITY (n) 0.018

DISCHARGE (Q) 6.221

BED WIDTH (B) 2.500

SIDE SLOPE (s) 0.000

BED LEVEL 404.395

FLOW DEPTH (D) 1.354 MFL + 405.749

MFL 405.749

AREA = (B+sD)D 3.385 BL + 404.395

2.500
VELOCITY (V ) = Q / A 1.838

VEL. HEAD = V2 / 2g 0.172(in mtrs)


PERIMETRE (P) = B + 2D ( 1 + s2 )1/2
( in mtrs) 5.208
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.650

SURFACE SLOPE (S) = V2 n2 / R4/3 0.001944

TEL wrt MFL = MFL + VEL HEAD 405.921


TEL OBTAINED FROM PREVIOUS CAL.s WITH
UNWIN's 405.921 0.000 <------ Difference in TELs
formula
FLOW CONDITION AT SECTION 5-5

LENGTH FROM PREVIOUS SECTION(L) 4.700

COEFFICIENT OF RUGOSITY (n) 0.018

DISCHARGE (Q) 6.221

BED WIDTH (B) 7.200

SIDE SLOPE (s) 0.000

BED LEVEL 404.395

FLOW DEPTH (D) 1.546 MFL + 405.941

MFL 405.941

AREA = (B+sD)D 11.131 BL + 404.395

7.200
VELOCITY (V ) = Q / A 0.559

VEL. HEAD = V2 / 2g 0.016

PERIMETRE (P) = B + 2D ( 1 + s2 )1/2


( in mtrs) 10.292
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 1.082
SURFACE SLOPE (S) = V2 n2 / R4/3 0.000091
EDDY LOSS(he) = 0.2 ( V12 - V22 ) / 2g
( in mtrs) 0.031

FRICTION LOSS(Hf) 0.004782

TEL wrt MFL = MFL + VEL HEAD 405.957

TEL wrt PREVIOUS TEL = PRE.TEL + EDDY


LOSS +FRI.LOSS 405.957 0.000 <------ Difference in TELs
H

1.150 m
1.145 m

Difference in TELs
0.930 m

Difference in TELs
0.3

1.500 m

1.500

HES ARE CONSIDERED


1.354 m

Difference in TELs
1.546 m

Difference in TELs
FLOW CONDITION AT SECTION 6-6 ( ie @ DROP-1 )

COEFFICIENT OF RUGOSITY (n) 0.025

DISCHARGE (Q) ( in Cumecs) 6.221

BED WIDTH (B) (in mtrs) 7.200

SIDE SLOPE (s) 0.000

CREST LEVEL OF DROP 407.025

FLOW DEPTH (D) (i.e. Arrived from Malikapur graph) 0.821

MFL 407.846

AREA = (B+sD)D ( in Sqm) 5.911

VELOCITY (V ) = Q / A ( in m/s) 1.052

VEL. HEAD = V2 / 2g (in mtrs) 0.056

PERIMETRE (P) = B + 2D (1 + s2 )1/2 ( in mtrs) 8.842

HYDRAULIC MEAN RADIUS (R) = A / P ( in mtrs) 0.669

SURFACE SLOPE (S) = V2 n2 / R4/3 0.001184

TEL wrt MFL = MFL + VEL HEAD 407.902

407.846

405.941
407.025

404.395

FLOW CONDITION AT SECTION 6-6 (ie @ DROP 1)


FLOW CONDITION AT SECTION 7-7 (APPROACH CHANNEL)

LENGTH FROM PREVIOUS SECTION(L) ( in mtrs) 0.000

COEFFICIENT OF RUGOSITY (n) 0.025

DISCHARGE (Q) ( in Cumecs) 6.221

BED WIDTH (B) ( in mtrs) 7.200

SIDE SLOPE (s) 1.500

BED LEVEL 407.025

FLOW DEPTH (D) ( in mtrs) 0.848 MFL

MFL 407.873

AREA = (B+sD)D ( in Sqm) 7.184 BL

VELOCITY (V ) = Q / A ( in m/s) 0.866

VEL. HEAD = V2 / 2g 0.038

PERIMETRE (P) = B + 2D ( 1 + s2 )1/2 ( in mtrs) 10.258

HYDRAULIC MEAN RADIUS (R) = A / P ( in mtrs) 0.700

SURFACE SLOPE (S) = V2 n2 / R4/3 0.000754

EDDY LOSS(he) = 0.5 ( V12 - V22 ) / 2g ( in mtrs) 0.009

FRICTION LOSS(Hf) 0.000000

TEL wrt MFL = MFL + VEL HEAD 407.911

TEL wrt PREVIOUS TEL = PRE.TEL + ED.LOSS +FRI.LOSS 407.912


7 7

6 6

5 5

4 4

3 3
2 2

1 1
MFL 407.846

0.821

BL 407.025

7.200
407.873

1.5 :1
0.848

407.025

7.200

0.000 <------ Difference in TELs


407.912 407.902 405.957 405.921 TEL 405.689 405.569
0.866 1.052 0.559 1.838 VELOCITY 2.676 0.755
407.873 407.846 405.941 405.749 MFL 405.325 405.540
0.848 0.821 1.546 1.354 DEPTH OF FLOW 0.930 1.145
407.025 407.025 404.395 404.395 BED LEVEL 404.395 404.395
405.569 405.564
0.755 0.606
405.540 405.545
1.145 1.150
404.395 404.395
H H H H H H H H H H H H H H H H

Water level over drop = + 407.846 M


Water level on D/S of drop = + 405.941 M
Crest level of drop = + 407.025 M
Bottom level of drop = + 404.395 M
Density of concrete = 2.400 t/m 3
Wearing coat thickness = 0.15 m
+ 407.846

+ 405.941
+ 407.025 0.6

2.40 + 404.395

Top width of Drop wall = d

where d = maximum depth of flow over drop wall


= 407.846 - 407.025 = 0.821 m
= density of concrete = 2.40 t/m 3

Top width of Drop wall = 0.821 = 0.530 m


2.40
However , provide Drop wall of 0.60 m Top width
(b).BASE WIDTH OF DROP WALL :

Base width of Drop wall = H + d +x +w.c

where d = maximum depth of flow over drop wall


= 0.821 m
H = Height of Drop wall
= 407.025 - 404.395 = 2.630 m
x = Cistern depth = 0m
w.c= Thickness of wearing coat = 0.15 m
= density of concrete = 2.40 t/m 3
Base width of Drop wall = 2.630 + 0.821 + 0 + 0.15
2.40
= 2.32 m
However , provide Drop wall of 2.40 m bottom width

(c).LENGTH OF FLOOR :

L1 = 2 dc + 2 dc h

where L1 = required length of floor


dc = F.S.D. on U/S of drop = 0.821 m
h = Height of Drop = 2.630 m

L1 = 4.581 m say 4.60 m

(d).THICKNESS OF APRON :

t = 0.55 dc + h

where t = Thickness of Apron


dc = F.S.D. on U/S of drop = 0.821 m
h = Height of Drop = 2.630 m

t = 1.022 m say 1.10 m


(Including 0.15m Wearing coat)
H H H H H H H H H H H H H H H H H H H H H H

UPSTREAM :

Discharge (Q) = 6.221 cumecs.


Bed Width (L) = 7.200 mts.
M.F.L./ F.S.L. = + 407.873 m.
f ( silt factor ) = 2.000

Discharge per mtr. Width ( q ) = Q/L = 0.864 cumecs / mt.

Scour depth (d) = 1.35 * ( q² / f ) ^ 0.33

= 0.975 mts.

Max. Scour Depth = 1.5 * d = 1.463 mts.

Max. Scour Level =+ 407.873 - 1.463

=+ 406.410 m.

However cut off is proposed @ 406.275 m.

DOWNSTREAM :

Discharge (Q) = 6.221 cumecs.


Bed Width (L) = 7.200 mts.
M.F.L./ F.S.L. = + 405.545 m.
f ( silt factor ) = 2.000

Discharge per mtr. Width ( q ) = Q/L = 0.864 cumecs / mt.

Scour depth (d) = 1.35 * ( q² / f ) ^ 0.33

= 0.975 mts.

Max. Scour Depth = 2*d = 1.950 mts.

Max. Scour Level =+ 405.545 - 1.950

=+ 403.595 m.

However the cut off is proposed upto + 403.645 m.


DESIGN OF HEAD WALL
DATA :
2.0 : 1
HEAD WALL TOP LEVEL : 408.395 W4

BOX SLAB TOP LEVEL : 406.195 0.5


BOX SLAB BOTTOM LEVEL : 405.895 408.395

TOP WIDTH : 0.500


BOTTOM WIDTH : 1.800 W3
FRONT BATTER : 0.000 2.200
REAR BATTER : 1.300 W1 . W5
BANK REAR SLOPE : 2.0 : 1 W2
UNIT WT. OF CONC. : 2.400 406.195 0.000 1.300
UNIT WT. OF SOIL : 2.100 A
405.895 1.800
HOR. COEFFT. OF SOIL : 0.1880
VER. COEFFT. OF SOIL : 0.0295

STRESS IN CONCRETE :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 0.500 * 2.200 * 2.400 2.640 1.550 4.092

W2 0.500 * 2.200 * 0.000 * 2.400 0.000 0.867 0.000

W3 0.500 * 2.200 * 1.300 * 2.100 3.003 0.433 1.301

W4 0.500 * 1.300 * 0.000 * 2.100 0.000 0.433 0.000

W5 0.500 * 2.200 * 0.000 * 2.400 0.000 1.800 0.000

PV 0.0295 ( 4.840 - 0.000 ) 2.100 0.300 - -

5.943

PH 0.1880 ( 4.840 - 0.000 ) 2.100 1.911 0.880 1.682

1.911 7.075

LEVER ARM = 1.190 mts.


ECCENTRICITY = 0.290 mts.
ALLOWABLE LIMIT = 0.300 mts. HENCE SAFE

MAX. STRESS = 6.498 t/sq.mt.

Page 31 HEAD WALL


MIN. STRESS = 0.105 t/sq.mt.

Page 32 HEAD WALL


MOVING LOADS :

Considering class A loading as per 207.1.3 of I.R.C 6 - 2000

11.4 11.4

1.20

1:1 1:1
2.200

5.85

Dispersion width = ( 0.25/ 2 ) + 1.20 + ( 0.25 / 2 ) + 2 x 2.200

= 5.85 mts

5.70 t 5.70 t

1.80

2.20

Dispersion width = ( 0.50 / 2 ) + 1.80 + ( 0.50 / 2 ) + 2 x 2.200

= 6.70 mts

Total area of dispersion = 5.850 x 6.700

= 39.20 m2

Intensity of loading at = 22.80 / 39.20


Box top level
= 0.582 t / m2
DESIGN OF BOX ( UNDER CANAL )

No.of Vents = 1
Width of Vent = 2.500 mts.
Height of Box including wc = 1.575 mts.
Thickness of sealing coat = 0.040 mts.
Thickness of w.c = 0.075 mts.
Thickness of Hor. Mem = 0.300 mts.
Thickness of Ver.(end) Mem = 0.300 mts.
Thickness of Middle Mem = 0.000 mts.
F S L of canal = 407.795 M
Tail water level of drain = 405.545 M
Live load surcharge = 0.000 t/m2
Avg. Ground Level/TBL = 408.395 M
Canal bed level = 406.295 M
Height of water over box = 1.500 mts.
Top level of box = 406.195 M
Sill level = 404.395 M
Density of RCC = 2.500
Density of earth = 2.100
Density of concrete = 2.400
Density of water = 1.000
Coeft. = 0.361
Total Width of Box = 3.100 m

F.S.L 407.795

CBL + 406.295
0.300 406.195
405.895

1.575

404.395
0.300

0.30 2.50 0.30


3.100

Loads on RCC box per mt.

Wt. of top member = 3.100 x 0.300 x 2.500 = 2.325 t


Wt. of bottom member = 3.100 x 0.300 x 2.500 = 2.325 t
Wt. of vertical walls ( end ) =2x 1.575 x 0.300 x 2.500 = 2.363 t
Wt. of vertical walls (middle ) =1 x 1.575 x 0.000 x 2.500 = 0.000 t
Wt. of earth fill over box = 3.100 x 0.000 x 2.100 = 0.000 t
Wt. of sealing coat = 3.100 x 0.040 x 2.400 = 0.298 t
Wt. of water =1 x 2.500 x 1.500 x 1.000 = 3.750 t
Wt. of wc =1x 2.500 x 0.075 x 2.400 = 0.450 t
Wt. of water over the box = 3.100 x 1.500 x 1.000 = 4.650 t
TOTAL 16.160
CASE 1 BOX EMPTY & CANAL EMPTY

Total wt. of box(without water) = 16.160 - 3.750 - 4.650 = 7.760 t

net upward soil reaction B = 7.760 - 2.325 - 0.450 = 1.608 t/m2


3.100
load on top of slab A = 2.325 + 0.298 = 0.846 t/m2
3.100
water pressure C = = 0

water load D = = 0

earth pr. At top E = 0.361 x 2.100 x 0.15 = 0.114 t/m2

earth pr. At bottom F = 0.361 x 2.100 x 2.025 = 1.535 t/m2

CASE 2 BOX FULL & CANAL EMPTY

Total wt. of box = 16.160 - 4.650 = 11.510 t

net upward soil reaction B = 11.510 - 2.325 - 0.450 = 2.818 t/m2


3.100
load on top of slab A = 2.325 + 0.298 = 0.846 t/m2
3.100
water pressure C = 0 TO 1.500 t/m2

water load D = = 1.500 t/m2

earth pr. At top E = 0.361 x 2.100 x 0.150 = 0.114 t/m2

earth pr. At bottom F = 0.361 x 2.100 x 2.025 = 1.535 t/m2

upward thrust on top slab G = 0.500 x 1.000 = 0.500 t/m3

CASE 3 BOX EMPTY & CANAL FULL

Total wt. of box(without water) = 16.160 - 3.750 = 12.410 t

net upward soil reaction B = 12.410 - 2.325 - 0.450 = 3.108 t/m2


3.100
load on top of slab A = 4.650 + 2.325 + 0.298 = 2.346 t/m2
3.100
water pressure C = = 0

water load D = = 0

earth pr. At top E = 0.361 x 1.100 x 0.150 = 0.060 t/m2

earth pr. At bottom F = 0.361 x 1.100 x 2.025 = 0.804 t/m2

water pr. At top H = 1.690 x 1.000 = 1.690 t/m2

water pr. At bottom J = 3.565 x 1.000 = 3.565 t/m2


CASE 4 BOX FULL & CANAL FULL

Total wt. of box = = 16.160 t

net upward soil reaction B = 16.160 - 2.325 - 0.450 = 4.318 t/m2


3.100
load on top of slab A = 4.650 + 2.325 + 0.298 = 2.346 t/m2
3.100
water pressure C = 0 TO 1.500 t/m2

water load D = 1.500 t/m2

earth pr. At top E = 0.361 x 1.100 x 0.150 = 0.060 t/m2

earth pr. At bottom F = 0.361 x 1.100 x 2.025 = 0.804 t/m2

water pr. At top H = 1.690 x 1.000 = 1.690 t/m2

water pr. At bottom J = 3.565 x 1.000 = 3.565 t/m2

upward thrust on top slab G = 0.500 x 1.000 = 0.500 t/m3

A
H E E H
E H 3 2 4 B E
B E B B
B E
B G B
B 3 C C
B C B 4
B BD B
J BB
F J
1 B 2 E
1
B B
F F B
B H B
E B
B B
B
INPUT FILE: Box under Canal UT 25.615

1 STAAD SPACE
2 START JOB INFORMATION
3 ENGINEER DATE 28-Nov-19
4 END JOB INFORMATION
5 INPUT WIDTH 79
6 UNIT METER KN
7 JOINT COORDINATES
8 1 0 0 0; 2 2.5 0 0; 3 0 1.5 0; 4 2.5 1.5 0;
9 MEMBER INCIDENCES
10 1 3 4; 2 1 3; 3 2 4; 4 1 2;
11 DEFINE MATERIAL START
12 ISOTROPIC CONCRETE
13 E 2.17185e+007
14 POISSON 0.17
15 DENSITY 23.5616
16 ALPHA 1e-005
17 DAMP 0.05
18 TYPE CONCRETE
19 STRENGTH FCU 27579
20 END DEFINE MATERIAL
21 MEMBER PROPERTY AMERICAN
22 1 TO 4 PRIS YD 0.3 ZD 1
23 CONSTANTS
24 MATERIAL CONCRETE ALL
25 SUPPORTS
26 1 2 PINNED
27 LOAD 1 LOADTYPE None TITLE BOX EMPTY AND CANAL EMPTY
28 MEMBER LOAD
29 4 UNI GY 1.678
30 1 UNI GY -0.846
31 3 LIN Y 1.535 0.114
32 2 LIN Y -1.535 -0.114
33 LOAD 2 LOADTYPE None TITLE BOX FULL AND CANAL EMPTY
34 MEMBER LOAD
35 4 UNI GY 2.818
36 1 UNI GY -0.846
37 1 UNI GY 0.5
38 2 LIN Y 1.5 0
39 3 LIN Y -1.5 0
40 3 LIN Y 1.535 0.114
41 2 LIN Y -1.535 -0.114
42 LOAD 3 LOADTYPE None TITLE BOX EMPTY AND CANAL FULL
43 MEMBER LOAD
44 4 UNI GY 3.108
45 1 UNI GY -2.346
46 3 LIN Y 0.804 0.06
47 2 LIN Y -0.804 -0.06
48 3 LIN Y 3.565 1.69
49 2 LIN Y -3.565 -1.69
50 LOAD 4 LOADTYPE None TITLE BOX FULL AND CANAL FULL
51 MEMBER LOAD
52 4 UNI GY 4.381
53 1 UNI GY -2.346
54 1 UNI GY 0.5
55 2 LIN Y -1.5 0
56 3 LIN Y 1.5 0
57 2 LIN Y 0.804 0.06
58 3 LIN Y -0.804 -0.06
59 2 LIN Y 3.565 1.69
60 3 LIN Y -3.565 -1.69
61 PERFORM ANALYSIS PRINT ALL
62 FINISH

Joint Displacements

Horizontal Vertical Horizontal Resultant Rotational


Node L/C X mm Y mm Z mm mm rX rad rY rad rZ rad
1 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 0 0 0 0 0 0
4 BOX FULL A 0 0 0 0 0 0 0
2 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 0 0 0 0 0 0
4 BOX FULL A 0 0 0 0 0 0 0
3 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 -0.001 0 0.001 0 0 0
4 BOX FULL A 0 -0.001 0 0.001 0 0 0
4 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 -0.001 0 0.001 0 0 0
4 BOX FULL A 0 -0.001 0 0.001 0 0 0

Support Reactions

Horizontal Vertical Horizontal Moment


Node L/C Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm
1 1 BOX EMPTY -1.04 -1.04 0 0 0 0
2 BOX FULL A -0.745 -3.09 0 0 0 0
3 BOX EMPTY -2.86 -0.953 0 0 0 0
4 BOX FULL A 1.169 -3.169 0 0 0 0
2 1 BOX EMPTY 1.04 -1.04 0 0 0 0
2 BOX FULL A 0.745 -3.09 0 0 0 0
3 BOX EMPTY 2.86 -0.953 0 0 0 0
4 BOX FULL A -1.169 -3.169 0 0 0 0
Beam L/C Node Fx kN Fy kN Fz kN Mx kNm My kNm
1 1 BOX EM 3 0.197 1.058 0 0 0
4 -0.197 1.058 0 0 0
2 BOX FU 3 -0.633 0.433 0 0 0
4 0.633 0.433 0 0 0
3 BOX EM 3 1.729 2.933 0 0 0
4 -1.729 2.933 0 0 0
4 BOX FU 3 -2.295 2.308 0 0 0
4 2.295 2.308 0 0 0
2 1 BOX EM 1 1.058 1.04 0 0 0
3 -1.058 0.197 0 0 0
2 BOX FU 1 0.433 0.745 0 0 0
3 -0.433 -0.633 0 0 0
3 BOX EM 1 2.933 2.86 0 0 0
3 -2.933 1.729 0 0 0
4 BOX FU 1 2.308 -1.169 0 0 0
3 -2.308 -2.295 0 0 0
3 1 BOX EM 2 1.058 -1.04 0 0 0
4 -1.058 -0.197 0 0 0
2 BOX FU 2 0.433 -0.745 0 0 0
4 -0.433 0.633 0 0 0
3 BOX EM 2 2.933 -2.86 0 0 0
4 -2.933 -1.729 0 0 0
4 BOX FU 2 2.308 1.169 0 0 0
4 -2.308 2.295 0 0 0
4 1 BOX EM 1 0 -2.098 0 0 0
2 0 -2.098 0 0 0
2 BOX FU 1 0 -3.523 0 0 0
2 0 -3.523 0 0 0
3 BOX EM 1 0 -3.885 0 0 0
2 0 -3.885 0 0 0
4 BOX FU 1 0 -5.476 0 0 0
2 0 -5.476 0 0 0
BENDING MOMENT

Beam L/C Dist m Mz kNm Dist m My kNm My kNm Mz kNm


1 1 BOX EMPTY Max +ve 0 0.286 0 0
Max -ve 1.25 -0.375 0 0
2 BOX FULL A Max +ve N/A N/A 0 0
Max -ve 1.25 -0.274 0 0
3 BOX EMPTY Max +ve 0 0.924 0 0
Max -ve 1.25 -0.908 0 0
4 BOX FULL A Max +ve 0 0.324 0 0
Max -ve 1.25 -1.118 0 0
2 1 BOX EMPTY Max +ve 0 0.652 0 0
Max -ve N/A N/A 0 0
2 BOX FULL A Max +ve 0 1.044 0 0
Max -ve 1.5 -0.004 0 0
3 BOX EMPTY Max +ve 0 1.281 0 0
Max -ve N/A N/A 0 0
4 BOX FULL A Max +ve 0.375 1.621 0 0
Max -ve N/A N/A 0 0
3 1 BOX EMPTY Max +ve N/A N/A 0 0
Max -ve 0 -0.652 0 0
2 BOX FULL A Max +ve 1.5 0.004 0 0
Max -ve 0 -1.044 0 0
3 BOX EMPTY Max +ve N/A N/A 0 0
Max -ve 0 -1.281 0 0
4 BOX FULL A Max +ve N/A N/A 0 0
Max -ve 0.375 -1.621 0 0
4 1 BOX EMPTY Max +ve 1.25 0.659 0 0
Max -ve 0 -0.652 0 0
2 BOX FULL A Max +ve 1.25 1.157 0 0
Max -ve 0 -1.044 0 0
3 BOX EMPTY Max +ve 1.25 1.147 0 0
Max -ve 0 -1.281 0 0
4 BOX FULL A Max +ve 1.25 2.045 0 0
Max -ve 0 -1.378 0 0
BOX EMPTY AND CANAL FULL CONDITION
BOX FULL AND CANAL FULL CONDITION
Shear Force's

Beam L/C Dist m Fy kN Dist m Fz kN My kNm Mz kNm


1 1 BOX EMPTY Max +ve 0 1.058 0 0
Max -ve 2.5 -1.058 0 0
2 BOX FULL A Max +ve 0 0.433 0 0
Max -ve 2.5 -0.433 0 0
3 BOX EMPTY Max +ve 0 2.933 0 0
Max -ve 2.5 -2.933 0 0
4 BOX FULL A Max +ve 0 2.308 0 0
Max -ve 2.5 -2.308 0 0
2 1 BOX EMPTY Max +ve 0 1.04 0 0
Max -ve 1.5 -0.197 0 0
2 BOX FULL A Max +ve 0 0.745 0 0
Max -ve N/A N/A 0 0
3 BOX EMPTY Max +ve 0 2.86 0 0
Max -ve 1.5 -1.729 0 0
4 BOX FULL A Max +ve 1.5 2.295 0 0
Max -ve 0 -1.169 0 0
3 1 BOX EMPTY Max +ve 1.5 0.197 0 0
Max -ve 0 -1.04 0 0
2 BOX FULL A Max +ve N/A N/A 0 0
Max -ve 0 -0.745 0 0
3 BOX EMPTY Max +ve 1.5 1.729 0 0
Max -ve 0 -2.86 0 0
4 BOX FULL A Max +ve 0 1.169 0 0
Max -ve 1.5 -2.295 0 0
4 1 BOX EMPTY Max +ve 2.5 2.098 0 0
Max -ve 0 -2.098 0 0
2 BOX FULL A Max +ve 2.5 3.523 0 0
Max -ve 0 -3.523 0 0
3 BOX EMPTY Max +ve 2.5 3.885 0 0
Max -ve 0 -3.885 0 0
4 BOX FULL A Max +ve 2.5 5.476 0 0
Max -ve 0 -5.476 0 0
BOX EMPTY AND CANAL FULL CONDITION
BOX FULL AND CANAL FULL CONDITION
Axial Force's

Beam L/C Dist m Fx kN Dist m Fz kN My kNm Mz kNm


1 1 BOX EMPTY Max +ve 0 0.197
Max -ve N/A N/A
2 BOX FULL A Max +ve N/A N/A
Max -ve 0 -0.633
3 BOX EMPTY Max +ve 0 1.729
Max -ve N/A N/A
4 BOX FULL A Max +ve N/A N/A
Max -ve 0 -2.295
2 1 BOX EMPTY Max +ve 0 1.058
Max -ve N/A N/A
2 BOX FULL A Max +ve 0 0.433
Max -ve N/A N/A
3 BOX EMPTY Max +ve 0 2.933
Max -ve N/A N/A
4 BOX FULL A Max +ve 0 2.308
Max -ve N/A N/A
3 1 BOX EMPTY Max +ve 0 1.058
Max -ve N/A N/A
2 BOX FULL A Max +ve 0 0.433
Max -ve N/A N/A
3 BOX EMPTY Max +ve 0 2.933
Max -ve N/A N/A
4 BOX FULL A Max +ve 0 2.308
Max -ve N/A N/A
4 1 BOX EMPTY Max +ve 0 0
Max -ve 0 0
2 BOX FULL A Max +ve 0 0
Max -ve 0 0
3 BOX EMPTY Max +ve 0 0
Max -ve 0 0
4 BOX FULL A Max +ve 0 0
Max -ve 0 0
BOX EMPTY AND CANAL FULL CONDITION
BOX FULL AND CANAL FULL CONDITION
Mz kNm
0.286
-0.286
-0.004
0.004
0.924
-0.924
0.324
-0.324
0.652
-0.286
1.044
0.004
1.281
-0.924
1.378
-0.324
-0.652
0.286
-1.044
-0.004
-1.281
0.924
-1.378
0.324
-0.652
0.652
-1.044
1.044
-1.281
1.281
-1.378
1.378
DATA SHEET: BOX UNDER CANAL
END BOTTOM END TOP END VERTICAL MID VERTICAL
MEMBER 1 2 3&4
CONDITION DRY WET DRY WET DRY WET DRY WET
MOMENT SUPPORT 1.281 1.378 0.924 0.324 0.924 0.324 0 0
CENTER 1.147 2.045 0.908 1.118 0.242 1.501 0 0
SUPPORT 1.281 1.378 0.924 0.324 1.281 1.378 0 0

SHEAR SUPPORT 3.885 5.476 2.933 2.308 1.729 2.295 0 0


SUPPORT 3.885 5.476 2.933 2.308 1.729 2.295 0 0

AXIAL FORCE 0 0 1.729 2.295 2.933 2.308 0 0

LENGTH 2.5 2.5 2.5 2.5 1.5 1.5 0 0

THICKNESS 300 300 300 300 300 300 300 300

COVER 40 40 40 40 40 40 40 40

MAIN REINF 12 12 12 12 12 12 12 12

DIST. REINF 10 10 10 10 10 10 10 10

m = 10 Fe415
r = σ st / σ cbc M30
= 200 / 10
= 20.00
k = m / ( m + r )
= 10 / ( 10 + 20.000 )
= 0.333
j = 1 - k / 3
= 1 - 0.333 / 3
= 0.889
Q = ( 1 / 2 )x σ cbc x
= ( 1 / 2 )x / 10 x
= 1.4815
k x j
0.333 x 0.889
DESIGN OF END BOTTOM MEMBER

1.147

DRY 1.281 1.281

2.5

A C B
A 2.045

WET 1.378 1.378

2.5

AT SUPPORT :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 1.281 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 1.281 t-m

EFFECTIVE DEPTH REQUIRED = 1.281 x 1E5


14.81481 x 100

= 9.30 cm <

AREA OF STEEL = 1.281 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 3.24 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.378 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 1.378 t-m

EFFECTIVE DEPTH REQUIRED = 1.378 x 1E5


14.81481 x 100

= 9.64 cm <

AREA OF STEEL = 1.378 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 3.49 cm²

REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 3.49 cm²


Hence provide 12 dia @ 300 c/c
Provided steel = 3.77 cm²
AT CENTRE :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 1.147 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 1.147 t-m

EFFECTIVE DEPTH REQUIRED = 1.147 x 1E5


14.81481 x 100

= 8.80 cm <

AREA OF STEEL = 1.147 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 2.90 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 2.045 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 2.045 t-m

EFFECTIVE DEPTH REQUIRED = 2.045 x 1E5


14.81481 x 100

= 11.75 cm <

AREA OF STEEL = 2.045 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 5.18 cm²

REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 5.18 cm²


Hence provide 12 dia @ 200 c/c
Provided steel = 5.65 cm²
DISTRIBUTION STEEL:

MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)

MINIMUM STEEL ( 0.24 * 30 )*100 / 100

= 7.286 cm²

ON EACH FACE= 3.643 cm²

AREA OF STEEL= 3.643 cm²

PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )

SHEAR:

CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT

d = ( 254 + 300 / 2 ) / 1000

d = 0.404 m

( i ) DRY CONDITION 3.885


2.629

0.846 0.404

1.250
3.885

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 2.629 t

( ii ) WET CONDITION 5.48


3.706

0.846 0.404

1.250
5.48

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 3.706 t

MAXIMUM SHEAR FORCE = 3.706 t

SHEAR STRESS ( v)= τ 5.559 * 1000 / ( 100 * 25.4 ) = 2.19 Kg/cm2


100*As/b*d = 100 * 3.77 / ( 100 * 25.4 ) = 0.148 %

FROM TABLE 23 OF IS 456:2000

PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.171 Kg/cm2

τc > τV
Hence ok, safe in shear
)

25.4 cm.

)
25.4 cm.
)

25.4 cm

25.4 cm.
DESIGN OF END TOP MEMBER

A B
A
DRY 0.924 0.924

C
0.908
2.5

A B
A
WET 0.32 0.32

C
1.12
2.5
AT SUPPORT :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 0.924 t-m


MAX. AXIAL FORCE = 1.729 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.180 t-m

RESULTANT MOMENT ( M + C X ) = 1.104 t-m

EFFECTIVE DEPTH REQUIRED = 1.104 x 1E5


14.81481 x 100

= 8.63 cm <

AREA OF STEEL = 1.104 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 2.79 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 0.32 t-m


MAX. AXIAL FORCE = 2.295 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.239 t-m

RESULTANT MOMENT ( M + C X ) = 0.563 t-m

EFFECTIVE DEPTH REQUIRED = 0.563 x 1E5


14.81481 x 100

= 6.16 cm <

AREA OF STEEL = 0.563 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 1.42 cm²

REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 2.79 cm²


Hence provide 12 dia @ 300 c/c
Provided steel = 3.77 cm²
AT CENTRE :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 0.908 t-m


MAX. AXIAL FORCE = 1.729 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.180 t-m

RESULTANT MOMENT ( M + C X ) = 1.088 t-m

EFFECTIVE DEPTH REQUIRED = 1.088 x 1E5


14.81481 x 100

= 8.57 cm <

AREA OF STEEL = 1.088 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 2.75 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.12 t-m


MAX. AXIAL FORCE = 2.295 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.239 t-m

RESULTANT MOMENT ( M + C X ) = 1.357 t-m

EFFECTIVE DEPTH REQUIRED = 1.357 x 1E5


14.81481 x 100

= 9.57 cm <

AREA OF STEEL = 1.357 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.88889 )
= 3.43 cm²

REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 3.43 cm²


Hence provide 12 dia @ 300 c/c
Provided steel = 3.77 cm²
DISTRIBUTION STEEL:

MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)

MINIMUM STEEL ( 0.24 * 30 )*100 / 100

= 7.286 cm²

ON EACH FACE= 3.643 cm²

AREA OF STEEL= 3.643 cm²

PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )

SHEAR:

CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT

d = ( 254 + 300 / 2 ) / 1000

d = 0.404 m

( i ) DRY CONDITION 2.933


1.985

0.846 0.404

1.250
2.933

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 1.985 t

( ii ) WET CONDITION 2.31


1.562

0.846 0.404

1.250
2.31

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 1.562 t

MAXIMUM SHEAR FORCE = 1.985 t

SHEAR STRESS ( v)= τ 2.978 * 1000 / ( 100 * 25.4 ) = 1.17 Kg/cm2


100*As/b*d = 100 * 3.77 / ( 100 * 25.4 ) = 0.148 %

FROM TABLE 23 OF IS 456:2000

PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.171 Kg/cm2

τc > τV
Hence ok, safe in shear
MEMBER

25.4 cm.

)
25.4 cm.
)

25.4 cm

25.4 cm.
DESIGN OF END VERTICAL MEMBER

DRY WET

0.924 0.32

0.242 1.50

1.281 1.38

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 1.281 t-m

DIRECT STRESS ( cc,cal ) = 2.933 / 1.0 * 0.3

= 9.777 t/m²

PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE

cc = 8 N/mm²
= 800 t/m²

STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6

Z = 0.0150

cbc,cal = 1.281 / 0.0150

= 85.400

cbc PERMISSIBLE = 1000


(FOR M30 GRADE)

cc,cal + cbc,cal < 1


cc cbc

9.777 + 85.400
800 1000

0.0122 + 0.0854 = 0.098 < 1

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.50 t-m


DIRECT STRESS ( cc,cal ) = 2.31 / 1.0 * 0.3

= 7.693 t/m²

PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE

cc = 8 N/mm²
= 800 t/m²

STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6

Z = 0.0150

cbc,cal = 1.50 / 0.0150

= 100.067
cbc PERMISSIBLE = 1000
(FOR M30 GRADE)

cc,cal + cbc,cal < 1


cc cbc

7.693 + 100.067
800 1000

0.0096 + 0.1001 = 0.110 < 1

AT SUPPORT :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 1.281 t-m


MAX. AXIAL FORCE = 2.933 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.305 t-m

RESULTANT MOMENT ( M + C X ) = 1.586 t-m

EFFECTIVE DEPTH REQUIRED = 1.586 x 1E5


14.814815 x 100

= 10.35 cm <

AREA OF STEEL = 1.586 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.888889 )
= 4.01 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.50 t-m


MAX. AXIAL FORCE = 2.308 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.240 t-m

RESULTANT MOMENT ( M + C X ) = 1.741 t-m

EFFECTIVE DEPTH REQUIRED = 1.741 x 1E5


14.814815 x 100

= 10.84 cm <
AREA OF STEEL = 1.741 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.888889 )
= 4.41 cm²

REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 4.41 cm²


Hence provide 12 dia @ 250 c/c
Provided steel = 4.52 cm²
AT CENTRE :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 0.242 t-m


MAX. AXIAL FORCE = 2.933 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.305 t-m

RESULTANT MOMENT ( M + C X ) = 0.547 t-m

EFFECTIVE DEPTH REQUIRED = 0.547 x 1E5


14.814815 x 100

= 6.08 cm <

AREA OF STEEL = 0.547 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.888889 )
= 1.38 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.50 t-m


MAX. AXIAL FORCE = 2.308 t
EFFECTIVE DEPTH = 254 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 254 - 0.5 x 300


= 104 mm.

MOMENT DUE TO AXIAL FORCE = 0.240 t-m

RESULTANT MOMENT ( M + C X ) = 1.741 t-m

EFFECTIVE DEPTH REQUIRED = 1.741 x 1E5


14.814815 x 100

= 10.84 cm <

AREA OF STEEL = 1.741 x 1 E 5


t x j x 25.4
( t = 1750 j = 0.888889 )
= 4.41 cm²

REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 4.41 cm²


Hence provide 12 dia @ 250 c/c
Provided steel = 4.52 cm²
DISTRIBUTION STEEL:

MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)

MINIMUM STEEL ( 0.24 * 30 )*100 / 100

= 7.286 cm²

ON EACH FACE= 3.643 cm²

AREA OF STEEL= 3.643 cm²

PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )

SHEAR:

CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT

d = ( 254 + 300 / 2 ) / 1000

d = 0.404 m

DRY WET

1.729

0.404 0.404
0.798
0.750 0.750
0.346 0.346
1.5 1.5

1.729 2.30

MAX. SHEAR FORCE AT CRITICAL SECTION (DRY) = 0.798 t

MAX. SHEAR FORCE AT CRITICAL SECTION (WET) = 1.059 t

MAXIMUM SHEAR FORCE = 1.059 t

SHEAR STRESS ( v)= τ 1.588 * 1000 / ( 100 * 25.4 ) = 0.63 Kg/cm2


100*As/b*d = 100 * 4.52 / ( 100 * 25.4 ) = 0.178 %

FROM TABLE 23 OF IS 456:2000

PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.124 Kg/cm2

τc > τV
Hence ok, safe in shear
)

25.4 cm.

25.4 cm.
)

25.4 cm

25.4 cm.
2.30

1.059
DESIGN OF BOX ( UNDER EARTH BANK )

No.of Vents = 1
Width of Vent = 2.500 mts.
Height of Box including wc = 1.575 mts.
Thickness of sealing coat = 0.040 mts.
Thickness of w.c = 0.075 mts.
Thickness of Hor. Mem = 0.300 mts.
Thickness of Ver.(end) Mem = 0.300 mts.
Thickness of Middle Mem = 0.000 mts.
F S L of canal = 407.795 M
Tail water level of drain = 405.545 M
Live load surcharge = 0.401 t/m2
Avg. Ground Level/TBL = 408.395 M
Canal bed level = 406.295 M
Height of Earth over box = 2.140 mts.
Top level of box = 406.195 M
Sill level = 404.395 M
Density of RCC = 2.500
Density of earth = 2.100
Density of concrete = 2.400
Density of water = 1.000
Coeft. = 0.361
Total Width of Box = 3.100 m

T. B. L 408.395

CBL + 406.295
0.300 406.195
405.895

1.575

404.395
0.300 404.320

0.30 2.50 0.30


3.100
Loads on RCC box per mt.

Wt. of top member = 3.100 x 0.300 x 2.500 = 2.325 t


Wt. of bottom member = 3.100 x 0.300 x 2.500 = 2.325 t
Wt. of vertical walls ( end ) =2x 1.575 x 0.300 x 2.500 = 2.363 t
Wt. of vertical walls (middle ) =1x 1.575 x 0.000 x 2.500 = 0.000 t
Wt. of earth fill over box = 3.100 x 2.140 x 2.100 = 13.931 t
Wt. of sealing coat = 0.000 x 0.040 x 2.400 = 0.000 t
Wt. of water =1x 2.500 x 1.500 x 1.000 = 3.750 t
Wt. of wc =1x 2.500 x 0.075 x 2.400 = 0.450 t
Wt. of water over the box = 3.100 x 0.000 x 1.000 = 0.000 t
Load due to live load = 0.401 x 3.100 = 1.243 t
TOTAL 26.387

CASE 1 BOX EMPTY

Total wt. of box(without water) = 26.387 - 3.750 = 22.637 t

net upward soil reaction B = 22.637 - 2.325 - 0.450 = 6.407 t/m2


3.100
load on top of slab A = 2.325 + 1.243 + 13.931 = 5.645 t/m2
3.100
water pressure C = = 0

water load D = = 0

earth pr. At top E = 0.361 x 2.100 x 2.691 = 2.040 t/m2

earth pr. At bottom F = 0.361 x 2.100 x 4.566 = 3.461 t/m2


CASE 2 BOX FULL

Total wt. of box = 26.387 - 0.000 = 26.387 t

net upward soil reaction B = 26.387 - 2.325 - 0.450 = 7.617 t/m2


3.100
load on top of slab A = 2.325 + 1.243 + 13.931 = 5.645 t/m2
3.100
water pressure C = 0 TO 1.500 t/m2

water load D = = 1.500 t/m2

earth pr. At top E = 0.361 x 2.100 x 2.691 = 2.040 t/m2

earth pr. At bottom F = 0.361 x 2.100 x 4.566 = 3.461 t/m2

A
H E E H
E H 3 2 4 E
B
B E B B
B E
B B
B C C
3 B B 4
J B B
F J
1 2 E
1
B B
F F
B B
H B
E B
B B
B
INPUT FILE: Box under Earth UT 25.615

1 STAAD SPACE
2 START JOB INFORMATION
3 ENGINEER DATE 28-Nov-19
4 END JOB INFORMATION
5 INPUT WIDTH 79
6 UNIT METER KN
7 JOINT COORDINATES
8 1 0 0 0; 2 2.5 0 0; 3 0 1.5 0; 4 2.5 1.5 0;
9 MEMBER INCIDENCES
10 1 3 4; 2 1 3; 3 2 4; 4 1 2;
11 DEFINE MATERIAL START
12 ISOTROPIC CONCRETE
13 E 2.17185e+007
14 POISSON 0.17
15 DENSITY 23.5616
16 ALPHA 1e-005
17 DAMP 0.05
18 TYPE CONCRETE
19 STRENGTH FCU 27579
20 END DEFINE MATERIAL
21 MEMBER PROPERTY AMERICAN
22 1 TO 4 PRIS YD 0.3 ZD 1
23 CONSTANTS
24 MATERIAL CONCRETE ALL
25 SUPPORTS
26 1 2 PINNED
27 LOAD 1 LOADTYPE None TITLE BOX EMPTY
28 MEMBER LOAD
29 4 UNI GY 6.407
30 1 UNI GY -5.645
31 3 LIN Y 3.461 2.04
32 2 LIN Y -3.461 -2.04
33 LOAD 2 LOADTYPE None TITLE BOX FULL
34 MEMBER LOAD
35 4 UNI GY 7.617
36 1 UNI GY -5.645
37 2 LIN Y 1.5 0
38 3 LIN Y -1.5 0
39 3 LIN Y 3.461 2.04
40 2 LIN Y -3.461 -2.04
41 PERFORM ANALYSIS PRINT ALL
42 FINISH
Joint Displacements

Horizontal Vertical Horizontal Resultant Rotational


Node L/C X mm Y mm Z mm mm rX rad rY rad rZ rad
1 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL 0 0 0 0 0 0 0
2 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL 0 0 0 0 0 0 0
3 1 BOX EMPTY 0 -0.002 0 0.002 0 0 0
2 BOX FULL 0 -0.002 0 0.002 0 0 0
4 1 BOX EMPTY 0 -0.002 0 0.002 0 0 0
2 BOX FULL 0 -0.002 0 0.002 0 0 0

Support Reaction's
Horizontal Vertical Horizontal Moment
Node L/C Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm
1 1 BOX EMPTY -2.472 -0.953 0 0 0 0
2 BOX FULL -2.056 -2.465 0 0 0 0
2 1 BOX EMPTY 2.472 -0.953 0 0 0 0
2 BOX FULL 2.056 -2.465 0 0 0 0

End Forces
Beam L/C Node Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm
1 1 BOX EMPTY 3 1.653 7.056 0 0 0 1.981
4 -1.653 7.056 0 0 0 -1.981
2 BOX FULL 3 0.945 7.056 0 0 0 1.875
4 -0.945 7.056 0 0 0 -1.875
2 1 BOX EMPTY 1 7.056 2.472 0 0 0 2.329
3 -7.056 1.653 0 0 0 -1.981
2 BOX FULL 1 7.056 2.056 0 0 0 2.723
3 -7.056 0.945 0 0 0 -1.875
3 1 BOX EMPTY 2 7.056 -2.472 0 0 0 -2.329
4 -7.056 -1.653 0 0 0 1.981
2 BOX FULL 2 7.056 -2.056 0 0 0 -2.723
4 -7.056 -0.945 0 0 0 1.875
4 1 BOX EMPTY 1 0 -8.009 0 0 0 -2.329
2 0 -8.009 0 0 0 2.329
2 BOX FULL 1 0 -9.521 0 0 0 -2.723
2 0 -9.521 0 0 0 2.723

BENDING MOMENT

Beam L/C Node Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm


1 1 BOX EMPTY 3 1.653 7.056 0 0 0 1.981
4 -1.653 7.056 0 0 0 -1.981
2 BOX FULL 3 0.945 7.056 0 0 0 1.875
4 -0.945 7.056 0 0 0 -1.875
2 1 BOX EMPTY 1 7.056 2.472 0 0 0 2.329
3 -7.056 1.653 0 0 0 -1.981
2 BOX FULL 1 7.056 2.056 0 0 0 2.723
3 -7.056 0.945 0 0 0 -1.875
3 1 BOX EMPTY 2 7.056 -2.472 0 0 0 -2.329
4 -7.056 -1.653 0 0 0 1.981
2 BOX FULL 2 7.056 -2.056 0 0 0 -2.723
4 -7.056 -0.945 0 0 0 1.875
4 1 BOX EMPTY 1 0 -8.009 0 0 0 -2.329
2 0 -8.009 0 0 0 2.329
2 BOX FULL 1 0 -9.521 0 0 0 -2.723
2 0 -9.521 0 0 0 2.723

BOX EMPTY CONDITION

BOX FULL CONDITION


Max Shear Force

Beam L/C Dist m Fy kN Dist m Fz kN My kNm Mz kNm


1 1 BOX EMPTY Max +ve 0 7.056 0 0
Max -ve 2.5 -7.056 0 0
2 BOX FULL Max +ve 0 7.056 0 0
Max -ve 2.5 -7.056 0 0
2 1 BOX EMPTY Max +ve 0 2.472 0 0
Max -ve 1.5 -1.653 0 0
2 BOX FULL Max +ve 0 2.056 0 0
Max -ve 1.5 -0.945 0 0
3 1 BOX EMPTY Max +ve 1.5 1.653 0 0
Max -ve 0 -2.472 0 0
2 BOX FULL Max +ve 1.5 0.945 0 0
Max -ve 0 -2.056 0 0
4 1 BOX EMPTY Max +ve 2.5 8.009 0 0
Max -ve 0 -8.009 0 0
2 BOX FULL Max +ve 2.5 9.521 0 0
Max -ve 0 -9.521 0 0
BOX EMPTY CONDITION

BOX FULL CONDITION


Axial Force's

Beam L/C Dist m Fx kN Dist m Fz kN My kNm Mz kNm


1 1 BOX EMPTY Max +ve 0 1.653
Max -ve N/A N/A
2 BOX FULL Max +ve 0 0.945
Max -ve N/A N/A
2 1 BOX EMPTY Max +ve 0 7.056
Max -ve N/A N/A
2 BOX FULL Max +ve 0 7.056
Max -ve N/A N/A
3 1 BOX EMPTY Max +ve 0 7.056
Max -ve N/A N/A
2 BOX FULL Max +ve 0 7.056
Max -ve N/A N/A
4 1 BOX EMPTY Max +ve 0 0
Max -ve 0 0
2 BOX FULL Max +ve 0 0
Max -ve 0 0

BOX EMPTY CONDITION


BOX FULL CONDITION
DATA SHEET: BOX UNDER EARTH
END BOTTOM END TOP END VERTICAL MID VERTICAL
MEMBER 1 2 3&4 6
CONDITION DRY WET DRY WET DRY WET DRY
MOMENT SUPPORT 2.329 2.723 1.981 1.875 1.981 1.875 0
CENTER 2.676 3.228 2.429 2.535 1.381 1.737 0
SUPPORT 2.329 2.723 1.981 1.875 2.329 2.723 0

SHEAR SUPPORT 8.009 9.521 7.059 7.056 1.653 0.945 0


SUPPORT 8.009 9.521 7.059 7.056 2.472 2.056 0

AXIAL FORCE 0 0 1.653 0.945 7.056 7.056 0

LENGTH 2.5 2.5 2.5 2.5 1.5 1.5 0

THICKNESS 300 300 300 300 300 300 0

COVER 40 40 40 40 40 40 40

MAIN REINF 16 16 16 16 16 16 12

DIST. REINF 10 10 10 10 10 10 10

m = 10
r = σ st / σ cbc
= 200 / 10
= 20.00
k = m / ( m + r )
= 10 / ( 10 + 20.000 )
= 0.333
j = 1 - k / 3
= 1 - 0.333 / 3
= 0.889
Q = ( 1 / 2 ) x σ cbc
= ( 1 / 2 ) x 10
= 1.4815
MID VERTICAL
6
WET
0
0
0

0
0

40

12

10

Fe415
M30

x k x j
x 0.333 x 0.889
DESIGN OF END BOTTOM MEMBER

2.676

DRY 2.329 2.329

2.5

A C B
A 2.429

WET 1.981 1.981

2.5

AT SUPPORT :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 2.329 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 255 - 0.5 x 300


= 105 mm.

MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 2.329 t-m

EFFECTIVE DEPTH REQUIRED = 2.329 x 1E5


14.81481 x 100

= 12.54 cm <

AREA OF STEEL = 2.329 x 1 E 5


t x j x 25.5
( t = 1700 j = 0.88889 )
= 6.04 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.981 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 255 - 0.5 x 300


= 105 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 1.981 t-m

EFFECTIVE DEPTH REQUIRED = 1.981 x 1E5


14.81481 x 100

= 11.56 cm <

AREA OF STEEL = 1.981 x 1 E 5


t x j x 25.5
( t = 1700 j = 0.88889 )
= 5.14 cm²

REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 6.04 cm²


Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
AT CENTRE :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 2.676 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 255 - 0.5 x 300


= 105 mm.

MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 2.676 t-m

EFFECTIVE DEPTH REQUIRED = 2.676 x 1E5


14.81481 x 100

= 13.44 cm <

AREA OF STEEL = 2.676 x 1 E 5


t x j x 25.5
( t = 1700 j = 0.88889 )
= 6.94 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 2.429 t-m


MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 255 - 0.5 x 300


= 105 mm.

MOMENT DUE TO AXIAL FORCE = 0.000 t-m

RESULTANT MOMENT ( M + C X ) = 2.429 t-m

EFFECTIVE DEPTH REQUIRED = 2.429 x 1E5


14.81481 x 100

= 12.80 cm <

AREA OF STEEL = 2.429 x 1 E 5


t x j x 25.5
( t = 1700 j = 0.88889 )
= 6.30 cm²

REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 6.94 cm²


Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
DISTRIBUTION STEEL:

MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)

MINIMUM STEEL ( 0.24 * 30 )*100 / 100

= 7.286 cm²

ON EACH FACE= 3.643 cm²

AREA OF STEEL= 3.643 cm²

PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )

SHEAR:

CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT

d = ( 255 + 300 / 2 ) / 1000

d = 0.405 m

( i ) DRY CONDITION 8.009


5.414

0.845 0.405

1.250
8.009

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 5.414 t

( ii ) WET CONDITION 9.52


6.436

0.845 0.405

1.250
9.52

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 6.436 t

MAXIMUM SHEAR FORCE = 6.436 t

SHEAR STRESS ( v)= τ 6.436 * 1000 / ( 100 * 25.5 ) = 2.52 Kg/cm2


100*As/b*d = 100 * 7.54 / ( 100 * 25.5 ) = 0.296 %

FROM TABLE 23 OF IS 456:2000

PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 4.264 Kg/cm2

τc > τV
Hence ok, safe in shear
)

25.5 cm.

)
25.5 cm.
)

25.5 cm

25.5 cm.
DESIGN OF END TOP MEMBER

A B
A
DRY 1.981 1.981

C
2.429
2.5

A B
A
WET 1.88 1.88

C
2.54
2.5
AT SUPPORT :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 1.981 t-m


MAX. AXIAL FORCE = 1.653 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.

MOMENT DUE TO AXIAL FORCE = 0.169 t-m

RESULTANT MOMENT ( M + C X ) = 2.150 t-m

EFFECTIVE DEPTH REQUIRED = 2.150 x 1E5


14.81481 x 100

= 12.05 cm <

AREA OF STEEL = 2.150 x 1 E 5


t x j x 25.2
( t = 1700 j = 0.88889 )
= 5.64 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.88 t-m


MAX. AXIAL FORCE = 0.945 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.096 t-m

RESULTANT MOMENT ( M + C X ) = 1.971 t-m

EFFECTIVE DEPTH REQUIRED = 1.971 x 1E5


14.81481 x 100

= 11.54 cm <

AREA OF STEEL = 1.971 x 1 E 5


t x j x 25.2
( t = 1700 j = 0.88889 )
= 5.18 cm²

REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 5.64 cm²


Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
AT CENTRE :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 2.429 t-m


MAX. AXIAL FORCE = 1.653 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.

MOMENT DUE TO AXIAL FORCE = 0.169 t-m

RESULTANT MOMENT ( M + C X ) = 2.598 t-m

EFFECTIVE DEPTH REQUIRED = 2.598 x 1E5


14.81481 x 100

= 13.24 cm <

AREA OF STEEL = 2.598 x 1 E 5


t x j x 25.2
( t = 1700 j = 0.88889 )
= 6.82 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 2.54 t-m


MAX. AXIAL FORCE = 0.945 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.

MOMENT DUE TO AXIAL FORCE = 0.096 t-m

RESULTANT MOMENT ( M + C X ) = 2.631 t-m

EFFECTIVE DEPTH REQUIRED = 2.631 x 1E5


14.81481 x 100

= 13.33 cm <

AREA OF STEEL = 2.631 x 1 E 5


t x j x 25.2
( t = 1700 j = 0.88889 )
= 6.91 cm²

REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 6.91 cm²


Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
DISTRIBUTION STEEL:

MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)

MINIMUM STEEL ( 0.24 * 30 )*100 / 100

= 7.286 cm²

ON EACH FACE= 3.643 cm²

AREA OF STEEL= 3.643 cm²

PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )

SHEAR:

CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT

d = ( 252 + 300 / 2 ) / 1000

d = 0.402 m

( i ) DRY CONDITION 7.059


4.789

0.848 0.402

1.250
7.059

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 4.789 t

( ii ) WET CONDITION 7.06


4.787

0.848 0.402

1.250
7.06

2.5

MAX. SHEAR FORCE AT CRITICAL SECTION = 4.787 t

MAXIMUM SHEAR FORCE = 4.789 t

SHEAR STRESS ( v)= τ 7.183 * 1000 / ( 100 * 25.2 ) = 2.85 Kg/cm2


100*As/b*d = 100 * 7.54 / ( 100 * 25.2 ) = 0.299 %

FROM TABLE 23 OF IS 456:2000

PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.955 Kg/cm2

τc > τV
Hence ok, safe in shear
MEMBER

25.2 cm.

)
25.2 cm.
)

25.2 cm

25.2 cm.
DESIGN OF END VERTICAL MEMBER

DRY WET

1.981 1.88

1.381 1.74

2.329 2.72

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 2.329 t-m

DIRECT STRESS ( cc,cal ) = 7.056 / 1.0 * 0.3

= 23.520 t/m²

PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE

cc = 8 N/mm²
= 800 t/m²

STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6

Z = 0.0150

cbc,cal = 2.329 / 0.0150

= 155.267

cbc PERMISSIBLE = 1000


(FOR M30 GRADE)

cc,cal + cbc,cal < 1


cc cbc

23.520 + 155.267
800 1000

0.0294 + 0.1553 = 0.185 < 1

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 2.72 t-m


DIRECT STRESS ( cc,cal ) = 7.06 / 1.0 * 0.3

= 23.520 t/m²

PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE

cc = 8 N/mm²
= 800 t/m²

STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6

Z = 0.0150

cbc,cal = 2.72 / 0.0150

= 181.533
cbc PERMISSIBLE = 1000
(FOR M30 GRADE)

cc,cal + cbc,cal < 1


cc cbc

23.520 + 181.533
800 1000

0.0294 + 0.1815 = 0.211 < 1

AT SUPPORT :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 2.329 t-m


MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.

MOMENT DUE TO AXIAL FORCE = 0.720 t-m

RESULTANT MOMENT ( M + C X ) = 3.049 t-m

EFFECTIVE DEPTH REQUIRED = 3.049 x 1E5


14.814815 x 100

= 14.35 cm <

AREA OF STEEL = 3.049 x 1 E 5


t x j x 25.2
( t = 1900 j = 0.888889 )
= 7.16 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 2.72 t-m


MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.

MOMENT DUE TO AXIAL FORCE = 0.720 t-m

RESULTANT MOMENT ( M + C X ) = 3.443 t-m

EFFECTIVE DEPTH REQUIRED = 3.443 x 1E5


14.814815 x 100

= 15.24 cm <
AREA OF STEEL = 3.443 x 1 E 5
t x j x 25.2
( t = 1900 j = 0.888889 )
= 8.09 cm²

REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 8.09 cm²


Hence provide 12 dia @ 125 c/c
Provided steel = 9.04 cm²
AT CENTRE :

( i ) DRY CONDITION

MAX. DESIGN MOMENT = 1.381 t-m


MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.

MOMENT DUE TO AXIAL FORCE = 0.720 t-m

RESULTANT MOMENT ( M + C X ) = 2.101 t-m

EFFECTIVE DEPTH REQUIRED = 2.101 x 1E5


14.814815 x 100

= 11.91 cm <

AREA OF STEEL = 2.101 x 1 E 5


t x j x 25.2
( t = 1900 j = 0.888889 )
= 4.94 cm²

( ii ) WET CONDITION

MAX. DESIGN MOMENT = 1.74 t-m


MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm

MOMENT DUE TO AXIAL FORCE = C*X

X = ( 252 - 0.5 x 300


= 102 mm.

MOMENT DUE TO AXIAL FORCE = 0.720 t-m

RESULTANT MOMENT ( M + C X ) = 2.457 t-m

EFFECTIVE DEPTH REQUIRED = 2.457 x 1E5


14.814815 x 100

= 12.88 cm <

AREA OF STEEL = 2.457 x 1 E 5


t x j x 25.2
( t = 1900 j = 0.888889 )
= 5.77 cm²

REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 5.77 cm²


Hence provide 12 dia @ 175 c/c
Provided steel = 6.46 cm²
DISTRIBUTION STEEL:

MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)

MINIMUM STEEL ( 0.24 * 30 )*100 / 100

= 7.286 cm²

ON EACH FACE= 3.643 cm²

AREA OF STEEL= 3.643 cm²

PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )


SHEAR:

CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT

d = ( 252 + 300 / 2 ) / 1000

d = 0.402 m

DRY WET

1.653

0.402 0.402
0.548
0.601 0.472
0.199 0.070
1.5 1.5

2.472 2.06

MAX. SHEAR FORCE AT CRITICAL SECTION (DRY) = 0.548 t

MAX. SHEAR FORCE AT CRITICAL SECTION (WET) = 0.141 t

MAXIMUM SHEAR FORCE = 0.548 t

SHEAR STRESS ( v)=τ 0.821 * 1000 / ( 100 * 25.2 ) = 0.33 Kg/cm2

100*As/b*d = 100 * 9.04 / ( 100 * 25.2 ) = 0.359 %

FROM TABLE 23 OF IS 456:2000

PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 4.571 Kg/cm2

τc > τV
Hence ok, safe in shear
MEMBER 5
)

25.2 cm.

25.2 cm.
)

25.2 cm

25.2 cm.
0.95

0.141
U/S R E T U R N W A L L

DATA :

WING WALL TOP LEVEL :+ 408.473


TOP OF FOUDATION :+ 403.870
BOT. OF FOUNDATION :+ 403.420 408.473

TOP WIDTH : 500.000


REAR BATTER : 1200.000 W3
FRONT BATTER : 0.000 4.603
OFFSET ON EITHER SIDE : 300.000 W4 W1
BOTTOM WIDTH : 2300.000 W2

UNIT WT. OF CONC. : 2.400 500


UNIT WT. OF SOIL : 2.100 300 1200.00 300.000
403.870
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.420
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2300.00

STRESS IN CONCRETE :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 4.603 * 0.500 * 2.400 5.524 1.450 8.009

W2 0.500 * 4.603 * 1.200 * 2.400 6.628 0.800 5.303

W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.400 2.320

PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 - -

19.709

PH 0.1580 * 4.603 * 4.603 * 2.100 7.030 1.841 12.944

7.030 28.576

LEVER ARM = 1.450 mts.


ECCENTRICITY = 0.300 mts.
ALLOWABLE LIMIT = 0.383 mts. HENCE SAFE

MAX. STRESS = 23.863 t/sq.mt. 1.700


MIN. STRESS = -4.092 t/sq.mt.
STRESS ON SOIL :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 4.603 * 0.500 * 2.400 5.524 1.750 9.666

W2 0.500 * 4.603 * 1.200 * 2.400 6.628 1.100 7.291

W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.700 4.060

W4 0.300 * 4.603 * 2.100 2.900 0.150 0.485

W5 0.450 * 2.300 * 2.400 2.484 1.150 2.857

PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 0.000 0.000

25.093

PH 0.1584 * 4.603 * 4.603 * 2.100 7.048 2.122 5.632

7.048 23.193

LEVER ARM = 1.326 mts.


ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.

MAX. STRESS = 11.898 t/sq.mt. 2.7


MIN. STRESS = 1.033 t/sq.mt.

CHECK FOR OVER TURNING:- 3.11822 > 2 ok


CHECK AGAINST SLIDING : : 1.7802 > 1.5 ok
U/S WING WALL 1

DATA :

WING WALL TOP LEVEL :+ 408.473


TOP OF FOUDATION :+ 403.870
BOT. OF FOUNDATION :+ 403.420 408.473

TOP WIDTH : 500.000


REAR BATTER : 1200.000 W3
FRONT BATTER : 0.000 4.603
OFFSET ON EITHER SIDE : 300.000 W4 W1
TOP WIDTH : 2300.000 W2

UNIT WT. OF CONC. : 2.400 500


UNIT WT. OF SOIL : 2.100 300 1200.00 300.000
403.870
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.420
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2300.00

STRESS IN CONCRETE :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 4.603 * 0.500 * 2.400 5.524 1.450 8.009

W2 0.500 * 4.603 * 1.200 * 2.400 6.628 0.800 5.303

W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.400 2.320

PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 - -

19.709

PH 0.1580 * 4.603 * 4.603 * 2.100 7.030 1.841 12.944

7.030 28.576

LEVER ARM = 1.450 mts.


ECCENTRICITY = 0.300 mts.
ALLOWABLE LIMIT = 0.383 mts. HENCE SAFE

MAX. STRESS = 23.863 t/sq.mt. 1.700


MIN. STRESS = -4.092 t/sq.mt.
STRESS ON SOIL :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 4.603 * 0.500 * 2.400 5.524 1.750 9.666

W2 0.500 * 4.603 * 1.200 * 2.400 6.628 1.100 7.291

W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.700 4.060

W4 0.300 * 4.603 * 2.100 2.900 0.150 0.485

W5 0.450 * 2.300 * 2.400 2.484 1.150 2.857

PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 0.000 0.000

25.093

PH 0.1584 * 4.603 * 4.603 * 2.100 7.048 2.122 5.632

7.048 23.193

LEVER ARM = 1.326 mts.


ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.

MAX. STRESS = 11.898 t/sq.mt. 2.7


MIN. STRESS = 1.033 t/sq.mt.

CHECK FOR OVER TURNING:- 3.11822 > 2 ok


CHECK AGAINST SLIDING : : 2.13624 > 1.5 ok
DESIGN OF D/S RETURN

DATA :

WING WALL TOP LEVEL :+ 406.145


TOP OF FOUDATION :+ 403.645
BOT. OF FOUNDATION :+ 403.195 406.145

TOP WIDTH : 500.000


REAR BATTER : 1000.000 W3
FRONT BATTER : 0.000 2.500
OFFSET ON EITHER SIDE : 300.000 W4 W1
TOP WIDTH : 2100.000 W2

UNIT WT. OF CONC. : 2.400 500


UNIT WT. OF SOIL : 2.100 300 1000.00 300.000
403.645
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.195
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2100.00

STRESS IN CONCRETE :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 2.500 * 0.500 * 2.400 3.000 1.250 3.750

W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.667 2.000

W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.333 0.875

PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 - -

9.143

PH 0.1580 * 2.500 * 2.500 * 2.100 2.074 1.000 2.074

2.074 8.699

LEVER ARM = 0.951 mts.


ECCENTRICITY = -0.099 mts.
ALLOWABLE LIMIT = 0.350 mts. HENCE SAFE

MAX. STRESS = 3.691 t/sq.mt. 1.500


MIN. STRESS = -2.438 t/sq.mt.
STRESS ON SOIL :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 2.500 * 0.500 * 2.400 3.000 1.550 4.650

W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.967 2.900

W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.633 1.663

W4 0.300 * 2.500 * 2.100 1.575 0.150 0.485

W5 0.450 * 2.100 * 2.400 2.268 1.050 2.381

PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 0.000 0.000

12.986

PH 0.1584 * 2.500 * 2.500 * 2.100 2.079 1.239 5.632

2.079 23.193

LEVER ARM = 1.326 mts.


ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.

MAX. STRESS = 6.158 t/sq.mt. 2.7


MIN. STRESS = 0.534 t/sq.mt.

CHECK FOR OVER TURNING:- 3.11822 > 2 ok


CHECK AGAINST SLIDING : : 3.74789 > 1.5 ok
D/S WING WALL

DATA :

WING WALL TOP LEVEL :+ 406.145


TOP OF FOUDATION :+ 403.645
BOT. OF FOUNDATION :+ 403.195 406.145

TOP WIDTH : 500.000


REAR BATTER : 1000.000 W3
FRONT BATTER : 0.000 2.500
OFFSET ON EITHER SIDE : 300.000 W4 W1
TOP WIDTH : 2100.000 W2

UNIT WT. OF CONC. : 2.400 500


UNIT WT. OF SOIL : 2.100 300 1000.00 300.000
403.645
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.195
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2100.00

STRESS IN CONCRETE :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 2.500 * 0.500 * 2.400 3.000 1.250 3.750

W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.667 2.000

W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.333 0.875

PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 - -

9.143

PH 0.1580 * 2.500 * 2.500 * 2.100 2.074 1.000 2.074

2.074 8.699

LEVER ARM = 0.951 mts.


ECCENTRICITY = -0.099 mts.
ALLOWABLE LIMIT = 0.350 mts. HENCE SAFE

MAX. STRESS = 3.691 t/sq.mt. 1.500


MIN. STRESS = -2.438 t/sq.mt.
STRESS ON SOIL :

FORCE PARTICULARS MAG. L.A. MOMENT


TONS. MTS TON.MT.

W1 2.500 * 0.500 * 2.400 3.000 1.550 4.650

W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.967 2.900

W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.633 1.663

W4 0.300 * 2.500 * 2.100 1.575 0.150 0.485

W5 0.450 * 2.100 * 2.400 2.268 1.050 2.381

PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 0.000 0.000

12.986

PH 0.1584 * 2.500 * 2.500 * 2.100 2.079 1.239 5.632

2.079 23.193

LEVER ARM = 1.326 mts.


ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.

MAX. STRESS = 6.158 t/sq.mt. 2.7


MIN. STRESS = 0.534 t/sq.mt.

CHECK FOR OVER TURNING:- 3.11822 > 2 ok


CHECK AGAINST SLIDING : : 3.74789 > 1.5 ok

You might also like