H H H H H H H H H H H H H H H H H H H H
CANAL:
SL.NO. PARTICULARS CANAL @ KM.
25.615
.
1 DISCHARGE ( REQD. ) 9.061 cumecs
2 DISCHARGE ( DES. ) 10.848 cumecs
3 BED WIDTH 5.500 mts.
4 FULL SUPPLY DEPTH 1.500 mts.
5 VELOCITY 0.933 mts/sec
6 BED FALL 1 in 2000
7 COEFFT. OF RUGOSITY 0.025
8 FREE BOARD 0.60 mts
9 SIDE SLOPES 1.5 : 1
10 TOP WIDTH OF BANKS ( LEFT ) 4.000 mts.
(RIGHT ) 4.000 mts.
11 LOSS OF HEAD 0.00 mts.
12 BED LEVEL + 406.295 M
13 FULL SUPPLY LEVEL + 407.795 M
14 TOP BUND LEVEL + 408.395 M
15 SKEW 0
16 SKEW FACTOR 1.000
DRAIN:
1 DEEP BED LEVEL + 407.025 M
2 CATCHMENT AREA 0.218 sq.kms.
3 MAXIMUM FLOOD DISCHARGE 6.221 Cumecs
HHHHHHH HHHHH HHHHHHHHH :
C.A = 0.218 Sq.Km.
As per Dicken's formula
Q = 19.5 x ( 0.218 ) 0.75 ( vide C.D.O.'s guide lines )
= 6.221 Cumecs
HHHHHHHHH :
Deep Bed Level of Drain = + 407.025
C.B.L. = + 406.295
F.S.L. = + 407.795
Since the deep Bed Level of Drain is below F.S.L, Under Tunnel
is proposed for this crossing.
HHHHH HHH HHHHHHHHHHH:
HHHH HHH HHHHHHHHHHHH :
Discharge = 6.221 cumecs
Assumed Velocity in the Barrel = 3.00 m / sec
Area Required = Q / V = 2.074 Sq.mt
Considering a Vent size of 2.50 m x 1.50 m.
No.of Vents required = 0.553 no.
say 1 no.s
Velocity in the Barrel = 1.66 m / sec
H H H H H H H H H H H H H H H
Discharge = 6.22 Cumecs
P = 4.80 x Q 1/2 ( vide cl.8.1.2 of IS 7784 ( part I ) - 1993 )
= 4.80 x 2.494241
= 11.972 m.
Considering 60 % fluming
Width of waterway = 0.6 x 11.972 = 7.183 mts.
However provide 7.200 mts.
However provided 8.6 m width at tail and approach channel
Thickness of End Verticals = 0.3 m
Thickness of Middle Verticals = 0 m
Thickness of Expansion Joint = 0.012 m
Width of Barrel = 2.50 m
D/S Splay of Transitions = 3 : 1
U/S Splay of Transitions = 2 : 1
D/S Splay of Transitions = 7.200 - 2.5 x 3
2
= 7.05 m
U/S Splay of Transitions = 7.200 - 2.5 x 2
2
= 4.7 m
H H H H H H H H H H H H H H H H H H H
Discharge = 6.221 cumecs
Bed width = 7.20 mts.
Bed fall = 1 in 3300
n = 0.025
side slope = 1.5 : 1 1.150
By trial and error d = 1.150 mts.
404.395
Area A = (b+n*d)*d 7.20
Area = 10.264 sq.mt.
Perimeter P = b + ( 1 + n2 ) *2*d
Perimeter = 11.346 mts.
R = A/P
R = 0.905 mts.
R2/3 = 0.935
V = ( 1 / n ) * ( R2/3 ) * ( 1 / S )1/2
V = 0.651 mts/sec
Discharge Q = VxA
Q = 6.685 cumecs > 6.221 cumecs
H H H H H H H H H H H H H H H H H H H H H
FLOW CONDITION AT SECTION 1-1
COEFFICIENT OF RUGOSITY (n) 0.0250
DISCHARGE (Q) 6.221
BED LEVEL (BL) 404.395
SIDE SLOPE (s) 1.500
BED WIDTH (B) 7.200
FLOW DEPTH (D) 1.150 MFL + 405.545
1.5 :1
MFL 405.545
AREA = (B+sD)D 10.264 BL + 404.395
7.200
VELOCITY (V ) = Q / A 0.606
VEL. HEAD = V2 / 2g 0.019(in mtrs)
TEL @ 1-1 = MFL + VEL. HEAD 405.564
PERIMETRE (P) = B + 2D (1 + s2 )1/2 11.346 (in mtrs)
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.905
SURFACE SLOPE (S) = V2 n2 / R4/3 0.00026 3809.8651289676
FLOW CONDITION AT SECTION 2-2
LENGTH FROM PREVIOUS SECTION(L)
( in mtrs) 0.000
COEFFICIENT OF RUGOSITY (n) 0.018
DISCHARGE (Q)
( in Cumecs) 6.221
BED WIDTH (B) 7.200
SIDE SLOPE (s) 0.000
BED LEVEL 404.395
FLOW DEPTH (D) 1.145 MFL + 405.540
MFL 405.540
AREA = (B+sD)D 8.244 BL + 404.395
7.200
VELOCITY (V ) = Q / A 0.755
VEL. HEAD = V2 / 2g 0.029(in mtrs)
PERIMETRE (P) = B + 2D (1 + s2 )1/2
(in mtrs) 9.490
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.869
SURFACE SLOPE (S) = V2 n2 / R4/3 0.000223
EDDY LOSS(he) = 0.5( V12 - V22 ) / 2g
( in mtrs) 0.005
FRICTION LOSS (H ) 0.000
TEL wrt MFL = MFL + VEL HEAD 405.569 0.000
TEL wrt PREVIOUS TEL = PRE.TEL + EDDY
LOSS +FRI.LOSS 405.569 0.000 <------ Difference in TELs
FLOW CONDITION AT SECTION 3-3
LENGTH FROM PREVIOUS SECTION(L)
( in mtrs) 7.050
COEFFICIENT OF RUGOSITY (n) 0.0180
DISCHARGE (Q) 6.221
BED WIDTH (B)
( in mtrs) 2.500
SIDE SLOPE (s) 0.000
BED LEVEL 404.395
FLOW DEPTH (D) 0.930 MFL + 405.325
MFL 405.325
AREA = (B+sD)D 2.325 BL + 404.395
2.500
VELOCITY (V ) = Q / A 2.676
VEL. HEAD = V2 / 2g 0.365(in mtrs)
PERIMETRE (P) = B + 2D ( 1 + s2 ) 1/2
( in mtrs) 4.360
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.533
SURFACE SLOPE (S) = V2 n2 / R4/3 0.005365
EDDY LOSS(he) = 0.3 ( V12 - V22 ) / 2g
( in mtrs) 0.101
FRICTION LOSS(Hf)
( in mtrs) 0.020
TEL wrt MFL = MFL + VEL HEAD 405.689
TEL wrt PREVIOUS TEL = PRE.TEL + EDDY
LOSS +FRI.LOSS 405.689 0.000 <------ Difference in TELs
LOSS OF HEAD CALCULATIONS INSIDE THE BARREL(using UNWIN's formula)
LENGTH FROM PREVIOUS SECTION(L)
( in mtrs) 20.800
COEFFICIENT OF RUGOSITY (n) 0.018
DISCHARGE (Q) 6.221
BED WIDTH (B) 2.500
SIDE SLOPE (s) 0.000
BED LEVEL 404.395
FLOW DEPTH (D) (ie VENT HEIGHT)
( in mtrs) 1.500
AREA (A) = (Overall "A" of all vents)
( in Sqm) 3.750
PERIMETRE (P) = (Overall "P" of all vents)
( in mtrs) 8.000 BL + 404.395
2.500
VELOCITY (V ) = Q / A 1.659
VEL. HEAD = V2 / 2g 0.140(in mtrs) VENT WAY SECTION
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.469 vent size= 2.5 x
SURFACE SLOPE (S) = V2 n2 / R4/3 0.002449 150 x 150 HAUNCHES ARE CONSIDERED
f1 (Coef. Of Loss of Head at Entry) 0.505 IN CALCULATING 'A' & 'P'
a (assuming that the walls inside the barrel are
plastered) 0.003160
b 0.03050
f2 (at Entry) = a(1+b/R) 0.00337
Loss of Head inside barrel(h) = (1+f1+f2
L/R)V 2/2g 0.232
TEL @ 4-4 = PRE. TEL + h 405.921
FLOW CONDITION AT SECTION 4-4
COEFFICIENT OF RUGOSITY (n) 0.018
DISCHARGE (Q) 6.221
BED WIDTH (B) 2.500
SIDE SLOPE (s) 0.000
BED LEVEL 404.395
FLOW DEPTH (D) 1.354 MFL + 405.749
MFL 405.749
AREA = (B+sD)D 3.385 BL + 404.395
2.500
VELOCITY (V ) = Q / A 1.838
VEL. HEAD = V2 / 2g 0.172(in mtrs)
PERIMETRE (P) = B + 2D ( 1 + s2 )1/2
( in mtrs) 5.208
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 0.650
SURFACE SLOPE (S) = V2 n2 / R4/3 0.001944
TEL wrt MFL = MFL + VEL HEAD 405.921
TEL OBTAINED FROM PREVIOUS CAL.s WITH
UNWIN's 405.921 0.000 <------ Difference in TELs
formula
FLOW CONDITION AT SECTION 5-5
LENGTH FROM PREVIOUS SECTION(L) 4.700
COEFFICIENT OF RUGOSITY (n) 0.018
DISCHARGE (Q) 6.221
BED WIDTH (B) 7.200
SIDE SLOPE (s) 0.000
BED LEVEL 404.395
FLOW DEPTH (D) 1.546 MFL + 405.941
MFL 405.941
AREA = (B+sD)D 11.131 BL + 404.395
7.200
VELOCITY (V ) = Q / A 0.559
VEL. HEAD = V2 / 2g 0.016
PERIMETRE (P) = B + 2D ( 1 + s2 )1/2
( in mtrs) 10.292
HYDRAULIC MEAN RADIUS (R) = A / P
( in mtrs) 1.082
SURFACE SLOPE (S) = V2 n2 / R4/3 0.000091
EDDY LOSS(he) = 0.2 ( V12 - V22 ) / 2g
( in mtrs) 0.031
FRICTION LOSS(Hf) 0.004782
TEL wrt MFL = MFL + VEL HEAD 405.957
TEL wrt PREVIOUS TEL = PRE.TEL + EDDY
LOSS +FRI.LOSS 405.957 0.000 <------ Difference in TELs
H
1.150 m
1.145 m
Difference in TELs
0.930 m
Difference in TELs
0.3
1.500 m
1.500
HES ARE CONSIDERED
1.354 m
Difference in TELs
1.546 m
Difference in TELs
FLOW CONDITION AT SECTION 6-6 ( ie @ DROP-1 )
COEFFICIENT OF RUGOSITY (n) 0.025
DISCHARGE (Q) ( in Cumecs) 6.221
BED WIDTH (B) (in mtrs) 7.200
SIDE SLOPE (s) 0.000
CREST LEVEL OF DROP 407.025
FLOW DEPTH (D) (i.e. Arrived from Malikapur graph) 0.821
MFL 407.846
AREA = (B+sD)D ( in Sqm) 5.911
VELOCITY (V ) = Q / A ( in m/s) 1.052
VEL. HEAD = V2 / 2g (in mtrs) 0.056
PERIMETRE (P) = B + 2D (1 + s2 )1/2 ( in mtrs) 8.842
HYDRAULIC MEAN RADIUS (R) = A / P ( in mtrs) 0.669
SURFACE SLOPE (S) = V2 n2 / R4/3 0.001184
TEL wrt MFL = MFL + VEL HEAD 407.902
407.846
405.941
407.025
404.395
FLOW CONDITION AT SECTION 6-6 (ie @ DROP 1)
FLOW CONDITION AT SECTION 7-7 (APPROACH CHANNEL)
LENGTH FROM PREVIOUS SECTION(L) ( in mtrs) 0.000
COEFFICIENT OF RUGOSITY (n) 0.025
DISCHARGE (Q) ( in Cumecs) 6.221
BED WIDTH (B) ( in mtrs) 7.200
SIDE SLOPE (s) 1.500
BED LEVEL 407.025
FLOW DEPTH (D) ( in mtrs) 0.848 MFL
MFL 407.873
AREA = (B+sD)D ( in Sqm) 7.184 BL
VELOCITY (V ) = Q / A ( in m/s) 0.866
VEL. HEAD = V2 / 2g 0.038
PERIMETRE (P) = B + 2D ( 1 + s2 )1/2 ( in mtrs) 10.258
HYDRAULIC MEAN RADIUS (R) = A / P ( in mtrs) 0.700
SURFACE SLOPE (S) = V2 n2 / R4/3 0.000754
EDDY LOSS(he) = 0.5 ( V12 - V22 ) / 2g ( in mtrs) 0.009
FRICTION LOSS(Hf) 0.000000
TEL wrt MFL = MFL + VEL HEAD 407.911
TEL wrt PREVIOUS TEL = PRE.TEL + ED.LOSS +FRI.LOSS 407.912
7 7
6 6
5 5
4 4
3 3
2 2
1 1
MFL 407.846
0.821
BL 407.025
7.200
407.873
1.5 :1
0.848
407.025
7.200
0.000 <------ Difference in TELs
407.912 407.902 405.957 405.921 TEL 405.689 405.569
0.866 1.052 0.559 1.838 VELOCITY 2.676 0.755
407.873 407.846 405.941 405.749 MFL 405.325 405.540
0.848 0.821 1.546 1.354 DEPTH OF FLOW 0.930 1.145
407.025 407.025 404.395 404.395 BED LEVEL 404.395 404.395
405.569 405.564
0.755 0.606
405.540 405.545
1.145 1.150
404.395 404.395
H H H H H H H H H H H H H H H H
Water level over drop = + 407.846 M
Water level on D/S of drop = + 405.941 M
Crest level of drop = + 407.025 M
Bottom level of drop = + 404.395 M
Density of concrete = 2.400 t/m 3
Wearing coat thickness = 0.15 m
+ 407.846
+ 405.941
+ 407.025 0.6
2.40 + 404.395
Top width of Drop wall = d
where d = maximum depth of flow over drop wall
= 407.846 - 407.025 = 0.821 m
= density of concrete = 2.40 t/m 3
Top width of Drop wall = 0.821 = 0.530 m
2.40
However , provide Drop wall of 0.60 m Top width
(b).BASE WIDTH OF DROP WALL :
Base width of Drop wall = H + d +x +w.c
where d = maximum depth of flow over drop wall
= 0.821 m
H = Height of Drop wall
= 407.025 - 404.395 = 2.630 m
x = Cistern depth = 0m
w.c= Thickness of wearing coat = 0.15 m
= density of concrete = 2.40 t/m 3
Base width of Drop wall = 2.630 + 0.821 + 0 + 0.15
2.40
= 2.32 m
However , provide Drop wall of 2.40 m bottom width
(c).LENGTH OF FLOOR :
L1 = 2 dc + 2 dc h
where L1 = required length of floor
dc = F.S.D. on U/S of drop = 0.821 m
h = Height of Drop = 2.630 m
L1 = 4.581 m say 4.60 m
(d).THICKNESS OF APRON :
t = 0.55 dc + h
where t = Thickness of Apron
dc = F.S.D. on U/S of drop = 0.821 m
h = Height of Drop = 2.630 m
t = 1.022 m say 1.10 m
(Including 0.15m Wearing coat)
H H H H H H H H H H H H H H H H H H H H H H
UPSTREAM :
Discharge (Q) = 6.221 cumecs.
Bed Width (L) = 7.200 mts.
M.F.L./ F.S.L. = + 407.873 m.
f ( silt factor ) = 2.000
Discharge per mtr. Width ( q ) = Q/L = 0.864 cumecs / mt.
Scour depth (d) = 1.35 * ( q² / f ) ^ 0.33
= 0.975 mts.
Max. Scour Depth = 1.5 * d = 1.463 mts.
Max. Scour Level =+ 407.873 - 1.463
=+ 406.410 m.
However cut off is proposed @ 406.275 m.
DOWNSTREAM :
Discharge (Q) = 6.221 cumecs.
Bed Width (L) = 7.200 mts.
M.F.L./ F.S.L. = + 405.545 m.
f ( silt factor ) = 2.000
Discharge per mtr. Width ( q ) = Q/L = 0.864 cumecs / mt.
Scour depth (d) = 1.35 * ( q² / f ) ^ 0.33
= 0.975 mts.
Max. Scour Depth = 2*d = 1.950 mts.
Max. Scour Level =+ 405.545 - 1.950
=+ 403.595 m.
However the cut off is proposed upto + 403.645 m.
DESIGN OF HEAD WALL
DATA :
2.0 : 1
HEAD WALL TOP LEVEL : 408.395 W4
BOX SLAB TOP LEVEL : 406.195 0.5
BOX SLAB BOTTOM LEVEL : 405.895 408.395
TOP WIDTH : 0.500
BOTTOM WIDTH : 1.800 W3
FRONT BATTER : 0.000 2.200
REAR BATTER : 1.300 W1 . W5
BANK REAR SLOPE : 2.0 : 1 W2
UNIT WT. OF CONC. : 2.400 406.195 0.000 1.300
UNIT WT. OF SOIL : 2.100 A
405.895 1.800
HOR. COEFFT. OF SOIL : 0.1880
VER. COEFFT. OF SOIL : 0.0295
STRESS IN CONCRETE :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 0.500 * 2.200 * 2.400 2.640 1.550 4.092
W2 0.500 * 2.200 * 0.000 * 2.400 0.000 0.867 0.000
W3 0.500 * 2.200 * 1.300 * 2.100 3.003 0.433 1.301
W4 0.500 * 1.300 * 0.000 * 2.100 0.000 0.433 0.000
W5 0.500 * 2.200 * 0.000 * 2.400 0.000 1.800 0.000
PV 0.0295 ( 4.840 - 0.000 ) 2.100 0.300 - -
5.943
PH 0.1880 ( 4.840 - 0.000 ) 2.100 1.911 0.880 1.682
1.911 7.075
LEVER ARM = 1.190 mts.
ECCENTRICITY = 0.290 mts.
ALLOWABLE LIMIT = 0.300 mts. HENCE SAFE
MAX. STRESS = 6.498 t/sq.mt.
Page 31 HEAD WALL
MIN. STRESS = 0.105 t/sq.mt.
Page 32 HEAD WALL
MOVING LOADS :
Considering class A loading as per 207.1.3 of I.R.C 6 - 2000
11.4 11.4
1.20
1:1 1:1
2.200
5.85
Dispersion width = ( 0.25/ 2 ) + 1.20 + ( 0.25 / 2 ) + 2 x 2.200
= 5.85 mts
5.70 t 5.70 t
1.80
2.20
Dispersion width = ( 0.50 / 2 ) + 1.80 + ( 0.50 / 2 ) + 2 x 2.200
= 6.70 mts
Total area of dispersion = 5.850 x 6.700
= 39.20 m2
Intensity of loading at = 22.80 / 39.20
Box top level
= 0.582 t / m2
DESIGN OF BOX ( UNDER CANAL )
No.of Vents = 1
Width of Vent = 2.500 mts.
Height of Box including wc = 1.575 mts.
Thickness of sealing coat = 0.040 mts.
Thickness of w.c = 0.075 mts.
Thickness of Hor. Mem = 0.300 mts.
Thickness of Ver.(end) Mem = 0.300 mts.
Thickness of Middle Mem = 0.000 mts.
F S L of canal = 407.795 M
Tail water level of drain = 405.545 M
Live load surcharge = 0.000 t/m2
Avg. Ground Level/TBL = 408.395 M
Canal bed level = 406.295 M
Height of water over box = 1.500 mts.
Top level of box = 406.195 M
Sill level = 404.395 M
Density of RCC = 2.500
Density of earth = 2.100
Density of concrete = 2.400
Density of water = 1.000
Coeft. = 0.361
Total Width of Box = 3.100 m
F.S.L 407.795
CBL + 406.295
0.300 406.195
405.895
1.575
404.395
0.300
0.30 2.50 0.30
3.100
Loads on RCC box per mt.
Wt. of top member = 3.100 x 0.300 x 2.500 = 2.325 t
Wt. of bottom member = 3.100 x 0.300 x 2.500 = 2.325 t
Wt. of vertical walls ( end ) =2x 1.575 x 0.300 x 2.500 = 2.363 t
Wt. of vertical walls (middle ) =1 x 1.575 x 0.000 x 2.500 = 0.000 t
Wt. of earth fill over box = 3.100 x 0.000 x 2.100 = 0.000 t
Wt. of sealing coat = 3.100 x 0.040 x 2.400 = 0.298 t
Wt. of water =1 x 2.500 x 1.500 x 1.000 = 3.750 t
Wt. of wc =1x 2.500 x 0.075 x 2.400 = 0.450 t
Wt. of water over the box = 3.100 x 1.500 x 1.000 = 4.650 t
TOTAL 16.160
CASE 1 BOX EMPTY & CANAL EMPTY
Total wt. of box(without water) = 16.160 - 3.750 - 4.650 = 7.760 t
net upward soil reaction B = 7.760 - 2.325 - 0.450 = 1.608 t/m2
3.100
load on top of slab A = 2.325 + 0.298 = 0.846 t/m2
3.100
water pressure C = = 0
water load D = = 0
earth pr. At top E = 0.361 x 2.100 x 0.15 = 0.114 t/m2
earth pr. At bottom F = 0.361 x 2.100 x 2.025 = 1.535 t/m2
CASE 2 BOX FULL & CANAL EMPTY
Total wt. of box = 16.160 - 4.650 = 11.510 t
net upward soil reaction B = 11.510 - 2.325 - 0.450 = 2.818 t/m2
3.100
load on top of slab A = 2.325 + 0.298 = 0.846 t/m2
3.100
water pressure C = 0 TO 1.500 t/m2
water load D = = 1.500 t/m2
earth pr. At top E = 0.361 x 2.100 x 0.150 = 0.114 t/m2
earth pr. At bottom F = 0.361 x 2.100 x 2.025 = 1.535 t/m2
upward thrust on top slab G = 0.500 x 1.000 = 0.500 t/m3
CASE 3 BOX EMPTY & CANAL FULL
Total wt. of box(without water) = 16.160 - 3.750 = 12.410 t
net upward soil reaction B = 12.410 - 2.325 - 0.450 = 3.108 t/m2
3.100
load on top of slab A = 4.650 + 2.325 + 0.298 = 2.346 t/m2
3.100
water pressure C = = 0
water load D = = 0
earth pr. At top E = 0.361 x 1.100 x 0.150 = 0.060 t/m2
earth pr. At bottom F = 0.361 x 1.100 x 2.025 = 0.804 t/m2
water pr. At top H = 1.690 x 1.000 = 1.690 t/m2
water pr. At bottom J = 3.565 x 1.000 = 3.565 t/m2
CASE 4 BOX FULL & CANAL FULL
Total wt. of box = = 16.160 t
net upward soil reaction B = 16.160 - 2.325 - 0.450 = 4.318 t/m2
3.100
load on top of slab A = 4.650 + 2.325 + 0.298 = 2.346 t/m2
3.100
water pressure C = 0 TO 1.500 t/m2
water load D = 1.500 t/m2
earth pr. At top E = 0.361 x 1.100 x 0.150 = 0.060 t/m2
earth pr. At bottom F = 0.361 x 1.100 x 2.025 = 0.804 t/m2
water pr. At top H = 1.690 x 1.000 = 1.690 t/m2
water pr. At bottom J = 3.565 x 1.000 = 3.565 t/m2
upward thrust on top slab G = 0.500 x 1.000 = 0.500 t/m3
A
H E E H
E H 3 2 4 B E
B E B B
B E
B G B
B 3 C C
B C B 4
B BD B
J BB
F J
1 B 2 E
1
B B
F F B
B H B
E B
B B
B
INPUT FILE: Box under Canal UT 25.615
1 STAAD SPACE
2 START JOB INFORMATION
3 ENGINEER DATE 28-Nov-19
4 END JOB INFORMATION
5 INPUT WIDTH 79
6 UNIT METER KN
7 JOINT COORDINATES
8 1 0 0 0; 2 2.5 0 0; 3 0 1.5 0; 4 2.5 1.5 0;
9 MEMBER INCIDENCES
10 1 3 4; 2 1 3; 3 2 4; 4 1 2;
11 DEFINE MATERIAL START
12 ISOTROPIC CONCRETE
13 E 2.17185e+007
14 POISSON 0.17
15 DENSITY 23.5616
16 ALPHA 1e-005
17 DAMP 0.05
18 TYPE CONCRETE
19 STRENGTH FCU 27579
20 END DEFINE MATERIAL
21 MEMBER PROPERTY AMERICAN
22 1 TO 4 PRIS YD 0.3 ZD 1
23 CONSTANTS
24 MATERIAL CONCRETE ALL
25 SUPPORTS
26 1 2 PINNED
27 LOAD 1 LOADTYPE None TITLE BOX EMPTY AND CANAL EMPTY
28 MEMBER LOAD
29 4 UNI GY 1.678
30 1 UNI GY -0.846
31 3 LIN Y 1.535 0.114
32 2 LIN Y -1.535 -0.114
33 LOAD 2 LOADTYPE None TITLE BOX FULL AND CANAL EMPTY
34 MEMBER LOAD
35 4 UNI GY 2.818
36 1 UNI GY -0.846
37 1 UNI GY 0.5
38 2 LIN Y 1.5 0
39 3 LIN Y -1.5 0
40 3 LIN Y 1.535 0.114
41 2 LIN Y -1.535 -0.114
42 LOAD 3 LOADTYPE None TITLE BOX EMPTY AND CANAL FULL
43 MEMBER LOAD
44 4 UNI GY 3.108
45 1 UNI GY -2.346
46 3 LIN Y 0.804 0.06
47 2 LIN Y -0.804 -0.06
48 3 LIN Y 3.565 1.69
49 2 LIN Y -3.565 -1.69
50 LOAD 4 LOADTYPE None TITLE BOX FULL AND CANAL FULL
51 MEMBER LOAD
52 4 UNI GY 4.381
53 1 UNI GY -2.346
54 1 UNI GY 0.5
55 2 LIN Y -1.5 0
56 3 LIN Y 1.5 0
57 2 LIN Y 0.804 0.06
58 3 LIN Y -0.804 -0.06
59 2 LIN Y 3.565 1.69
60 3 LIN Y -3.565 -1.69
61 PERFORM ANALYSIS PRINT ALL
62 FINISH
Joint Displacements
Horizontal Vertical Horizontal Resultant Rotational
Node L/C X mm Y mm Z mm mm rX rad rY rad rZ rad
1 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 0 0 0 0 0 0
4 BOX FULL A 0 0 0 0 0 0 0
2 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 0 0 0 0 0 0
4 BOX FULL A 0 0 0 0 0 0 0
3 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 -0.001 0 0.001 0 0 0
4 BOX FULL A 0 -0.001 0 0.001 0 0 0
4 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL A 0 0 0 0 0 0 0
3 BOX EMPTY 0 -0.001 0 0.001 0 0 0
4 BOX FULL A 0 -0.001 0 0.001 0 0 0
Support Reactions
Horizontal Vertical Horizontal Moment
Node L/C Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm
1 1 BOX EMPTY -1.04 -1.04 0 0 0 0
2 BOX FULL A -0.745 -3.09 0 0 0 0
3 BOX EMPTY -2.86 -0.953 0 0 0 0
4 BOX FULL A 1.169 -3.169 0 0 0 0
2 1 BOX EMPTY 1.04 -1.04 0 0 0 0
2 BOX FULL A 0.745 -3.09 0 0 0 0
3 BOX EMPTY 2.86 -0.953 0 0 0 0
4 BOX FULL A -1.169 -3.169 0 0 0 0
Beam L/C Node Fx kN Fy kN Fz kN Mx kNm My kNm
1 1 BOX EM 3 0.197 1.058 0 0 0
4 -0.197 1.058 0 0 0
2 BOX FU 3 -0.633 0.433 0 0 0
4 0.633 0.433 0 0 0
3 BOX EM 3 1.729 2.933 0 0 0
4 -1.729 2.933 0 0 0
4 BOX FU 3 -2.295 2.308 0 0 0
4 2.295 2.308 0 0 0
2 1 BOX EM 1 1.058 1.04 0 0 0
3 -1.058 0.197 0 0 0
2 BOX FU 1 0.433 0.745 0 0 0
3 -0.433 -0.633 0 0 0
3 BOX EM 1 2.933 2.86 0 0 0
3 -2.933 1.729 0 0 0
4 BOX FU 1 2.308 -1.169 0 0 0
3 -2.308 -2.295 0 0 0
3 1 BOX EM 2 1.058 -1.04 0 0 0
4 -1.058 -0.197 0 0 0
2 BOX FU 2 0.433 -0.745 0 0 0
4 -0.433 0.633 0 0 0
3 BOX EM 2 2.933 -2.86 0 0 0
4 -2.933 -1.729 0 0 0
4 BOX FU 2 2.308 1.169 0 0 0
4 -2.308 2.295 0 0 0
4 1 BOX EM 1 0 -2.098 0 0 0
2 0 -2.098 0 0 0
2 BOX FU 1 0 -3.523 0 0 0
2 0 -3.523 0 0 0
3 BOX EM 1 0 -3.885 0 0 0
2 0 -3.885 0 0 0
4 BOX FU 1 0 -5.476 0 0 0
2 0 -5.476 0 0 0
BENDING MOMENT
Beam L/C Dist m Mz kNm Dist m My kNm My kNm Mz kNm
1 1 BOX EMPTY Max +ve 0 0.286 0 0
Max -ve 1.25 -0.375 0 0
2 BOX FULL A Max +ve N/A N/A 0 0
Max -ve 1.25 -0.274 0 0
3 BOX EMPTY Max +ve 0 0.924 0 0
Max -ve 1.25 -0.908 0 0
4 BOX FULL A Max +ve 0 0.324 0 0
Max -ve 1.25 -1.118 0 0
2 1 BOX EMPTY Max +ve 0 0.652 0 0
Max -ve N/A N/A 0 0
2 BOX FULL A Max +ve 0 1.044 0 0
Max -ve 1.5 -0.004 0 0
3 BOX EMPTY Max +ve 0 1.281 0 0
Max -ve N/A N/A 0 0
4 BOX FULL A Max +ve 0.375 1.621 0 0
Max -ve N/A N/A 0 0
3 1 BOX EMPTY Max +ve N/A N/A 0 0
Max -ve 0 -0.652 0 0
2 BOX FULL A Max +ve 1.5 0.004 0 0
Max -ve 0 -1.044 0 0
3 BOX EMPTY Max +ve N/A N/A 0 0
Max -ve 0 -1.281 0 0
4 BOX FULL A Max +ve N/A N/A 0 0
Max -ve 0.375 -1.621 0 0
4 1 BOX EMPTY Max +ve 1.25 0.659 0 0
Max -ve 0 -0.652 0 0
2 BOX FULL A Max +ve 1.25 1.157 0 0
Max -ve 0 -1.044 0 0
3 BOX EMPTY Max +ve 1.25 1.147 0 0
Max -ve 0 -1.281 0 0
4 BOX FULL A Max +ve 1.25 2.045 0 0
Max -ve 0 -1.378 0 0
BOX EMPTY AND CANAL FULL CONDITION
BOX FULL AND CANAL FULL CONDITION
Shear Force's
Beam L/C Dist m Fy kN Dist m Fz kN My kNm Mz kNm
1 1 BOX EMPTY Max +ve 0 1.058 0 0
Max -ve 2.5 -1.058 0 0
2 BOX FULL A Max +ve 0 0.433 0 0
Max -ve 2.5 -0.433 0 0
3 BOX EMPTY Max +ve 0 2.933 0 0
Max -ve 2.5 -2.933 0 0
4 BOX FULL A Max +ve 0 2.308 0 0
Max -ve 2.5 -2.308 0 0
2 1 BOX EMPTY Max +ve 0 1.04 0 0
Max -ve 1.5 -0.197 0 0
2 BOX FULL A Max +ve 0 0.745 0 0
Max -ve N/A N/A 0 0
3 BOX EMPTY Max +ve 0 2.86 0 0
Max -ve 1.5 -1.729 0 0
4 BOX FULL A Max +ve 1.5 2.295 0 0
Max -ve 0 -1.169 0 0
3 1 BOX EMPTY Max +ve 1.5 0.197 0 0
Max -ve 0 -1.04 0 0
2 BOX FULL A Max +ve N/A N/A 0 0
Max -ve 0 -0.745 0 0
3 BOX EMPTY Max +ve 1.5 1.729 0 0
Max -ve 0 -2.86 0 0
4 BOX FULL A Max +ve 0 1.169 0 0
Max -ve 1.5 -2.295 0 0
4 1 BOX EMPTY Max +ve 2.5 2.098 0 0
Max -ve 0 -2.098 0 0
2 BOX FULL A Max +ve 2.5 3.523 0 0
Max -ve 0 -3.523 0 0
3 BOX EMPTY Max +ve 2.5 3.885 0 0
Max -ve 0 -3.885 0 0
4 BOX FULL A Max +ve 2.5 5.476 0 0
Max -ve 0 -5.476 0 0
BOX EMPTY AND CANAL FULL CONDITION
BOX FULL AND CANAL FULL CONDITION
Axial Force's
Beam L/C Dist m Fx kN Dist m Fz kN My kNm Mz kNm
1 1 BOX EMPTY Max +ve 0 0.197
Max -ve N/A N/A
2 BOX FULL A Max +ve N/A N/A
Max -ve 0 -0.633
3 BOX EMPTY Max +ve 0 1.729
Max -ve N/A N/A
4 BOX FULL A Max +ve N/A N/A
Max -ve 0 -2.295
2 1 BOX EMPTY Max +ve 0 1.058
Max -ve N/A N/A
2 BOX FULL A Max +ve 0 0.433
Max -ve N/A N/A
3 BOX EMPTY Max +ve 0 2.933
Max -ve N/A N/A
4 BOX FULL A Max +ve 0 2.308
Max -ve N/A N/A
3 1 BOX EMPTY Max +ve 0 1.058
Max -ve N/A N/A
2 BOX FULL A Max +ve 0 0.433
Max -ve N/A N/A
3 BOX EMPTY Max +ve 0 2.933
Max -ve N/A N/A
4 BOX FULL A Max +ve 0 2.308
Max -ve N/A N/A
4 1 BOX EMPTY Max +ve 0 0
Max -ve 0 0
2 BOX FULL A Max +ve 0 0
Max -ve 0 0
3 BOX EMPTY Max +ve 0 0
Max -ve 0 0
4 BOX FULL A Max +ve 0 0
Max -ve 0 0
BOX EMPTY AND CANAL FULL CONDITION
BOX FULL AND CANAL FULL CONDITION
Mz kNm
0.286
-0.286
-0.004
0.004
0.924
-0.924
0.324
-0.324
0.652
-0.286
1.044
0.004
1.281
-0.924
1.378
-0.324
-0.652
0.286
-1.044
-0.004
-1.281
0.924
-1.378
0.324
-0.652
0.652
-1.044
1.044
-1.281
1.281
-1.378
1.378
DATA SHEET: BOX UNDER CANAL
END BOTTOM END TOP END VERTICAL MID VERTICAL
MEMBER 1 2 3&4
CONDITION DRY WET DRY WET DRY WET DRY WET
MOMENT SUPPORT 1.281 1.378 0.924 0.324 0.924 0.324 0 0
CENTER 1.147 2.045 0.908 1.118 0.242 1.501 0 0
SUPPORT 1.281 1.378 0.924 0.324 1.281 1.378 0 0
SHEAR SUPPORT 3.885 5.476 2.933 2.308 1.729 2.295 0 0
SUPPORT 3.885 5.476 2.933 2.308 1.729 2.295 0 0
AXIAL FORCE 0 0 1.729 2.295 2.933 2.308 0 0
LENGTH 2.5 2.5 2.5 2.5 1.5 1.5 0 0
THICKNESS 300 300 300 300 300 300 300 300
COVER 40 40 40 40 40 40 40 40
MAIN REINF 12 12 12 12 12 12 12 12
DIST. REINF 10 10 10 10 10 10 10 10
m = 10 Fe415
r = σ st / σ cbc M30
= 200 / 10
= 20.00
k = m / ( m + r )
= 10 / ( 10 + 20.000 )
= 0.333
j = 1 - k / 3
= 1 - 0.333 / 3
= 0.889
Q = ( 1 / 2 )x σ cbc x
= ( 1 / 2 )x / 10 x
= 1.4815
k x j
0.333 x 0.889
DESIGN OF END BOTTOM MEMBER
1.147
DRY 1.281 1.281
2.5
A C B
A 2.045
WET 1.378 1.378
2.5
AT SUPPORT :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 1.281 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 1.281 t-m
EFFECTIVE DEPTH REQUIRED = 1.281 x 1E5
14.81481 x 100
= 9.30 cm <
AREA OF STEEL = 1.281 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 3.24 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.378 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 1.378 t-m
EFFECTIVE DEPTH REQUIRED = 1.378 x 1E5
14.81481 x 100
= 9.64 cm <
AREA OF STEEL = 1.378 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 3.49 cm²
REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 3.49 cm²
Hence provide 12 dia @ 300 c/c
Provided steel = 3.77 cm²
AT CENTRE :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 1.147 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 1.147 t-m
EFFECTIVE DEPTH REQUIRED = 1.147 x 1E5
14.81481 x 100
= 8.80 cm <
AREA OF STEEL = 1.147 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 2.90 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 2.045 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 2.045 t-m
EFFECTIVE DEPTH REQUIRED = 2.045 x 1E5
14.81481 x 100
= 11.75 cm <
AREA OF STEEL = 2.045 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 5.18 cm²
REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 5.18 cm²
Hence provide 12 dia @ 200 c/c
Provided steel = 5.65 cm²
DISTRIBUTION STEEL:
MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)
MINIMUM STEEL ( 0.24 * 30 )*100 / 100
= 7.286 cm²
ON EACH FACE= 3.643 cm²
AREA OF STEEL= 3.643 cm²
PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )
SHEAR:
CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT
d = ( 254 + 300 / 2 ) / 1000
d = 0.404 m
( i ) DRY CONDITION 3.885
2.629
0.846 0.404
1.250
3.885
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 2.629 t
( ii ) WET CONDITION 5.48
3.706
0.846 0.404
1.250
5.48
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 3.706 t
MAXIMUM SHEAR FORCE = 3.706 t
SHEAR STRESS ( v)= τ 5.559 * 1000 / ( 100 * 25.4 ) = 2.19 Kg/cm2
100*As/b*d = 100 * 3.77 / ( 100 * 25.4 ) = 0.148 %
FROM TABLE 23 OF IS 456:2000
PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.171 Kg/cm2
τc > τV
Hence ok, safe in shear
)
25.4 cm.
)
25.4 cm.
)
25.4 cm
25.4 cm.
DESIGN OF END TOP MEMBER
A B
A
DRY 0.924 0.924
C
0.908
2.5
A B
A
WET 0.32 0.32
C
1.12
2.5
AT SUPPORT :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 0.924 t-m
MAX. AXIAL FORCE = 1.729 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.180 t-m
RESULTANT MOMENT ( M + C X ) = 1.104 t-m
EFFECTIVE DEPTH REQUIRED = 1.104 x 1E5
14.81481 x 100
= 8.63 cm <
AREA OF STEEL = 1.104 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 2.79 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 0.32 t-m
MAX. AXIAL FORCE = 2.295 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.239 t-m
RESULTANT MOMENT ( M + C X ) = 0.563 t-m
EFFECTIVE DEPTH REQUIRED = 0.563 x 1E5
14.81481 x 100
= 6.16 cm <
AREA OF STEEL = 0.563 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 1.42 cm²
REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 2.79 cm²
Hence provide 12 dia @ 300 c/c
Provided steel = 3.77 cm²
AT CENTRE :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 0.908 t-m
MAX. AXIAL FORCE = 1.729 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.180 t-m
RESULTANT MOMENT ( M + C X ) = 1.088 t-m
EFFECTIVE DEPTH REQUIRED = 1.088 x 1E5
14.81481 x 100
= 8.57 cm <
AREA OF STEEL = 1.088 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 2.75 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.12 t-m
MAX. AXIAL FORCE = 2.295 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.239 t-m
RESULTANT MOMENT ( M + C X ) = 1.357 t-m
EFFECTIVE DEPTH REQUIRED = 1.357 x 1E5
14.81481 x 100
= 9.57 cm <
AREA OF STEEL = 1.357 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.88889 )
= 3.43 cm²
REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 3.43 cm²
Hence provide 12 dia @ 300 c/c
Provided steel = 3.77 cm²
DISTRIBUTION STEEL:
MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)
MINIMUM STEEL ( 0.24 * 30 )*100 / 100
= 7.286 cm²
ON EACH FACE= 3.643 cm²
AREA OF STEEL= 3.643 cm²
PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )
SHEAR:
CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT
d = ( 254 + 300 / 2 ) / 1000
d = 0.404 m
( i ) DRY CONDITION 2.933
1.985
0.846 0.404
1.250
2.933
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 1.985 t
( ii ) WET CONDITION 2.31
1.562
0.846 0.404
1.250
2.31
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 1.562 t
MAXIMUM SHEAR FORCE = 1.985 t
SHEAR STRESS ( v)= τ 2.978 * 1000 / ( 100 * 25.4 ) = 1.17 Kg/cm2
100*As/b*d = 100 * 3.77 / ( 100 * 25.4 ) = 0.148 %
FROM TABLE 23 OF IS 456:2000
PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.171 Kg/cm2
τc > τV
Hence ok, safe in shear
MEMBER
25.4 cm.
)
25.4 cm.
)
25.4 cm
25.4 cm.
DESIGN OF END VERTICAL MEMBER
DRY WET
0.924 0.32
0.242 1.50
1.281 1.38
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 1.281 t-m
DIRECT STRESS ( cc,cal ) = 2.933 / 1.0 * 0.3
= 9.777 t/m²
PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE
cc = 8 N/mm²
= 800 t/m²
STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6
Z = 0.0150
cbc,cal = 1.281 / 0.0150
= 85.400
cbc PERMISSIBLE = 1000
(FOR M30 GRADE)
cc,cal + cbc,cal < 1
cc cbc
9.777 + 85.400
800 1000
0.0122 + 0.0854 = 0.098 < 1
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.50 t-m
DIRECT STRESS ( cc,cal ) = 2.31 / 1.0 * 0.3
= 7.693 t/m²
PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE
cc = 8 N/mm²
= 800 t/m²
STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6
Z = 0.0150
cbc,cal = 1.50 / 0.0150
= 100.067
cbc PERMISSIBLE = 1000
(FOR M30 GRADE)
cc,cal + cbc,cal < 1
cc cbc
7.693 + 100.067
800 1000
0.0096 + 0.1001 = 0.110 < 1
AT SUPPORT :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 1.281 t-m
MAX. AXIAL FORCE = 2.933 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.305 t-m
RESULTANT MOMENT ( M + C X ) = 1.586 t-m
EFFECTIVE DEPTH REQUIRED = 1.586 x 1E5
14.814815 x 100
= 10.35 cm <
AREA OF STEEL = 1.586 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.888889 )
= 4.01 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.50 t-m
MAX. AXIAL FORCE = 2.308 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.240 t-m
RESULTANT MOMENT ( M + C X ) = 1.741 t-m
EFFECTIVE DEPTH REQUIRED = 1.741 x 1E5
14.814815 x 100
= 10.84 cm <
AREA OF STEEL = 1.741 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.888889 )
= 4.41 cm²
REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 4.41 cm²
Hence provide 12 dia @ 250 c/c
Provided steel = 4.52 cm²
AT CENTRE :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 0.242 t-m
MAX. AXIAL FORCE = 2.933 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.305 t-m
RESULTANT MOMENT ( M + C X ) = 0.547 t-m
EFFECTIVE DEPTH REQUIRED = 0.547 x 1E5
14.814815 x 100
= 6.08 cm <
AREA OF STEEL = 0.547 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.888889 )
= 1.38 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.50 t-m
MAX. AXIAL FORCE = 2.308 t
EFFECTIVE DEPTH = 254 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 254 - 0.5 x 300
= 104 mm.
MOMENT DUE TO AXIAL FORCE = 0.240 t-m
RESULTANT MOMENT ( M + C X ) = 1.741 t-m
EFFECTIVE DEPTH REQUIRED = 1.741 x 1E5
14.814815 x 100
= 10.84 cm <
AREA OF STEEL = 1.741 x 1 E 5
t x j x 25.4
( t = 1750 j = 0.888889 )
= 4.41 cm²
REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 4.41 cm²
Hence provide 12 dia @ 250 c/c
Provided steel = 4.52 cm²
DISTRIBUTION STEEL:
MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)
MINIMUM STEEL ( 0.24 * 30 )*100 / 100
= 7.286 cm²
ON EACH FACE= 3.643 cm²
AREA OF STEEL= 3.643 cm²
PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )
SHEAR:
CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT
d = ( 254 + 300 / 2 ) / 1000
d = 0.404 m
DRY WET
1.729
0.404 0.404
0.798
0.750 0.750
0.346 0.346
1.5 1.5
1.729 2.30
MAX. SHEAR FORCE AT CRITICAL SECTION (DRY) = 0.798 t
MAX. SHEAR FORCE AT CRITICAL SECTION (WET) = 1.059 t
MAXIMUM SHEAR FORCE = 1.059 t
SHEAR STRESS ( v)= τ 1.588 * 1000 / ( 100 * 25.4 ) = 0.63 Kg/cm2
100*As/b*d = 100 * 4.52 / ( 100 * 25.4 ) = 0.178 %
FROM TABLE 23 OF IS 456:2000
PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.124 Kg/cm2
τc > τV
Hence ok, safe in shear
)
25.4 cm.
25.4 cm.
)
25.4 cm
25.4 cm.
2.30
1.059
DESIGN OF BOX ( UNDER EARTH BANK )
No.of Vents = 1
Width of Vent = 2.500 mts.
Height of Box including wc = 1.575 mts.
Thickness of sealing coat = 0.040 mts.
Thickness of w.c = 0.075 mts.
Thickness of Hor. Mem = 0.300 mts.
Thickness of Ver.(end) Mem = 0.300 mts.
Thickness of Middle Mem = 0.000 mts.
F S L of canal = 407.795 M
Tail water level of drain = 405.545 M
Live load surcharge = 0.401 t/m2
Avg. Ground Level/TBL = 408.395 M
Canal bed level = 406.295 M
Height of Earth over box = 2.140 mts.
Top level of box = 406.195 M
Sill level = 404.395 M
Density of RCC = 2.500
Density of earth = 2.100
Density of concrete = 2.400
Density of water = 1.000
Coeft. = 0.361
Total Width of Box = 3.100 m
T. B. L 408.395
CBL + 406.295
0.300 406.195
405.895
1.575
404.395
0.300 404.320
0.30 2.50 0.30
3.100
Loads on RCC box per mt.
Wt. of top member = 3.100 x 0.300 x 2.500 = 2.325 t
Wt. of bottom member = 3.100 x 0.300 x 2.500 = 2.325 t
Wt. of vertical walls ( end ) =2x 1.575 x 0.300 x 2.500 = 2.363 t
Wt. of vertical walls (middle ) =1x 1.575 x 0.000 x 2.500 = 0.000 t
Wt. of earth fill over box = 3.100 x 2.140 x 2.100 = 13.931 t
Wt. of sealing coat = 0.000 x 0.040 x 2.400 = 0.000 t
Wt. of water =1x 2.500 x 1.500 x 1.000 = 3.750 t
Wt. of wc =1x 2.500 x 0.075 x 2.400 = 0.450 t
Wt. of water over the box = 3.100 x 0.000 x 1.000 = 0.000 t
Load due to live load = 0.401 x 3.100 = 1.243 t
TOTAL 26.387
CASE 1 BOX EMPTY
Total wt. of box(without water) = 26.387 - 3.750 = 22.637 t
net upward soil reaction B = 22.637 - 2.325 - 0.450 = 6.407 t/m2
3.100
load on top of slab A = 2.325 + 1.243 + 13.931 = 5.645 t/m2
3.100
water pressure C = = 0
water load D = = 0
earth pr. At top E = 0.361 x 2.100 x 2.691 = 2.040 t/m2
earth pr. At bottom F = 0.361 x 2.100 x 4.566 = 3.461 t/m2
CASE 2 BOX FULL
Total wt. of box = 26.387 - 0.000 = 26.387 t
net upward soil reaction B = 26.387 - 2.325 - 0.450 = 7.617 t/m2
3.100
load on top of slab A = 2.325 + 1.243 + 13.931 = 5.645 t/m2
3.100
water pressure C = 0 TO 1.500 t/m2
water load D = = 1.500 t/m2
earth pr. At top E = 0.361 x 2.100 x 2.691 = 2.040 t/m2
earth pr. At bottom F = 0.361 x 2.100 x 4.566 = 3.461 t/m2
A
H E E H
E H 3 2 4 E
B
B E B B
B E
B B
B C C
3 B B 4
J B B
F J
1 2 E
1
B B
F F
B B
H B
E B
B B
B
INPUT FILE: Box under Earth UT 25.615
1 STAAD SPACE
2 START JOB INFORMATION
3 ENGINEER DATE 28-Nov-19
4 END JOB INFORMATION
5 INPUT WIDTH 79
6 UNIT METER KN
7 JOINT COORDINATES
8 1 0 0 0; 2 2.5 0 0; 3 0 1.5 0; 4 2.5 1.5 0;
9 MEMBER INCIDENCES
10 1 3 4; 2 1 3; 3 2 4; 4 1 2;
11 DEFINE MATERIAL START
12 ISOTROPIC CONCRETE
13 E 2.17185e+007
14 POISSON 0.17
15 DENSITY 23.5616
16 ALPHA 1e-005
17 DAMP 0.05
18 TYPE CONCRETE
19 STRENGTH FCU 27579
20 END DEFINE MATERIAL
21 MEMBER PROPERTY AMERICAN
22 1 TO 4 PRIS YD 0.3 ZD 1
23 CONSTANTS
24 MATERIAL CONCRETE ALL
25 SUPPORTS
26 1 2 PINNED
27 LOAD 1 LOADTYPE None TITLE BOX EMPTY
28 MEMBER LOAD
29 4 UNI GY 6.407
30 1 UNI GY -5.645
31 3 LIN Y 3.461 2.04
32 2 LIN Y -3.461 -2.04
33 LOAD 2 LOADTYPE None TITLE BOX FULL
34 MEMBER LOAD
35 4 UNI GY 7.617
36 1 UNI GY -5.645
37 2 LIN Y 1.5 0
38 3 LIN Y -1.5 0
39 3 LIN Y 3.461 2.04
40 2 LIN Y -3.461 -2.04
41 PERFORM ANALYSIS PRINT ALL
42 FINISH
Joint Displacements
Horizontal Vertical Horizontal Resultant Rotational
Node L/C X mm Y mm Z mm mm rX rad rY rad rZ rad
1 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL 0 0 0 0 0 0 0
2 1 BOX EMPTY 0 0 0 0 0 0 0
2 BOX FULL 0 0 0 0 0 0 0
3 1 BOX EMPTY 0 -0.002 0 0.002 0 0 0
2 BOX FULL 0 -0.002 0 0.002 0 0 0
4 1 BOX EMPTY 0 -0.002 0 0.002 0 0 0
2 BOX FULL 0 -0.002 0 0.002 0 0 0
Support Reaction's
Horizontal Vertical Horizontal Moment
Node L/C Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm
1 1 BOX EMPTY -2.472 -0.953 0 0 0 0
2 BOX FULL -2.056 -2.465 0 0 0 0
2 1 BOX EMPTY 2.472 -0.953 0 0 0 0
2 BOX FULL 2.056 -2.465 0 0 0 0
End Forces
Beam L/C Node Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm
1 1 BOX EMPTY 3 1.653 7.056 0 0 0 1.981
4 -1.653 7.056 0 0 0 -1.981
2 BOX FULL 3 0.945 7.056 0 0 0 1.875
4 -0.945 7.056 0 0 0 -1.875
2 1 BOX EMPTY 1 7.056 2.472 0 0 0 2.329
3 -7.056 1.653 0 0 0 -1.981
2 BOX FULL 1 7.056 2.056 0 0 0 2.723
3 -7.056 0.945 0 0 0 -1.875
3 1 BOX EMPTY 2 7.056 -2.472 0 0 0 -2.329
4 -7.056 -1.653 0 0 0 1.981
2 BOX FULL 2 7.056 -2.056 0 0 0 -2.723
4 -7.056 -0.945 0 0 0 1.875
4 1 BOX EMPTY 1 0 -8.009 0 0 0 -2.329
2 0 -8.009 0 0 0 2.329
2 BOX FULL 1 0 -9.521 0 0 0 -2.723
2 0 -9.521 0 0 0 2.723
BENDING MOMENT
Beam L/C Node Fx kN Fy kN Fz kN Mx kNm My kNm Mz kNm
1 1 BOX EMPTY 3 1.653 7.056 0 0 0 1.981
4 -1.653 7.056 0 0 0 -1.981
2 BOX FULL 3 0.945 7.056 0 0 0 1.875
4 -0.945 7.056 0 0 0 -1.875
2 1 BOX EMPTY 1 7.056 2.472 0 0 0 2.329
3 -7.056 1.653 0 0 0 -1.981
2 BOX FULL 1 7.056 2.056 0 0 0 2.723
3 -7.056 0.945 0 0 0 -1.875
3 1 BOX EMPTY 2 7.056 -2.472 0 0 0 -2.329
4 -7.056 -1.653 0 0 0 1.981
2 BOX FULL 2 7.056 -2.056 0 0 0 -2.723
4 -7.056 -0.945 0 0 0 1.875
4 1 BOX EMPTY 1 0 -8.009 0 0 0 -2.329
2 0 -8.009 0 0 0 2.329
2 BOX FULL 1 0 -9.521 0 0 0 -2.723
2 0 -9.521 0 0 0 2.723
BOX EMPTY CONDITION
BOX FULL CONDITION
Max Shear Force
Beam L/C Dist m Fy kN Dist m Fz kN My kNm Mz kNm
1 1 BOX EMPTY Max +ve 0 7.056 0 0
Max -ve 2.5 -7.056 0 0
2 BOX FULL Max +ve 0 7.056 0 0
Max -ve 2.5 -7.056 0 0
2 1 BOX EMPTY Max +ve 0 2.472 0 0
Max -ve 1.5 -1.653 0 0
2 BOX FULL Max +ve 0 2.056 0 0
Max -ve 1.5 -0.945 0 0
3 1 BOX EMPTY Max +ve 1.5 1.653 0 0
Max -ve 0 -2.472 0 0
2 BOX FULL Max +ve 1.5 0.945 0 0
Max -ve 0 -2.056 0 0
4 1 BOX EMPTY Max +ve 2.5 8.009 0 0
Max -ve 0 -8.009 0 0
2 BOX FULL Max +ve 2.5 9.521 0 0
Max -ve 0 -9.521 0 0
BOX EMPTY CONDITION
BOX FULL CONDITION
Axial Force's
Beam L/C Dist m Fx kN Dist m Fz kN My kNm Mz kNm
1 1 BOX EMPTY Max +ve 0 1.653
Max -ve N/A N/A
2 BOX FULL Max +ve 0 0.945
Max -ve N/A N/A
2 1 BOX EMPTY Max +ve 0 7.056
Max -ve N/A N/A
2 BOX FULL Max +ve 0 7.056
Max -ve N/A N/A
3 1 BOX EMPTY Max +ve 0 7.056
Max -ve N/A N/A
2 BOX FULL Max +ve 0 7.056
Max -ve N/A N/A
4 1 BOX EMPTY Max +ve 0 0
Max -ve 0 0
2 BOX FULL Max +ve 0 0
Max -ve 0 0
BOX EMPTY CONDITION
BOX FULL CONDITION
DATA SHEET: BOX UNDER EARTH
END BOTTOM END TOP END VERTICAL MID VERTICAL
MEMBER 1 2 3&4 6
CONDITION DRY WET DRY WET DRY WET DRY
MOMENT SUPPORT 2.329 2.723 1.981 1.875 1.981 1.875 0
CENTER 2.676 3.228 2.429 2.535 1.381 1.737 0
SUPPORT 2.329 2.723 1.981 1.875 2.329 2.723 0
SHEAR SUPPORT 8.009 9.521 7.059 7.056 1.653 0.945 0
SUPPORT 8.009 9.521 7.059 7.056 2.472 2.056 0
AXIAL FORCE 0 0 1.653 0.945 7.056 7.056 0
LENGTH 2.5 2.5 2.5 2.5 1.5 1.5 0
THICKNESS 300 300 300 300 300 300 0
COVER 40 40 40 40 40 40 40
MAIN REINF 16 16 16 16 16 16 12
DIST. REINF 10 10 10 10 10 10 10
m = 10
r = σ st / σ cbc
= 200 / 10
= 20.00
k = m / ( m + r )
= 10 / ( 10 + 20.000 )
= 0.333
j = 1 - k / 3
= 1 - 0.333 / 3
= 0.889
Q = ( 1 / 2 ) x σ cbc
= ( 1 / 2 ) x 10
= 1.4815
MID VERTICAL
6
WET
0
0
0
0
0
40
12
10
Fe415
M30
x k x j
x 0.333 x 0.889
DESIGN OF END BOTTOM MEMBER
2.676
DRY 2.329 2.329
2.5
A C B
A 2.429
WET 1.981 1.981
2.5
AT SUPPORT :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 2.329 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 255 - 0.5 x 300
= 105 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 2.329 t-m
EFFECTIVE DEPTH REQUIRED = 2.329 x 1E5
14.81481 x 100
= 12.54 cm <
AREA OF STEEL = 2.329 x 1 E 5
t x j x 25.5
( t = 1700 j = 0.88889 )
= 6.04 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.981 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 255 - 0.5 x 300
= 105 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 1.981 t-m
EFFECTIVE DEPTH REQUIRED = 1.981 x 1E5
14.81481 x 100
= 11.56 cm <
AREA OF STEEL = 1.981 x 1 E 5
t x j x 25.5
( t = 1700 j = 0.88889 )
= 5.14 cm²
REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 6.04 cm²
Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
AT CENTRE :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 2.676 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 255 - 0.5 x 300
= 105 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 2.676 t-m
EFFECTIVE DEPTH REQUIRED = 2.676 x 1E5
14.81481 x 100
= 13.44 cm <
AREA OF STEEL = 2.676 x 1 E 5
t x j x 25.5
( t = 1700 j = 0.88889 )
= 6.94 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 2.429 t-m
MAX. AXIAL FORCE = 0t
EFFECTIVE DEPTH = 255 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 255 - 0.5 x 300
= 105 mm.
MOMENT DUE TO AXIAL FORCE = 0.000 t-m
RESULTANT MOMENT ( M + C X ) = 2.429 t-m
EFFECTIVE DEPTH REQUIRED = 2.429 x 1E5
14.81481 x 100
= 12.80 cm <
AREA OF STEEL = 2.429 x 1 E 5
t x j x 25.5
( t = 1700 j = 0.88889 )
= 6.30 cm²
REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 6.94 cm²
Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
DISTRIBUTION STEEL:
MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)
MINIMUM STEEL ( 0.24 * 30 )*100 / 100
= 7.286 cm²
ON EACH FACE= 3.643 cm²
AREA OF STEEL= 3.643 cm²
PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )
SHEAR:
CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT
d = ( 255 + 300 / 2 ) / 1000
d = 0.405 m
( i ) DRY CONDITION 8.009
5.414
0.845 0.405
1.250
8.009
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 5.414 t
( ii ) WET CONDITION 9.52
6.436
0.845 0.405
1.250
9.52
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 6.436 t
MAXIMUM SHEAR FORCE = 6.436 t
SHEAR STRESS ( v)= τ 6.436 * 1000 / ( 100 * 25.5 ) = 2.52 Kg/cm2
100*As/b*d = 100 * 7.54 / ( 100 * 25.5 ) = 0.296 %
FROM TABLE 23 OF IS 456:2000
PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 4.264 Kg/cm2
τc > τV
Hence ok, safe in shear
)
25.5 cm.
)
25.5 cm.
)
25.5 cm
25.5 cm.
DESIGN OF END TOP MEMBER
A B
A
DRY 1.981 1.981
C
2.429
2.5
A B
A
WET 1.88 1.88
C
2.54
2.5
AT SUPPORT :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 1.981 t-m
MAX. AXIAL FORCE = 1.653 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.169 t-m
RESULTANT MOMENT ( M + C X ) = 2.150 t-m
EFFECTIVE DEPTH REQUIRED = 2.150 x 1E5
14.81481 x 100
= 12.05 cm <
AREA OF STEEL = 2.150 x 1 E 5
t x j x 25.2
( t = 1700 j = 0.88889 )
= 5.64 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.88 t-m
MAX. AXIAL FORCE = 0.945 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.096 t-m
RESULTANT MOMENT ( M + C X ) = 1.971 t-m
EFFECTIVE DEPTH REQUIRED = 1.971 x 1E5
14.81481 x 100
= 11.54 cm <
AREA OF STEEL = 1.971 x 1 E 5
t x j x 25.2
( t = 1700 j = 0.88889 )
= 5.18 cm²
REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 5.64 cm²
Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
AT CENTRE :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 2.429 t-m
MAX. AXIAL FORCE = 1.653 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.169 t-m
RESULTANT MOMENT ( M + C X ) = 2.598 t-m
EFFECTIVE DEPTH REQUIRED = 2.598 x 1E5
14.81481 x 100
= 13.24 cm <
AREA OF STEEL = 2.598 x 1 E 5
t x j x 25.2
( t = 1700 j = 0.88889 )
= 6.82 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 2.54 t-m
MAX. AXIAL FORCE = 0.945 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.096 t-m
RESULTANT MOMENT ( M + C X ) = 2.631 t-m
EFFECTIVE DEPTH REQUIRED = 2.631 x 1E5
14.81481 x 100
= 13.33 cm <
AREA OF STEEL = 2.631 x 1 E 5
t x j x 25.2
( t = 1700 j = 0.88889 )
= 6.91 cm²
REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 6.91 cm²
Hence provide 12 dia @ 150 c/c
Provided steel = 7.54 cm²
DISTRIBUTION STEEL:
MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)
MINIMUM STEEL ( 0.24 * 30 )*100 / 100
= 7.286 cm²
ON EACH FACE= 3.643 cm²
AREA OF STEEL= 3.643 cm²
PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )
SHEAR:
CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT
d = ( 252 + 300 / 2 ) / 1000
d = 0.402 m
( i ) DRY CONDITION 7.059
4.789
0.848 0.402
1.250
7.059
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 4.789 t
( ii ) WET CONDITION 7.06
4.787
0.848 0.402
1.250
7.06
2.5
MAX. SHEAR FORCE AT CRITICAL SECTION = 4.787 t
MAXIMUM SHEAR FORCE = 4.789 t
SHEAR STRESS ( v)= τ 7.183 * 1000 / ( 100 * 25.2 ) = 2.85 Kg/cm2
100*As/b*d = 100 * 7.54 / ( 100 * 25.2 ) = 0.299 %
FROM TABLE 23 OF IS 456:2000
PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 3.955 Kg/cm2
τc > τV
Hence ok, safe in shear
MEMBER
25.2 cm.
)
25.2 cm.
)
25.2 cm
25.2 cm.
DESIGN OF END VERTICAL MEMBER
DRY WET
1.981 1.88
1.381 1.74
2.329 2.72
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 2.329 t-m
DIRECT STRESS ( cc,cal ) = 7.056 / 1.0 * 0.3
= 23.520 t/m²
PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE
cc = 8 N/mm²
= 800 t/m²
STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6
Z = 0.0150
cbc,cal = 2.329 / 0.0150
= 155.267
cbc PERMISSIBLE = 1000
(FOR M30 GRADE)
cc,cal + cbc,cal < 1
cc cbc
23.520 + 155.267
800 1000
0.0294 + 0.1553 = 0.185 < 1
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 2.72 t-m
DIRECT STRESS ( cc,cal ) = 7.06 / 1.0 * 0.3
= 23.520 t/m²
PERMISSIBLE COMPRESSIVE STRESS IN M30 GRADE CONCRETE
cc = 8 N/mm²
= 800 t/m²
STRESS DUE TO BENDING= M/Z WHERE Z = b*d2/6
Z = 0.0150
cbc,cal = 2.72 / 0.0150
= 181.533
cbc PERMISSIBLE = 1000
(FOR M30 GRADE)
cc,cal + cbc,cal < 1
cc cbc
23.520 + 181.533
800 1000
0.0294 + 0.1815 = 0.211 < 1
AT SUPPORT :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 2.329 t-m
MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.720 t-m
RESULTANT MOMENT ( M + C X ) = 3.049 t-m
EFFECTIVE DEPTH REQUIRED = 3.049 x 1E5
14.814815 x 100
= 14.35 cm <
AREA OF STEEL = 3.049 x 1 E 5
t x j x 25.2
( t = 1900 j = 0.888889 )
= 7.16 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 2.72 t-m
MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.720 t-m
RESULTANT MOMENT ( M + C X ) = 3.443 t-m
EFFECTIVE DEPTH REQUIRED = 3.443 x 1E5
14.814815 x 100
= 15.24 cm <
AREA OF STEEL = 3.443 x 1 E 5
t x j x 25.2
( t = 1900 j = 0.888889 )
= 8.09 cm²
REQUIRED STEEL AT SUPPORT ( I.e., at Bottom ) = 8.09 cm²
Hence provide 12 dia @ 125 c/c
Provided steel = 9.04 cm²
AT CENTRE :
( i ) DRY CONDITION
MAX. DESIGN MOMENT = 1.381 t-m
MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.720 t-m
RESULTANT MOMENT ( M + C X ) = 2.101 t-m
EFFECTIVE DEPTH REQUIRED = 2.101 x 1E5
14.814815 x 100
= 11.91 cm <
AREA OF STEEL = 2.101 x 1 E 5
t x j x 25.2
( t = 1900 j = 0.888889 )
= 4.94 cm²
( ii ) WET CONDITION
MAX. DESIGN MOMENT = 1.74 t-m
MAX. AXIAL FORCE = 7.056 t
EFFECTIVE DEPTH = 252 mm
MOMENT DUE TO AXIAL FORCE = C*X
X = ( 252 - 0.5 x 300
= 102 mm.
MOMENT DUE TO AXIAL FORCE = 0.720 t-m
RESULTANT MOMENT ( M + C X ) = 2.457 t-m
EFFECTIVE DEPTH REQUIRED = 2.457 x 1E5
14.814815 x 100
= 12.88 cm <
AREA OF STEEL = 2.457 x 1 E 5
t x j x 25.2
( t = 1900 j = 0.888889 )
= 5.77 cm²
REQUIRED STEEL AT CENTRE ( I.e., at Top ) = 5.77 cm²
Hence provide 12 dia @ 175 c/c
Provided steel = 6.46 cm²
DISTRIBUTION STEEL:
MINIMUM STEEL= 0.24 % (AS PER CL: 7.1 OF IS:3370 PART II-1965)
MINIMUM STEEL ( 0.24 * 30 )*100 / 100
= 7.286 cm²
ON EACH FACE= 3.643 cm²
AREA OF STEEL= 3.643 cm²
PROVIDE 10 DIA @ 200 C/C ( Ast = 3.93 cm² )
SHEAR:
CRITICAL SECTION FOR SHEAR IS AT 'd' FROM THE FACE OF THE SUPPORT
d = ( 252 + 300 / 2 ) / 1000
d = 0.402 m
DRY WET
1.653
0.402 0.402
0.548
0.601 0.472
0.199 0.070
1.5 1.5
2.472 2.06
MAX. SHEAR FORCE AT CRITICAL SECTION (DRY) = 0.548 t
MAX. SHEAR FORCE AT CRITICAL SECTION (WET) = 0.141 t
MAXIMUM SHEAR FORCE = 0.548 t
SHEAR STRESS ( v)=τ 0.821 * 1000 / ( 100 * 25.2 ) = 0.33 Kg/cm2
100*As/b*d = 100 * 9.04 / ( 100 * 25.2 ) = 0.359 %
FROM TABLE 23 OF IS 456:2000
PERMISSIBLE SHEAR STRESS (τc ) FOR THE ABOVE 100*As/b*d = 4.571 Kg/cm2
τc > τV
Hence ok, safe in shear
MEMBER 5
)
25.2 cm.
25.2 cm.
)
25.2 cm
25.2 cm.
0.95
0.141
U/S R E T U R N W A L L
DATA :
WING WALL TOP LEVEL :+ 408.473
TOP OF FOUDATION :+ 403.870
BOT. OF FOUNDATION :+ 403.420 408.473
TOP WIDTH : 500.000
REAR BATTER : 1200.000 W3
FRONT BATTER : 0.000 4.603
OFFSET ON EITHER SIDE : 300.000 W4 W1
BOTTOM WIDTH : 2300.000 W2
UNIT WT. OF CONC. : 2.400 500
UNIT WT. OF SOIL : 2.100 300 1200.00 300.000
403.870
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.420
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2300.00
STRESS IN CONCRETE :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 4.603 * 0.500 * 2.400 5.524 1.450 8.009
W2 0.500 * 4.603 * 1.200 * 2.400 6.628 0.800 5.303
W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.400 2.320
PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 - -
19.709
PH 0.1580 * 4.603 * 4.603 * 2.100 7.030 1.841 12.944
7.030 28.576
LEVER ARM = 1.450 mts.
ECCENTRICITY = 0.300 mts.
ALLOWABLE LIMIT = 0.383 mts. HENCE SAFE
MAX. STRESS = 23.863 t/sq.mt. 1.700
MIN. STRESS = -4.092 t/sq.mt.
STRESS ON SOIL :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 4.603 * 0.500 * 2.400 5.524 1.750 9.666
W2 0.500 * 4.603 * 1.200 * 2.400 6.628 1.100 7.291
W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.700 4.060
W4 0.300 * 4.603 * 2.100 2.900 0.150 0.485
W5 0.450 * 2.300 * 2.400 2.484 1.150 2.857
PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 0.000 0.000
25.093
PH 0.1584 * 4.603 * 4.603 * 2.100 7.048 2.122 5.632
7.048 23.193
LEVER ARM = 1.326 mts.
ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.
MAX. STRESS = 11.898 t/sq.mt. 2.7
MIN. STRESS = 1.033 t/sq.mt.
CHECK FOR OVER TURNING:- 3.11822 > 2 ok
CHECK AGAINST SLIDING : : 1.7802 > 1.5 ok
U/S WING WALL 1
DATA :
WING WALL TOP LEVEL :+ 408.473
TOP OF FOUDATION :+ 403.870
BOT. OF FOUNDATION :+ 403.420 408.473
TOP WIDTH : 500.000
REAR BATTER : 1200.000 W3
FRONT BATTER : 0.000 4.603
OFFSET ON EITHER SIDE : 300.000 W4 W1
TOP WIDTH : 2300.000 W2
UNIT WT. OF CONC. : 2.400 500
UNIT WT. OF SOIL : 2.100 300 1200.00 300.000
403.870
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.420
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2300.00
STRESS IN CONCRETE :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 4.603 * 0.500 * 2.400 5.524 1.450 8.009
W2 0.500 * 4.603 * 1.200 * 2.400 6.628 0.800 5.303
W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.400 2.320
PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 - -
19.709
PH 0.1580 * 4.603 * 4.603 * 2.100 7.030 1.841 12.944
7.030 28.576
LEVER ARM = 1.450 mts.
ECCENTRICITY = 0.300 mts.
ALLOWABLE LIMIT = 0.383 mts. HENCE SAFE
MAX. STRESS = 23.863 t/sq.mt. 1.700
MIN. STRESS = -4.092 t/sq.mt.
STRESS ON SOIL :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 4.603 * 0.500 * 2.400 5.524 1.750 9.666
W2 0.500 * 4.603 * 1.200 * 2.400 6.628 1.100 7.291
W3 0.500 * 4.603 * 1.200 * 2.100 5.800 0.700 4.060
W4 0.300 * 4.603 * 2.100 2.900 0.150 0.485
W5 0.450 * 2.300 * 2.400 2.484 1.150 2.857
PV 0.0395 * 4.603 * 4.603 * 2.100 1.758 0.000 0.000
25.093
PH 0.1584 * 4.603 * 4.603 * 2.100 7.048 2.122 5.632
7.048 23.193
LEVER ARM = 1.326 mts.
ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.
MAX. STRESS = 11.898 t/sq.mt. 2.7
MIN. STRESS = 1.033 t/sq.mt.
CHECK FOR OVER TURNING:- 3.11822 > 2 ok
CHECK AGAINST SLIDING : : 2.13624 > 1.5 ok
DESIGN OF D/S RETURN
DATA :
WING WALL TOP LEVEL :+ 406.145
TOP OF FOUDATION :+ 403.645
BOT. OF FOUNDATION :+ 403.195 406.145
TOP WIDTH : 500.000
REAR BATTER : 1000.000 W3
FRONT BATTER : 0.000 2.500
OFFSET ON EITHER SIDE : 300.000 W4 W1
TOP WIDTH : 2100.000 W2
UNIT WT. OF CONC. : 2.400 500
UNIT WT. OF SOIL : 2.100 300 1000.00 300.000
403.645
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.195
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2100.00
STRESS IN CONCRETE :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 2.500 * 0.500 * 2.400 3.000 1.250 3.750
W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.667 2.000
W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.333 0.875
PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 - -
9.143
PH 0.1580 * 2.500 * 2.500 * 2.100 2.074 1.000 2.074
2.074 8.699
LEVER ARM = 0.951 mts.
ECCENTRICITY = -0.099 mts.
ALLOWABLE LIMIT = 0.350 mts. HENCE SAFE
MAX. STRESS = 3.691 t/sq.mt. 1.500
MIN. STRESS = -2.438 t/sq.mt.
STRESS ON SOIL :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 2.500 * 0.500 * 2.400 3.000 1.550 4.650
W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.967 2.900
W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.633 1.663
W4 0.300 * 2.500 * 2.100 1.575 0.150 0.485
W5 0.450 * 2.100 * 2.400 2.268 1.050 2.381
PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 0.000 0.000
12.986
PH 0.1584 * 2.500 * 2.500 * 2.100 2.079 1.239 5.632
2.079 23.193
LEVER ARM = 1.326 mts.
ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.
MAX. STRESS = 6.158 t/sq.mt. 2.7
MIN. STRESS = 0.534 t/sq.mt.
CHECK FOR OVER TURNING:- 3.11822 > 2 ok
CHECK AGAINST SLIDING : : 3.74789 > 1.5 ok
D/S WING WALL
DATA :
WING WALL TOP LEVEL :+ 406.145
TOP OF FOUDATION :+ 403.645
BOT. OF FOUNDATION :+ 403.195 406.145
TOP WIDTH : 500.000
REAR BATTER : 1000.000 W3
FRONT BATTER : 0.000 2.500
OFFSET ON EITHER SIDE : 300.000 W4 W1
TOP WIDTH : 2100.000 W2
UNIT WT. OF CONC. : 2.400 500
UNIT WT. OF SOIL : 2.100 300 1000.00 300.000
403.645
HOR. COEFFT. OF SOIL : 0.1580 0.450 A W5
VER. COEFFT. OF SOIL : 0.0395 403.195
SLIDING COEFFT. FOR SOIL : 0.50 B
A 2100.00
STRESS IN CONCRETE :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 2.500 * 0.500 * 2.400 3.000 1.250 3.750
W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.667 2.000
W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.333 0.875
PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 - -
9.143
PH 0.1580 * 2.500 * 2.500 * 2.100 2.074 1.000 2.074
2.074 8.699
LEVER ARM = 0.951 mts.
ECCENTRICITY = -0.099 mts.
ALLOWABLE LIMIT = 0.350 mts. HENCE SAFE
MAX. STRESS = 3.691 t/sq.mt. 1.500
MIN. STRESS = -2.438 t/sq.mt.
STRESS ON SOIL :
FORCE PARTICULARS MAG. L.A. MOMENT
TONS. MTS TON.MT.
W1 2.500 * 0.500 * 2.400 3.000 1.550 4.650
W2 0.500 * 2.500 * 1.000 * 2.400 3.000 0.967 2.900
W3 0.500 * 2.500 * 1.000 * 2.100 2.625 0.633 1.663
W4 0.300 * 2.500 * 2.100 1.575 0.150 0.485
W5 0.450 * 2.100 * 2.400 2.268 1.050 2.381
PV 0.0395 * 2.500 * 2.500 * 2.100 0.518 0.000 0.000
12.986
PH 0.1584 * 2.500 * 2.500 * 2.100 2.079 1.239 5.632
2.079 23.193
LEVER ARM = 1.326 mts.
ECCENTRICITY = 0.126 mts.
ALLOWABLE LIMIT = 0.400 mts.
MAX. STRESS = 6.158 t/sq.mt. 2.7
MIN. STRESS = 0.534 t/sq.mt.
CHECK FOR OVER TURNING:- 3.11822 > 2 ok
CHECK AGAINST SLIDING : : 3.74789 > 1.5 ok