0% found this document useful (0 votes)
64 views5 pages

SOL

This document provides a mock test for JEE (Main) with answer keys and explanations for physics, chemistry, and mathematics sections. It includes 20 multiple choice questions in each section along with their correct answers. Hints and detailed solutions are also given for each question.

Uploaded by

Baljeet Singh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
64 views5 pages

SOL

This document provides a mock test for JEE (Main) with answer keys and explanations for physics, chemistry, and mathematics sections. It includes 20 multiple choice questions in each section along with their correct answers. Hints and detailed solutions are also given for each question.

Uploaded by

Baljeet Singh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

JEE (MAIN) MOCK TEST # 03

JEE (Main) : MOCK TEST # 03

ANSWER KEY
PART-1 : PHYSICS
Q. 1 2 3 4 5 6 7 8 9 10
A. A D B B C A A D B B
SECTION-I
Q. 11 12 13 14 15 16 17 18 19 20
A. B C C C A C A C B D
Q. 1 2 3 4 5
SECTION-II
A. 100 1.59 0.57 8 0.48
PART-2 : CHEMISTRY
Q. 1 2 3 4 5 6 7 8 9 10
A. C B D B B C A A A D
SECT ION-I
Q. 11 12 13 14 15 16 17 18 19 20
A. D C A C B D A D C B
Q. 1 2 3 4 5
SECT ION-II
A. 13.7 630 6 2 2
PART-3 : MATHEMATICS
Q. 1 2 3 4 5 6 7 8 9 10
A. C C B A D B B B B C
SECTION-I
Q. 11 12 13 14 15 16 17 18 19 20
A. B B A D B C D D B C
Q. 1 2 3 4 5
SECTION-II
A. 800 32 –1 1 2

HINTS & SOLUTIONS


PART-1 : PHYSICS V 18
9. i= = = 2A
SECTION-I R 9
2. F sin q ³ f ...(1) 10. r<1
f = µ(mg – F cos q) ...(2) r>1
mgsinq ³ µmg(1-cosq) h
16. l= Since v is increasing in case (i), but it is
mv
æ qö
cot ç ÷ ³ µ not changing in case (ii). Hence, in the first case
è 2ø
de-Broglie wavelength will change, but it second
5. Strain = 0 case, it remain the same
6. R = R1 + R2 + R3
17. Here, P = 100 W, l1 = 1 nm, l2 = 500 nm
3L L L L Let n1 and n2 be the number of photons of X-rays
= + +
K eq A K A 5KA KA
and visible light emitted from the two sources
2
hc hc n n n l 1
\ n1 = n2 or 1 = 2 or 1 = 1 =
15 l1 l2 l1 l 2 n 2 l 2 500
Keq = K
16

1/5
JEE (MAIN) MOCK TEST # 03

N Pb 1 5. Number of photo e emitted per second
18. = 1.5 ´ 10 -3 ´ 10 -3
N Ur 2 n=
æ 1240 ö V
N Ur çè 400 ÷ø ´ e ´ 5
=2
N Pb \ photo current = ne = 0.48µA

N Ur 2 PART-2 : CHEMISTRY
=
N0 3 SECTION-I
2 1 æ a ö
= 2. ç P + 2 ÷ (V - b) = RT
3 2n è V ø
At low P = V is high so V – b = V
3
= 2n æ a ö
2 ç P + 2 ÷ V = RT
è V ø
æ 3ö
ln ç ÷ = n ln 2 3. K=
K 2 ´ K 33
è2ø K1
Equation – (1) + (2)
æ 3ö t
ln ç ÷ = ln 2 Å 3 × (3)
è2ø T 4. In closed packing T.V. = 2Z = 2 × 6 = 12
l(3 / 2) 5. DG° = DH° – TDS°
t=T
l(2)
0 = DH° – TD S°
19. Photons per area per second at a distance r are
5.00 × 1018/4pr2. Photons per second entering the DH° 25 ´ 103
Þ T= = = 500K
eye, radius R is then this times pR2. Set this product DS ° 50
equal to 500 per second and solve for r. The result 5
is [B]. 6. (C) Mol. wt. of XY2 = = 100
0.05
20. The P-N junction will conduct only when it is forward
85
biased i.e. when – 5V is fed to it, so it will conduct Mol. wt. of X 3Y3 = ´ N A = 170
3.011´1023
only for 3rd quarter part of signal shown and when
Let molar mass of X and Y are a and b respectively
it conducts potential drop 5 volt will be across both
\ a + 2 b = 100
the resistors, so output voltage across R2 is 2.5V.
2a + 3b = 170
\ V0 = – 2.5V
a = 40 ;
SECTION-II b = 30
7. Ksp = 108 S 5
n Cp + n 2 Cp2 1
2. rmix = 1 1 = 1.59 æ 10-13 ö 5
n1Cv1 + n 2 Cv2 S= ç ÷
è 108 ø
4. Bird
y H+
14.
OH OH OH
Ring
Expansion

h = x + my
O
OH
dh mdy 4
= 0+ = ´6
dt dt 3
2/5
JEE (MAIN) MOCK TEST # 03

Cl
PART-3 : MATHEMATICS
Zn SN2
16. + SECTION-I
2
2. Let the coordinates of B be (h, k)
Frankland reaction
Draw BL and CM perpendicular to the x-and the
CH3
H
Å + y-axis. Therefore, a cos q = CM = OD = AL = 12
NH3–C–COOH
CH3 and a sin q = DM = OA = BL = 5
Å 1
H
17. NH3–C–COO Y
H –
CH3
OH 1 12 C
–H2O NH2–C–COO M
H 5 a
D
12 a B
a
5
18. X
O 5 A 12 L

\ k = BL = DM = OM – OD
stable by resonance \ h = OL = OA + AL
= 5 + 12 = 17
Hence, point B is (17, 5)
19.
3. From geometry we know PA. PB = (PT)2 where
PT is the length of the tangent from P to the circle.
Hence PA.PB = (3)2 + (11)2 – 9 = 112 = 121
Alternately
Equation of any line through (3, 11) is
x -3 y - 11
20. Cannizaro reaction is an example of hydride ion = = r (say)
cos q sin q
(H1 ) transfer reaction. Then the coordinates of a point on this line at a
SECTION-II distance r from (3, 11) are (3 + rcosq, 11 + rsinq)
and if this lies on the given circle x2 + y2 = 9
1. pH = 13.7
then (3 + rcosq)2 + (11 + rsinq)2 = 9
31 Þ 9 + 121 + 2r(3cosq + 11sinq) + r2 = 9
2. Ew = P4 =
5 Þ r2 + 2r(3cosq + 11sinq) + 121 = 0
eq. of P4 = eq. of HNO3 which is quadratic in r, gives two values of r say
r1 and r2 and hence the distances of the points
62 weight
= Þ wt. = 630 A and B from P.
(31 / 5) 63
Thus, PA.PB = r1r2 = 121.
wt. of HNO3 required = 630 7. Let roots are a, –a, b
3 S.O.R. Þ b = m satisfy the equation
3. PbS + O ® PbO + SO2
(S= -2) 2 2 (S= +4) m3 – m · m2 + 3m – 2 = 0 Þ m = 2/3
9. (2x + 1) (2x + 3) (2x + 5) .... (2x + 99)
Change in O.S. = +4 – (–2) = [6]
éæ 1 öæ 3 öæ 5ö æ 99 ö ù
4. Na2B4O7 + 2HCl + 5H2O ® 2NaCl + 4H3BO3 Þ 250 ê ç x + 2 ÷ç x + 2 ÷ç x + 2 ÷ .... ç x + 2 ÷ ú
ëè øè øè ø è øû
Only [2] moles of HCl are required
Coefficient of x is equal to – (sum of roots)
49

é1 3 5 99 ù
= 250 ê + + + .... + ú = 2 ´ 2500
49

ë2 2 2 2û

3/5
JEE (MAIN) MOCK TEST # 03

Lim ç
æ 3x -1 - 1 ö ( x - 1)( x - 2 )( x - 3) x7
÷
11. x ®1
è x - 1 ø sin ( ( x - 1)( x - 2 )( x - 3) ) ( x - 2 )( x - 3) \ f(0) = Þ C = 0 Þ f(x) =
(2x 7 + x 2 + 1)

Þ
ln 3 1
= ln 3 1
( )( ) 2
- - \ f(1) =
1 2 4
12. we have x5 + ex/5 = 1 + e1/5 2013

1 x/5 1
17. I= ò
1
(x - 1)(x - 2)(x - 3).........(x - 2013)dx
Þ ƒ'(x) = 5x4 + e = 5 + e1/5
5 5 b b

Using ò f(x)dx = ò f(a + b - x)dx


1 1/5 a a
Þ x = 1, ƒ(x) = 5 + e
5 2013

1 ò 1
(2013 - x)(2012 - x)......(1 - x) = -I
use g'(y) =
ƒ '(x) Þ 2I = 0 \ I = 0
1 1 18. Reqd. area = shaded region
Þ g'(1 + e1/ 5 ) = =
ƒ '(1) e1/ 5
5+ y y = x+1
5
sin(p[1 - p sin 2 tan(sin x)) (0,1)
13. Lim
x ®0 x2
y = 1–x
sin(p sin 2 t an(sin x)) æ p sin 2 tan(sin x) ö
= x®0 p sin 2 tan(sin x) ´ ç tan 2 sin x ÷
Lim x
è ø (–1,0) 0 (1,0)
æ tan 2 (sin x) ö æ sin 2 x ö 1
× ç sin 2 x ÷ ç x 2 ÷ = p
è øè ø = ò (x 2 - x1 )dy
0
f(1 + h) - f(1) 1
7
f'(1+) = lim
ò éë(1 - y ) - (y - 1)ùû dy = 6
14. 2
h ®0 h = sq. unit
0
1 + h - 1 - [[1 + h] - (1 + h)]
= lim =0 H
h ®0 h 19. cot a = d and H cot b = d
3
h(1 - 1 - h)
= lim =0 H H
h ®0 h or = tan a and = tan b
3d d
f(1 - h) - f(1)
f'(1–) = lim =0 H H 2H
h ®0 -h -
1 d 3d 3
tan(b - a) = =
- h ([1 - h] - (1 - h) ) 2 H2
= lim =0 1+ 2 H
h ®0 -h 3d q 3
a b
h (0 - 1 + h )
2
H 4H
= lim =1 Þ 1 + = d = 20m
h®0 -h 3d 2 3d
= f'(1+) = 0, f'(1–1) = + 1 Þ H 2 - 4dH + 3d 2 = 0
\ f(x) is not diff. at x = 1
5 7 Þ H2 - 80H + 3 (400) = 0
+ 8
5x8 + 7x 6 6

15.
ò æ 1 1 ö2 = ò æ x 1 x 1 ö2 dx Þ H = 20 or 60m
x14 ç 2 + 7 + 5 ÷ ç2 + 7 + 5 ÷
è x x ø è x x ø 20. Given S.D. = 2 Þ S.D.2 = 4
1 1 æ n ö
n
2

ç å xi ÷
Put 2 + 7 + 5 = t
x x å
i =1
x 2
i
è i=1 ø = 4
æ x7 ö = –
Þ f(x) = ç (2x 7 + x 2 + 1) ÷ + C n n2
è ø

4/5
JEE (MAIN) MOCK TEST # 03

100 (20)2
Þ - 2 =4
n n
Þ 4n2 – 100n + 400 = 0

Þ n2 – 25n + 100 = 0

Þ n = 5 or 20

SECTION-II

1.
1 × 1 × 1 ×10 ×10 × 8 × 1
Only 5 at unit place and digits other than
2 & 7 at ten's place = 800 ways
1 1

4. I = ò xdx - ò [2x]dx
-1 -1

1
ïì ïü
-1/ 2
æ x2 ö 0 1/ 2 1

= ç 2 ÷ - í ò [2x]dx + ò [2x]dx + ò [2x]dx + ò [2x]dx ý


è ø-1 îï -1 -1/ 2 0 1/ 2 þï

ìï-1/ 2 0 1/ 2 1
üï
=0 í ò
- ( -2)dx + ò ( -1)dx + ò 0 dx + ò 1 dx ý
îï -1 -1/ 2 0 1/ 2 þï
=1

5/5

You might also like