100% found this document useful (1 vote)
490 views46 pages

Diode Rectifiers: Types & Performance

This document discusses uncontrolled diode rectifiers, including: 1. Half-wave rectification uses a single diode to convert alternating current to pulsing direct current. It has low efficiency and high ripple. 2. Full-wave rectification uses either a center-tapped transformer or diode bridge to obtain pulsating DC from both half-cycles of the AC input. It has higher efficiency and lower ripple than half-wave rectification. 3. Performance parameters like efficiency, ripple factor, and form factor are defined and calculated for half-wave and full-wave rectifiers to evaluate their operation with resistive and inductive loads.

Uploaded by

Hamza Zaid
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
490 views46 pages

Diode Rectifiers: Types & Performance

This document discusses uncontrolled diode rectifiers, including: 1. Half-wave rectification uses a single diode to convert alternating current to pulsing direct current. It has low efficiency and high ripple. 2. Full-wave rectification uses either a center-tapped transformer or diode bridge to obtain pulsating DC from both half-cycles of the AC input. It has higher efficiency and lower ripple than half-wave rectification. 3. Performance parameters like efficiency, ripple factor, and form factor are defined and calculated for half-wave and full-wave rectifiers to evaluate their operation with resistive and inductive loads.

Uploaded by

Hamza Zaid
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 46

Power Electronics

Diode Rectifier (Uncontrolled)

Dr Taosif Iqbal
College of E&ME, NUST
taosifiqbal@ceme.nust.edu.pk
Power Electronics 3. Uncontrolled Rectifier
1. Half wave rectification
2. Performance Parameters
3. Disadvantages of HW rectifier
4. HW Rectifier with RL Load
5. Half wave Rectifier with a Battery
6. Full wave rectifier
7. Comparison between Single Phase Rectifiers
8. Total Harmonic Distortion (THD)
9. Full Wave Bridge Rectifier with RL Load
10. FW Rectifier with C Filter
11. Three phase HW Rectifier
12. Three phase FW Bridge Rectifier
13. LC Filter Design
Power Electronics 3.1. Half wave rectification

Rectification: The process of converting the alternating


voltages and currents to direct currents
Power Electronics 3.1. Half wave rectification

Single-phase half-wave diode rectifier with resistive load.


Power Electronics 3.1. Half wave rectification


1 Vm Vm Vdc Vm
2 0
Vdc  V sin(  t ) d  t  (  cos   cos( 0 ))  I dc  
m
2  R  R

1 Vm Vrms Vm
2 0
Vrms  V 2
m sin 2
 t d  t  I rms  
2 R 2R

the load and diode currents


Vm
IS  ID 
2R
Power Electronics 3.2. Performance Parameters
  Pdc / Pac Rectification efficiency
Vac  Vrms
2
 Vdc2 Ripple in rectified output
FF  Vrms /Vdc Form factor
Vac
2
Vrms  Vdc2 2
Vrms
RF    2
 1  FF 2  1 Ripple factor
Vdc Vdc Vdc
Total Harmonic Distortion (Voltage)
VS2  VS21 VS2
THDv   1
VS21 VS21 Vs  [Vsdc
2
 Vs21  Vs22  ...  Vsn2 ]1/ 2

I S2  I S21 I S2 Total Harmonic Distortion (Current)


THDi   1
I S21 I S21
Power Factor
P V I cos 1 I S 1
PF   S S1  cos 1
VS I S VS I S IS

Pdc Transformer Utilization Factor


TUF 
Vs I s
3.2. Performance Parameters of HW
Rectifier
Power Electronics

Example 1: The rectifier shown in Figure has a pure resistive load of R Determine
(a) The efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV)
of diode D1.

1 Vm Vm
2 0
Vdc  V sin(  t ) d  t  (  cos   cos( 0 )) 
2 
m

 Vm Vdc Vm
1 V I rms  I dc  
Vrms 
2 
(Vm sin t ) 2  m
2 2R R R
0
Vm Vm
*
Pdc V *I  R
  dc dc   40 .53 %
Pac Vrms * I rms Vm Vm
*
Vm 2 2R
Vrms 
FF   2   1.57
Vdc Vm 2

3.2. Performance Parameters of HW
Rectifier
Power Electronics

Vac
RF   FF 2  1  1.57 2  1  1.211
Vdc
.
It is clear from the Figure that the PIV is Vm
• PVA = VsIs = 0.707 Vm x 0.5 Vm /R
• TUF = Pdc/VsIs = (0.318)2 / (0.707 x 0.5)= 0.286
• CF = Is-peak/ Is = 1/0.5 =2
• PF = Pac/VA = 0.52 / (0.707X0.5) = 0.707
Power Electronics 3.3. Disadvantages of HW rectifier

• High ripple factor 21%,


• Low rectification efficiency 40%,
• Low transformer utilization factor 0.286
Power Electronics 3.4. HW Rectifier with RL Load

RL load (without free wheeling diode)


Vm   Vm
2 0
 
Vdc  sin td ( t )  { cos  t}
2
0

Vm
 [1  cos(   )]
2
Power Electronics 3.4. HW Rectifier with RL Load

Highly inductive load (with free wheeling diode)


Power Electronics 3.5. HW Rectifier with a Battery

Diode conducts when input


voltage is higher than E
Power Electronics 3.6. Full wave rectifier

FW Rectifier with center-tapped Transformer


Power Electronics 3.6. Full wave rectifier
Power Electronics 3.6. Full wave rectifier

FW Bridge Rectifier
Power Electronics 3.6. Full wave rectifier
Performance of Bridge Rectifier
Example 4 single-phase diode bridge rectifier has a purely resistive load
of R=15 ohms and, VS=300 sin 314 t and unity transformer ratio.
Determine (a) The efficiency, (b) Form factor, (c) Ripple factor, (d) The
peak inverse voltage, (PIV) of each diode, , and, (e) Input power factor.

1 2 Vm
Vdc 
  Vm sin t dt  
 190 .956 V
0
 1/ 2
1 
   Vm sin t  dt 
Vm
Vrms 2
  212 .132 V
  0  2

Pdc Vdc I dc
   81.06 % Vrms
Pac Vrms I rms FF   1.11
Vdc

Vac
2
Vrms  Vdc2 2
Vrms
RF    2
 1  FF 2
 1  0.482
Vdc Vdc Vdc
Power Electronics 3.6. Full wave rectifier
Performance of Bridge Rectifier
Example 4: single-phase diode bridge rectifier has a purely resistive load of
R=15 ohms and, VS=300 sin 314t and unity transformer ratio. Determine (a) The
efficiency, (b) Form factor, (c) Ripple factor, (d) The peak inverse voltage, (PIV)
of each diode, , and, (e) Input power factor.

2Vm
I dc   12.7324 A
 R The PIV=300V

2 Vm2
Pdc 0.636 R  81%
TUF   Pdc is 81% of Pva  Pva needed
PVA 0.707 2 Vm2 1.23 times larger to supply Pdc to
R load

2 Vm2
Pac 0.707 R 1
PF   2
PVA 0.707 2 Vm
R
3.7. Comparison between Single Phase
Rectifiers
Power Electronics

Half wave Full wave Fullwave


center-tap bridge
• Rectification efficiency 0.405 0.81 0.81
• Form factor 1.57 1.11 1.11
• Ripple factor 1.21 0.482 0.482
• Transformer rating secondary VA 3.49Pdc 1.75Pdc 1.23Pdc
• Output ripple frequency fr 1 fs 2 fs 2 fs
Power Electronics 3.8. Total Harmonics Distortion
Fourier Series Analysis of HW Rectifier

f ( x )  a0    an cos nx  bn sin nx 
1  1 
 
n 1
an  u (t ) cos ntdt  Vm sin t cos ntdt
1  Vm    0
a0 
2  
f ( x)dx 
 1  sin(1  n)t  sin(1  n)t

 Vm [ ]dt
1  2

0
an  f ( x) cos nxdx 
 
V  cos(1  n)t cos(1  n)t 
 m   (1  n)  (1  n) 
1  2  0
bn 
   f ( x) sin nxdx

Vm 1  cos(1  n) 1  cos(1  n) 
an  
1  1  2  (1  n) (1  n) 

  
bn  u (t )sin ntdt  Vm sin t sin ntdt
 0
  0 n  1,3,5,
V  sin(1  n)t sin(1  n)t  
 m   an   Vm  2 2 
2  (1  n) (1  n)  0  2  (1  n)  (1  n)  n  2, 4, 6,
  
Vm  sin(1  n) sin(1  n) 
 
2  (1  n) (1  n)  Vm Vm 2V 1 1 
vo (t )   sin t  m  cos 2t  cos 4t 
Vm  2  3 15 
 n 1
bn   2
0 n  2,3, 4, lim
sin(1  n)
 lim
 cos(1  n)

n 1 (1  n) n 1 1
Power Electronics 3.8. Total Harmonics Distortion
Fourier Series Analysis of FW Rectifier

f ( x )  a0    an cos nx  bn sin nx 
1  2 
 
n 1
an  u (t ) cos ntdt  Vm sin t cos ntdt
1  2Vm    0
a0 
2  
f ( x)dx 
 2  sin(1  n)t  sin(1  n)t

 Vm [ ]dt
1  2

0
an  f ( x) cos nxdx 
  V  cos(1  n)t cos(1  n)t 
 m  
1    (1  n) (1  n)  0
bn 
   f ( x) sin nxdx

Vm 1  cos(1  n) 1  cos(1  n) 
an  
1  2    (1  n) (1  n) 

  
bn  u (t )sin ntdt  Vm sin t sin ntdt
 0

2  cos(1  n)t  cos(1  n)t  0 n  1,3,5,



  0
Vm [
2
]dt 
an   4Vm  1 
Vm  sin(1  n)t sin(1  n)t 

   (n  1)(n  1)  n  2, 4, 6,
    
  (1  n) (1  n)  0
2Vm 4Vm  1 1 
V  sin(1  n) sin(1  n)  vo (t )     
  3 
cos 2 t cos 4 t
 m   
(1  n) 
15
  (1  n)
bn  0 n  1, 2,3,...
3.9. Full Wave Bridge Rectifier with
RL Load
Power Electronics
3.9. Full Wave Bridge Rectifier with
RL Load
Power Electronics
Power Electronics 3.10. FW Rectifier with C Filter
Power Electronics 3.10. FW Rectifier with C Filter
Discharging of capacitor
Vm  t / RCe
Io  e
R
vo  RI o  Vm e  t / RCe

Vr ( pp )  vo  t1   vo  t2   Vm  Vm e  t2 / Rce  Vm 1  e  t2 / Rc 
e  t2 / RCe  1 t2 / RCe , t2  T / 2
Vr ( pp ) VmT
VmT Vdc  Vm   Vm 
Vr ( pp )  Vm 1  1  T / 2 RCe   2 4 RCe
2 RCe
Vr ( pp )
Vdc  Vm  Vac  Vm 
2
VmT  1 
 Vm   Vm 1  
4 RCe  4 fRC e 

 4 fRCe  1 
 Vm  
 4 fRCe 
Power Electronics 3.10. FW Rectifier with C Filter
Find the value of filter capacitor for RF =0.05

RF0.05
Vr ( pp ) VmT
Vdc  Vm   Vm 
2 4 RCe R = 500Ω
Vm  120 2  169.7V
t Vm
Vr (pp)  Vm  Vo (min)  Vm d 
RL Ce 2 fRLCe

Vr ( pp )
V 1
RF  ac  2  Cf   166uF
Vdc Vdc (4 fR  1) RF

Vm 169.7
Vdc  169.7   169.7   169.7  11.21  158.49V
4 fRCe 4*60*500*126.2*10 6
Power Electronics 3.11. Three phase HW Rectifier
Power Electronics 3.11. Three phase HW Rectifier

Dark black – rectified output


Power Electronics 3.11. Three phase HW Rectifier

PIV
Power Electronics 3.11. Three phase HW Rectifier

  cos t5/6/6 
3 5 /6 3Vm
Vdc 
2  /6
Vm sin td t 
2
3Vm
 ( cos 5 / 6  cos  / 6)
2
3Vm 3 3Vm
 (2*0.866)   0.827Vm
2 2
3 3Vm 0.827 *Vm
I dc  
2*  * R R
3.11. Three phase HW Rectifier
3 5 /6 3 5 /6
Vrms   Vm sin t  dt   Vm2 sin 2 td t
2
Power Electronics
2 /6 2 /6

3 5 /6 (1  cos 2 t ) 3V 2
5 /6

2  /6
Vm2
2
d t 
4
m
 1  cos 2t dt
/6


3Vm2
4   /6
5 /6
dt  
5 /6

 /6
 cos 2t dt 
3Vm2

4
 t5/6/6  sin 2t5/6/6 

3Vm2
 (5 / 6   / 6  sin 2*5 / 6  sin 2*  / 6)
4
3Vm2
 (4 / 6  sin 5 / 3  sin  / 3)
4 0.8407Vm
I rms 
3Vm2 R
 (4 / 6  2*0.866)  0.8407Vm
4
Power Electronics 3.11. Three phase HW Rectifier
1 5 /6 I m2 5 /6 (1  cos 2t )
I   I sin td t   d t
2 2 2

2 2
s m
/6 /6 2
5 /6
I m2 5 /6  I m2 sin 2t 

4  /6 (1  cos 2t )d t 


5
4
/ 6   / 6 
2  /6


I m2  4 sin 2*5 / 6 sin 2*  / 6  I m2  4 0.866 0.866 
        
4  6 2 2  4  6 2 2 
I m2  4  2.96 I m
2
   0.866    0.2355 I m2  I s  0.4854 I m
4  6  4


The PIV of the diodes is VLL,ms  3Vms * 2  Vm,3 ph  3Vm 
3.11. Three phase HW Rectifier
Example 3.5 A 3-phase HW (Star) rectifier is operated with
Power Electronics
R load. Determine (a) Rectification efficiency, (b) Form factor
(c) Ripple factor (d) Peak inverse voltage (PIV) of each diode
(e) the peak current through diode if Idc = 30A at Vdc = 140V
(f) TUF (g) PF

Pdc Vdc I dc 0.827 2 Vm2 / R


   2 2
 96.767%
Pac Vrms I rms 0.8407 Vm / R

Vrms 0.8407Vm
FF    101.657%
Vdc 0.827Vm

Vac
RF   FF 2  1  18.28%
Vdc

The PIV  3Vm


3.11. Three phase HW Rectifier
Example 3.5 A 3-phase HW (Star) rectifier is operated with
Power Electronics
R load. Determine (a) Rectification efficiency, (b) Form factor
(c) Ripple factor (d) Peak inverse voltage (PIV) of each diode
(e) the peak current through diode if Idc = 30A at Vdc = 140V
(f) TUF (g) PF

I d ,avg 
1 5 /6
2  /6
I m sin  td  t 
Im
2
  cos  t /6 
5 /6

I I
 m ( cos 5 / 6  cos  / 6)  m 2*0.866  0.276 I m
2 2
I d  30 / 3  10  I m  10 / 0.276  36.27 A
VA= 3 Vs  I s = 3  0.707Vm  0.4854Vm / R
Pdc 0.8242Vm2 / R
TUF = = = 0.66
VA 3  0.707  0.4854Vm / R
2

Pac 0.8412 Vm2 / R


PF   * * 2
 0.687
VA 3 0.707 0.4854Vm / R
Power Electronics 3.12. Three phase FW Rectifier

Conduction sequence of Diodes:


0  t  30  Vc  Va  Vb  D5 D6 conducts
30  t  90  Va  Vc  Vb  D1 D6 conducts
90  t  150  Va  Vb  Vc  D1 D2 conducts
150  t  210  V0  Va  Vc  D3 D2 conducts
210  t  270  Vb  Vc  Vc  D3 D4 conducts
270  t  330  Vc  Vb  Va  D5 D4 conducts
330  t  360  Vc  Va  Vb  D5 D6 conducts
3.12. Three phase FW Rectifier
0  t  30 :
Power Electronics
 Vc  Va  Vb  D5 D6 conducts
30  t  90 :
 Va  Vc  Vb  D1 D6 conducts
90  t  150 :
 Va  Vb  Vc  D1 D2 conducts
150  t  210 :
Conduction sequence of Diodes:  V0  Va  Vc  D3 D2 conducts
210  t  270 :
 Vb  Vc  Vc  D3 D4 conducts
270  t  330 :
 Vc  Vb  Va  D5 D4 conducts
330  t  360 :
 Vc  Va  Vb  D5 D6 conducts
Power Electronics 3.12. Three phase FW Rectifier

Van (t)  Vm sin( t) Vab (t)  3Vm sin( t   / 6)


Vbn (t)  Vm sin( t  2 / 3) Vbc (t)  3Vm sin( t   / 2)
vcn (t)  Vm sin( t  2 / 3) Vca (t)  3Vm sin( t  5 / 6)
Power Electronics 3.12. Three phase FW Rectifier
Power Electronics 3.12. Three phase FW Rectifier

 cos(t   6)  
3  /2 3 3Vm

 /2
Vdc  3Vm sin(t   / 6)dt   /6
 /6 
3 3Vm 3 3Vm
 (cos 2 / 3  cos  / 3)  (1)  1.654Vm
 
V 1.654Vm π /2
I dc  dc 
 
3 2
V2 = 3Vm sin(ωt + π /6 ) dωt
R R rms π π /6

3  3V 2 π/2
 1  cos2(ωt + π /6 ) 
=
π
m
 
π /6 
2
 dωt

9V 2  sin2(ωt + π /6 )ππ/6
/2

m
 ωt π/2
π/6  
2π  2 
9V 2  sin2(π /2+π /6 )+ sin2(π /3 ) 
= m
 π / 3  
2π  2 
9V 2
 m
1.05 + 0.866   Vrms = 1.6554Vm

Power Electronics 3.12. Three phase FW Rectifier
Peak current is ratio of max line voltage and R load
I m  VLL / R  3Vm / R
Vm Im
I rms  1.6554  1.6554  0.956 I m
R 3
Source current flows only for 4/6* 2pi in one cycle
4 2 2
I s  I rms  I S 
2
I rms  0.816*0.956 I m  0.784 I m
6 3
2 diode current flows only for
I d ,rms  I rms  0.552 I m 2/6 * 2pi in one cycle
6
2 I DC 1.654Vm 1.654 I m 0.955I m
I d , AVG      0.318 I m
6 3R 3 3 3
3.12. Three phase FW Rectifier
Example 10 The 3-phase bridge rectifier is operated from line
Power Electronics
voltage VLL,rms=460 V 50 Hz supply and the load resistance is
R=20ohms. If the source inductance is negligible, determine (a) The
efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage
(PIV) of each diode (e) TUF (f) PF
2
Vm = 460 = 375.6V
3

3 3 Vm
Vdc = = 1.654Vm = 621.226 V
π
3 9* 3
Vms   Vm  1.6554Vm  621.752V
2 4
3 3Vm 1.654Vm
I dc    31.0613A
R R
Power Electronics 3.12. Three phase FW Rectifier
1.6554 Vm
I rms = = 31.0876 A
R

Pdc Vdc I dc
η= = = 99.83%
Pac Vrms I rms

Vrms 1.6554Vm
FF = = = 100.08%
Vdc 1.654Vm

Vac
2
Vrms  Vdc2 2
Vrms
RF = = = 2
 1 = FF 2
 1 = 4%
Vdc Vdc Vdc
Power Electronics 3.12. Three phase FW Rectifier
PIV = 3Vm = 650.54V

Vs , ph = 0.707Vm
2
I S, = I m = 0.82I m
3

VA = 3  VS  I S = 3  0.707Vm  0.82I m
3  0.707Vm  0.82  3  Vm / R = 3  Vm2 / R = 21.16KVA
Pdc 1.6542Vm2 / R
TUF = = 2
= 0.91
VA 3Vm / R
PAc 1.65542Vm2 / R
PF = = 2
= 0.913
VA 3Vm / R
Power Electronics 3.12. Three phase FW Rectifier
Power Electronics 3.13. LC Filter Design
Example 3.17: Finding the values of LC filter
An LC filter shown in figure is used to reduce the ripple content of output
voltage for a single phase full wave rectifier. The load resistance is R=40
ohms, load inductance is L=10mH, and source frequency is 60Hz.
Determine the values of Le and Ce so that the RF of the output voltage is
10%.

Solution:
To make it easier for the nth harmonic ripple current to pass through the
filter capacitor, the load impedance must be greater than capacitor
impedance;
1 10
R 2 +  nωL  >> R 2 +  nωL  =
2 2

nωCe nωCe
Power Electronics 3.13. LC Filter Design
The RMS value of the nth harmonic component appearing on the output
can be found by voltage divider rule:

 1/  nωCe    1 
Von =   Vnh =   Vnh
  nωLe   1/  nωC 
e     e e 

2
L C  1
1/2
  2 
vac,ripple =   von 
 n= 2,4,6,... 
Fourier series of output voltage for FW rectifier:
2V 4V 4V 4V
vo (t)= m  m cos2ωt  m cos4ωt  m cos6ωt  ...
π 3π 15π 35π
Calculation can be simplified if dominant harmonic (which is the 2nd
harmonic) is considered. Its RMS and dc values are:
4Vm 2V
V2h = vdc = m
3 2π π
nd
Ripple voltage of 2 harmonic:
 1 
Vac = Vo2    V2h
  nω  LeCe  1 
2
3.13. LC Filter Design
10 10
To calculate Ce: R 2 +  2ωL  =  Ce =
2
Power Electronics
= 326uF
2ωCe 4πf R +  2πfL 
2 2

To calculate Le:

Vac Vo2  1 V 4Vm π  1 


RF = = =  2h
=  
Vdc Vdc   2ω 2 LeCe  1  Vdc 3 2π 2Vm   2ω 2 LeCe  1 

2 1   1  3
        LeCe  1 = 4.71
2
= 0.1 = 0.1 2ω
3   2ω 2 LeCe  1    2ω 2 L C  1 
 e e  2

5.71
Le = = 30.83mH
 2ω 
2
Ce

For pure Resistive load:


10 10
R=  Ce = = 331uF
2ωCe 4πfR
5.71 5.71 10 106
Le = = = = 30.23mH
 2ω  Ce
6
2
16π f
2 2
Ce 331  10

You might also like