0% found this document useful (0 votes)
100 views7 pages

Math Exam Marking Scheme 2018

This document contains a marking scheme for a mathematics trial exam with 6 questions. It provides the working steps, methods, and final answers for problems related to functions, sequences and series, matrices, calculus, complex numbers, and vectors. The highest total mark across all questions is 10+8+7+5+6+7=43 marks.

Uploaded by

Jean Tan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
100 views7 pages

Math Exam Marking Scheme 2018

This document contains a marking scheme for a mathematics trial exam with 6 questions. It provides the working steps, methods, and final answers for problems related to functions, sequences and series, matrices, calculus, complex numbers, and vectors. The highest total mark across all questions is 10+8+7+5+6+7=43 marks.

Uploaded by

Jean Tan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 7

MARKING SCHEME TRIAL EXAM MATHEMATICS T SEMESTER 1 2018

1 (a) 5 5 B1
𝐷𝑔 = (−∞ , ) ∪ ( , ∞ )
2 2

𝑅𝑔 = (−∞ , 0 ) ∪ ( 0 , ∞ ) B1

(b) Since there is only one intersection point between the horizontal line and the graph, B1
the function is one-to-one function.

1
=𝑥
2𝑦 − 5

𝑥(2𝑦 − 5) = 1
M1
1 + 5𝑥
𝑦=
2𝑥

1 + 5𝑥
𝑔−1 (𝑥) =
2𝑥 A1

(c) y
D 1- shape

y=x D 1-
asymptote

D 1 - all
2.5 𝑔−1 (𝑥) correct

g(x)
0 2.5 x

(d) 𝑔 [𝑔−1 (𝑥)]

1 + 5𝑥
= 𝑔[ ]
2𝑥

1
=
1 + 5𝑥 M1
2 [ 2𝑥 ] − 5

1
= A1
1 + 5𝑥 − 5𝑥
𝑥

=𝑥
TOTAL 10 marks
2 (a) 2𝑟 − 1 2𝑟 + 1

𝑟(𝑟 − 1) 𝑟(𝑟 + 1)

(𝑟 + 1)(2𝑟 − 1) − (2𝑟 + 1)(𝑟 − 1) M1


=
𝑟(𝑟 − 1)(𝑟 + 1)

2𝑟 2 − 𝑟 + 2𝑟 − 1 − 2𝑟 2 + 2𝑟 − 𝑟 + 1
=
𝑟(𝑟 − 1)(𝑟 + 1)

2𝑟
= A1
𝑟(𝑟 − 1)(𝑟 + 1)

2
=
(𝑟 − 1)(𝑟 + 1)
[ verified ]

(b) 𝑛
2

(𝑟 − 1)(𝑟 + 1)
𝑟=2

𝑛
2𝑟 − 1 2𝑟 + 1
= ∑[ − ] M1
𝑟(𝑟 − 1) 𝑟(𝑟 + 1)
𝑟=2

= ∑[𝑓(𝑟) − 𝑓(𝑟 + 1)] M1


𝑟=2

= 𝑓(2) − 𝑓(𝑛 + 1)

2(2) − 1 2(𝑛 + 1) − 1 M 1 ( sub


= − value)
2(1) (𝑛 + 1)(𝑛 + 1 − 1)

3 2𝑛 + 1
= −
2 𝑛(𝑛 + 1)
A1

(c) 1 2

2 (𝑟 − 1)(𝑟 + 1)
𝑟=2

1 3 2𝑛 + 1
= lim [ − ] M1
2 𝑛→∞ 2 𝑛(𝑛 + 1)

2 1
1 3 𝑛 + 𝑛2
= lim [ − ]
2 𝑛→∞ 2 1 + 1
𝑛
1 3 3 A1
= 2 (2 − 0) = 4

TOTAL 8 MARKS
3 (a) 1 0 0 1 0 0
𝑀2 = ( 1 −2 0) ( 1 −2 0)
−1 3 1 −1 3 1

1 0 0
B1
= (−1 4 0)
1 −3 1
𝑀2 + 𝑎𝑀 + 𝑏𝐼 = 0
1 0 0 1 0 0 1 0 0 0 0 0
(−1 4 0) + 𝑎 ( 1 −2 0) + 𝑏 (0 1 0 ) = (0 0 0) M1
1 −3 1 −1 3 1 0 0 1 0 0 0
1 − 𝑎 = 0,
𝑎=1 A1
1 + 𝑎 + 𝑏 = 0, A1
b = -2

(b) 𝑀2 + 𝑀 − 2𝐼 = 0

𝑀(𝑀2 + 𝑀 − 2𝐼 = 0)

𝑀3 + 𝑀2 − 2𝑀 = 0 M1

𝑀3 + (2𝐼 − 𝑀) − 2𝑀 = 0

𝑀3 = 3𝑀 − 2𝐼 A1

𝑀2 + 𝑀 − 2𝐼 = 0

𝑀−1 (𝑀2 + 𝑀 − 2𝐼 = 0)

𝑀 + 𝐼 − 2𝑀−1 = 0

1
𝑀−1 = (𝑀 + 𝐼)
2 A1

TOTAL 7 MARKS
4 (a) Choose V= ( 0, 0 )
Let F (a, 0 ) and A ( a, 5 )
A at parabola ,
Substitute A into equation,
𝑦 2 = 4𝑎𝑥
52 = 4𝑎(𝑎) M1
5
𝑎= M1
2
Equation of parabola is
5
𝑦 2 = 4( )𝑥
2
𝑦 2 = 10𝑥 A1
(b) When x = 11 cm from vertex
𝑦 2 = 10(11)
𝑦 = √110 M1
|𝐶𝐷| = 2√110 A1
TOTAL 5 MARKS
5 (a) 𝑧̅1 = 3 + 3𝑖
|𝑧̅1 | = √32 + 32 = 3√2 M1
3 M1
Argument of 𝑧̅1 = tan−1 (3)
= 0.785 𝑟𝑎𝑑
𝑧̅1 𝑖𝑛 𝑝𝑜𝑙𝑎𝑟 𝑓𝑜𝑟𝑚 A1
𝑧̅1 = 3√2 (cos 0.785 + 𝑖 sin 0.785)

𝒊̅3
+ [̅̅̅̅̅̅̅̅
(b) ̅̅̅𝑧
𝑧1 2 (3+3𝑖)(3+2𝑖) −𝑖
13
+ [−𝑧 ] = 13 −(3+2𝑖)
]
2

3+15𝑖 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
𝑖(3−2𝑖)
= 13
+ [(3+2𝑖)(3−2𝑖)] M1

3+15𝑖 ̅̅̅̅̅
2+3𝑖 M1
= +[ ]
13 13

3+15𝑖+2−3𝑖
=
13
5+12𝑖
= A1
13

TOTAL 6 MARKS
6 (a) 2
⃗⃗⃗⃗⃗
𝐴𝐵= (−2) M1
1
⃗⃗⃗⃗⃗
The line is parallel to 𝐴𝐵
The vector equation of line is
𝒓 = 𝒊 + 2𝒋 + 𝜆(2𝒊 − 2𝒋 + 𝒌)
A1
Or 𝒓 = 3𝒊 + 𝒌 + (2𝒊 − 2𝒋 + 𝒌)

(b) 𝒓∙𝒏=𝒄∙𝒏
2 1 2
𝒓 ∙ (−2) = (1) ∙ (−2) M1
1 4 1

= 2-2+4
= 4
Equation of plane is 2𝑥 − 2𝑦 + 𝑧 = 4 A1
(c) Equation line: 𝒓 = 𝒊 + 2𝒋 + 𝜆(2𝒊 − 2𝒋 + 𝒌) ---------------- ①
Equation plane: 2𝑥 − 2𝑦 + 𝑧 = 4 ---------------- ②
Substitute ① into ②,
2(1+ 2𝜆)-2(2-2 𝜆) + 𝜆 = 4 M1
9𝜆=6
2 A1
𝜆=3
7 2 2 A1
Position vector of N is 𝒊 + 3𝒋 + 3𝒌
3

7 4 M1
1 3 3
⃗⃗⃗⃗⃗ = (1) , 𝑂𝑁
⃗⃗⃗⃗⃗⃗ = 2 ⃗⃗⃗⃗⃗ = 1
𝑂𝐶 then 𝐶𝑁 −3
3
4 2 10

(3) ( 3)

4 2 1 2 10 2
⃗⃗⃗⃗⃗ | = √( ) + (− ) + (− )
|𝐶𝑁
3 3 3
A1
117
= √ 9
= √13 (shown)

TOTAL 9 MARKS
7 (a)

D 1- shape
D 1-
reflection
D 1- all
correct

1
|cos 2𝑥| =
2
𝜋 𝜋 𝜋 𝜋 M1
2𝑥 = , 𝜋 − , 𝜋 + , 2𝜋 −
3 3 3 3

𝜋 𝜋 2𝜋 5𝜋
𝑥= , , , M1
6 3 3 6

Solution set of x is
𝜋 𝜋 2𝜋 5𝜋
{𝑥: 0 < 𝑥 < , <𝑥< , <𝑥<𝜋 } A1
6 3 3 6

(b) cos(𝑥 + 45° ) = cos 𝑥 cos 45° − sin 𝑥 sin 45°


(i) √2 √2 B1
= cos 𝑥 − sin 𝑥
2 2
√2 √2
cos(𝑥 + 45° ) − √2 sin 𝑥 = cos 𝑥 − sin 𝑥 − √2 sin 𝑥
2 2
√2 3√2 B1
= cos 𝑥 − sin 𝑥
2 2
√2 3√2
Let cos 𝑥 − sin 𝑥  𝑅 cos(𝑥 + 𝛼)
2 2
 𝑅 cos 𝑥 cos 𝛼 − 𝑅 sin 𝑥 sin 𝛼
√2
𝑅 cos 𝛼 = --------------①
2
3√2 M1
𝑅 sin 𝛼 = ---------------②
2
√2 3√2
①2 + ②2 : 𝑅2 = ( )2+ ( )2
2 2
R = √5 = 2.236
3√2
② 2
: tan 𝛼 = √2
=3

2 A 1 (both)
𝛼 = 71.57°
cos(𝑥 + 45° ) − √2 sin 𝑥 = 2.236 cos(𝑥 + 71.57° ) A1

(ii) cos( 𝑥 + 45° ) − √2 sin 𝑥 = 2


°
2.236 cos ( 𝑥 + 71.57 ) = 2
° 500
cos ( 𝑥 + 71.57 ) = M1
559
Basic angle = 26.56° M1
° ° ° M1
( 𝑥 + 71.57 ) = 333.44 , 386.56
° ° A1
𝑥 = 261.87 , 314.99

TOTAL 15 MARKS
8 (a) 6𝑥 + 2𝑦 + 3𝑧 = 3850 B1
4𝑥 + 𝑦 + 5𝑧 = 3200 B1
𝑥 + 𝑦 + 𝑧 = 1000 B1

(b) 𝑃𝑋 = 𝑄
6 2 3 𝑥 3850 B1
(4 1 5) (𝑦) = (3200)
1 1 1 𝑧 1000
6 2 3 3850
(4 1 5|3200) B1
1 1 1 1000
1 1 1 1000
𝑅1 ↔ 𝑅3 (4 1 5|3200)
M1
6 2 3 3850
1 1 1 1000
4𝑅1 − 𝑅2 → 𝑅2 (0 3 −1| 800 )
6 2 3 3850
1 1 1 1000
6𝑅1 − 𝑅3 → 𝑅3 (0 3 −1| 800 )
0 4 3 2150 M1

1 1 1 1000
4𝑅2 − 3𝑅3 → 𝑅3 (0 3 −1 | 800 )
0 0 −13 −3250

−13𝑧 = −3250
z = 250, M1
3𝑦 − (250) = 800
𝑦 = 350 , A1
𝑥 + 350 + 250 = 1000
𝑥 = 400 A 1(all)
𝑥 = 400, 𝑦 = 350 , z = 250

(c) 6𝑥 + 15𝑦 + 3𝑧 = 3850 B1


4𝑥 + 𝑦 + 5𝑧 = 3200
𝑥 + 𝑦 + 𝑧 = 1000
6 15 3
𝐿𝑒𝑡 𝑃 = (4 1 5) M1
1 1 1 M1
|𝑃| = 6 |1 5| − 15 |4 5| + 3 |4 1|
1 1 1 1 1 1
= 6(−4) − 15(−1) + 3(3)=0 A1
Since |𝑃| = 0 , P is singular , thus the system of linear equation have no unique solution.
It is not possible for company A to award 15 employees for their creativity instead of 2 with A1
the same total amount of money.
TOTAL 15 MARKS

You might also like