ECE405 Satellite Communication
Dr. S. Hariharan
Associate Professor
Department of Communication Engineering
School of Electronics Engineering
VIT University
Vellore
Dr. S. Hariharan, SENSE, VIT. ECE405 - Satellite Communication 1
Summary
&
Formulas
ECE405 Satellite Communication
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 2
Introduction
Satellite system consists of
o Earth segment (traffic and control)
o Space segment
satellite orbits
o Low Earth Orbit (LEO)
o Medium Earth Orbit (MEO)
o Geosynchronous orbit (GSO)
o Geostationary orbit (GEO)
Two links
o Uplink – ground to satellite
o Downlink – satellite to ground
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 3
Microwave frequency bands
L band: 1-2GHz
S band: 2-4GHz
C band: 4-8GHz
X band: 8-12GHz
Ku band: 12-18GHz
K band: 18-26.5GHz
Ka band: 26.5-40GHz
Majority of existing systems operate in C and Ku
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 4
Common Frequency Bands and typical
applications
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 5
Common Frequency Bands and typical
applications
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 6
Service Types
o Fixed Service Satellites (FSS)
o Example: Point to Point Communication
o Broadcast Service Satellites (BSS)
o Example: Satellite Television/Radio
Also called Direct Broadcast Service (DBS).
o Mobile Service Satellites (MSS)
o Example: Satellite Phones
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 7
Kepler’s laws
o Centrifugal force
o Centripetal Force
o Orbital Elements
• Semi-Major axis (a)-Size
• Eccentricity (e) – Shape
• Inclination (i).
• Right ascension of ascending node (Ω) . Orientation
• Argument of Perigee (ω)
• True anomaly (γ) - Location within orbit
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 8
Kepler’s laws
First Law: Planets orbit the sun in ellipses with the sun at one focus.
Second Law: Each planet moves in so that an imaginary line drawn from the sun to
any planet sweeps out equal areas of space in equal intervals of time.
Third Law: The square of the orbital period (T ) of a planet is directly proportional
to the cube of the average distance of the planet from the sun (r )
p
r p
h2
1 e cos
4 2
3
T
2
a
𝜇
𝑣=
𝑟 G 6.672 10 11 Nm 2 /kg 2
M E 5.98 10 24 kg
3.986 105 km 3 /s 2
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 9
ORBIT CHARACTERISTICS
p h2
a 𝑝 = 𝑎(1 − 𝑒2) or p
1 e2
h is the magnitude of the angular momentum
b a 1 e
2 1/ 2
Where, e
h 2C
NOTE: For a circular orbit, a = b and e = 0
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 10
ORBIT CHARACTERISTICS
2 1 ra rp
Velocity at apogee
2
𝑉𝑎 = 𝜇 − a
𝑟𝑎 𝑎 2
2 1
Velocity at perigee 𝑉𝑝2 =𝜇 −
𝑟𝑝 𝑎
e is the eccentricity of the orbit
ab
e
ab
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 11
The Geostationary Orbit
Sidereal Day = 23 hr. 56 min 4.09 sec.
Radius and height of GEO orbit:
T2 = (4 2 a3) /
a3 = T2 /(4 2)
T = 86,164.1 sec
a3 = (86,164.1) 2 x 3.986004418 x 105 /(4 2)
a = 42,164.172 km = orbit radius
Orbit height (h) = orbit radius – earth radius
= 42,164.172 – 6378.14
= 35,786.03 km
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 12
LOOK ANGLES
Geometry for Elevation Calculation
El = - 90o
= central angle
rs = radius to the satellite
re = radius of the earth
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 13
LOOK ANGLES
SUB-SATELLITE POINT
Latitude Ls
Longitude ls
EARTH STATION LOCATION
LatitudeLe
Longitude le
Calculate , ANGLE AT EARTH CENTER
Between the line that connects the earth-center to the satellite and the line
from the earth-center to the earth station.
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 14
LOOK ANGLES
is defined so that it is non-negative and
cos () = cos(Le) cos(Ls) cos(ls – le) + sin(Le) sin(Ls)
1/ 2
r 2
re
Range : d rs 1 2 cos
e
rs rs
sin
Elevation : cos (El ) 1/ 2
r 2
re
1 2 cos
e
rs rs
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 15
LOOK ANGLES
GEOSTATIONARY SATELLITES
SUB-SATELLITE POINT
(Equatorial plane, Latitude Ls = 0o, Longitude ls)
EARTH STATION LOCATION
Latitude Le
Longitude le
GEO - simplified formulas
cos(γ) = cos(𝐿𝑒) cos(𝑙𝑠 – 𝑙𝑒)
Using rs = 42,164 km and re = 6,378.14 km gives
d = 42,164 [1.0228826 - 0.3025396 cos()]1/2 km
sin
cosEl
1.0228826 0.3025396 cos 1/ 2
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 16
LOOK ANGLES
AZIMUTH CALCULATION – GEO
Intermediate angle is calculated as,
tan ls le
tan 1
sin Le
Case 1: Earth station in the Northern Hemisphere with
(a) Satellite to the SE of the earth station: 𝐴𝑧 = 180𝑜 −
(b) Satellite to the SW of the earth station: 𝐴𝑧 = 180𝑜 +
Case 2: Earth station in the Southern Hemisphere with
(c) Satellite to the NE of the earth station: 𝐴𝑧 =
(d) Satellite to the NW of the earth station: 𝐴𝑧 = 360𝑜 −
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 17
VISIBILITY TEST
re
rs
cos
re 1 6378
cos cos
1
rs 42164
For Geostationary Satellites 81.3o
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 18
Locating the satellite
Orbit Determination
Algorithm summary:
1. Calculate average angular velocity: 1/ 2 / a 3 / 2
2. Calculate mean anomaly: M t t p Time reference
3. Solver for eccentric anomaly: M E e sin E
r0 a1 e cosE ;
4. Find polar coordinates:
0 cos
a 1 e 2 r0
1
er
x0 r0 cos0 ;
0
5. Find rectangular coordinates
y0 r0 sin 0
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 19
Key Points
Kepler’s laws of planetary / satellite motion
Equation of satellite orbits
Describing the orbit of a satellite
Locating the satellite in the orbit
Orbital perturbations
Launching methods and launch vehicles
Placing a satellite in a geo-stationary orbit - Orbit raising
Orbital effects
Satellite subsystems
Communication subsystem
Block diagrams of transponders
Dr. S. Hariharan, SENSE, VIT ECE405 - Satellite Communication 20