UECM1713 Tutorial: Fourier Series(Solution)
1. (a) Show f (−x) = −f (x) : odd
    (b) Give an example for each : f (−x) 6= ±f (x) Neither
    (c) Show f (−x) = f (x) : even
               Z π
 2. (a) Show :     cos mx · cos nx dx = 0, m 6= n
                0
               Z ∞
    (b) Show :      w(x) · Lm (x) · Ln (x) dx = 0 if m 6= n.
                        0
                        ∞ ³
                        X              nπ             nπ ´
 3. f ∗ (x) = a0 +            an cos      x) + bn sin   x)
                        n=1
                                       L              L
                Z   L
           1
    a0 =          f (x) dx
          2L −L
             Z
          1 L              nπ
    an =         f (x) cos     x) dx
          L −L              L
             Z
          1 L              nπ
    bn =        f (x) sin     x) dx
          L −L             L
     (a) f (x) = cos(x/2) − sin x, −π ≤ x < π; f (x + 2π) = f (x).
         L=π
                                    ∞
           ∗       2             4 X (−1)n
         f (x) = − sin x −                       cos nx
                   π             π n=1 4n2 − 1
                 ½
                     1 , −1 < x < 0
    (b) f (x) =
                     x , 0≤x<1
                       3        (−1)n − 1             1
         L = 1, a0 = , an =          2  2
                                            , bn = −
                       4 ·         nπ                nπ          ¸
                        X∞         n
           ∗       3          (−1) − 1                 1
         f (x) = +                        cos nπx −      sin nπx
                   4 n=1         n2 π 2               nπ
 4. f (t) = t2 , 0 < t < 2π; f (t + 2π) = f (t).
    L = π. It is better to integrate from t = 0 to t = 2π.
                       X∞               X∞
              4π 2         cos nt            sin nt
    f ∗ (t) =      +4          2
                                   − 4π             .
                3      n=1
                             n          n=1
                                               n
 5. (a) f (x) = | sin x|, −π < x < π
                                               2        2 1 + (−1)n
           f is even , cosine series :a0 =       , an =             ; bn = 0.
                                               π        π 1 − n2
                        ∞
            ∗    2    2 X 1 + (−1)n
        f (x) = +                   cos nx
                 π π n=1 1 − n2
                ½
                   x − 1 , −π < x < 0
    (b) f (x) =
                   x+1 , 0≤x<π
                                                    2 (−1)n+1
           f is odd , sine series :an = 0; bn =     π    n
                                                              .
                        ∞
                     2 X (−1)n+1
           f ∗ (x) =                sin nπx
                     π n=1    n
                                                           1
               Z
             1 π                  1h        iπ     2
6. (a) a0 =         sin x dx =       − cos x =
             π Z0                 π          0     π
             2 π
       an =         sin x cos nx dx
            Zπ π 0
          1
       =        [sin(n + 1)x − sin(n − 1)x]dx
          π 0
          ½
                   0          , n = 1, 3, 5, . . .
       =       4      1
             − π (n−1)(n+1) , n = 2, 4, 6, . . .
                    ∞
         ∗     2  4X       cos(2nx)
        f (x) = −                       .
               π π n=1 (2n − 1)(2n + 1)
   (b) The graph of the even extension on (−2π, 2π):
             Z
          1 π                 π
7. a0 =          f (x) dx =
          π 0                 4
             Z π
           2                         2 2 cos nπ
                                              2
                                                + (−1)n+1 − 1
   an =           f (x) cos nx dx =
          π 0                        π           n2
                        ∞
               π 2 X 2 cos nπ     2
                                    + (−1)n+1 − 1
   f ∗ (x) = +                                     cos nx
               4 π n=1                n2
             Z
          2 π                        4 sin nπ
                                            2
   bn =          f (x) sin nx dx =
          π 0                        π n2
                  ∞
               4 X sin nπ 2
   f ∗ (x) =                 sin nx.
               π n=1 n2