Experiment 4: Amplitude Modulation
This experiment examines the characteristics of the amplitude modulation (AM) process. The demod-
ulation is performed by an envelope detector. Overmodulated AM signals and its requirement for coherent
detection are also considered.
1     Introduction
In Experiment 3, DSB signals were generated by the multiplication of a message signal with a carrier
waveform. This resulted in the translation of the message spectrum to the carrier frequency location. The
simplicity of the modulation process contrasted with the strict requirement for a synchronous local carrier
at the receiver. This problem can be alleviated by sending a carrier frequency component along with the
sidebands at the expense of decreasing the transmitted power efficiency.
1.1    AM signal generation
The generation of AM signals consists simply of the addition of the carrier waveform to the DSB signal, for
this reason AM modulation is referred to as DSB-LC (DSB with large carrier). The message signal x(t) is
modulated by a carrier waveform Ac cos(2πfc t). The amplitude modulated waveform xc (t) is
                               xc (t) =    Ac x(t) cos(2πfc t) + Ac cos(2πfc t)                           (1)
                                      =    Ac [1 + x(t)] cos(2πfc t)                                      (2)
                                      =    A(t) cos(2πfc t)                                               (3)
where |A(t)| is the envelope of the AM signal. The message signal amplitude must be small and must have a
DC component equal to zero in order to use simple demodulation schemes. The spectrum of the modulated
signal is
                                Ac                             Ac
                      Xc (f ) =    [X(f + fc ) + X(f − fc )] +    [δ(f − fc ) + δ(f + fc )]             (4)
                                 2                             2
Thus, the carrier waveform is transmitted along with the sidebands to make it available at the receiver for
coherent demodulation without needing complex carrier recovery circuits. However, this advantage of AM
over DSB demodulation comes at the expense of using some portion of transmitted power in the carrier
waveform which does not convey any information.
1.2    Modulation index of AM signals
The two main differences of AM with respect to DSB signals are the presence of a carrier component and
that the envelope |A(t)| of the modulated carrier has the shape of x(t) under the conditions that fc >> fx
and A(t) > 0 for all values of t. Thus, having |x(t)| < 1 with no DC component guarantees that A(t) is
always positive. The modulation index m of an AM signal is defined as
                                              [A(t)]max − [A(t)]min
                                        m=                                                                (5)
                                              [A(t)]max + [A(t)]min
When m > 1 the envelope has no longer the shape of x(t) resulting in envelope distortion. This condition is
referred to as overmodulation. In the particular case when the message signal is a sinusoid of frequency fx ,
its amplitude is equal to the modulation index m of the corresponding AM signal
                                  xc (t) = Ac [1 + m sin(2πfx t)] cos(2πfc t)                             (6)
                                                      1
EE3150 E. Cura                                                                                                  2
1.3     AM signal power and bandwidth
The (one-sided) spectrum of the AM signal consists of two sidebands that occupy the frequency range fc − fx
to fc + fx plus the carrier component at fc , hence the bandwidth BT required for transmission is
                                                             BT = 2fx                                          (7)
The average transmitted power ST of the AM signal is
                                                         ST = Sc Sx + Sc                                       (8)
where Sc = A2c /2 is the average carrier power and Sx is the average message signal power. When the
message signal is a sinusoid of amplitude Ax , Sx = A2x /2. The fraction of the transmitted power that
conveys information to the receiver is
                                                        Sc Sx
                                               E=                                                  (9)
                                                     Sc + Sc Sx
and it is used as a measure of the power efficiency.
1.4     Demodulation of AM signals
The recovery of the message signal can be performed coherently just like in DSB demodulation. The trans-
mission of a carrier component in AM alleviates the need for complex carrier recovery circuits necessary for
DSB demodulation. However, a simpler demodulator for AM signals is the envelope detector.
1.4.1   Coherent demodulation
Since the carrier component is part of the received AM signal xr (t), it can be extracted and used in a
coherent demodulator to recover the message signal. Assuming that the received signal xr (t) has the same
form as xc (t) except for an attenuation factor ac /Ac introduced by the channel, the product signal is
                z(t) = {ac [1 + x(t)] cos(2πfc t)}2 cos(2πfc t) = ac [1 + x(t)] + ac [1 + x(t)] cos(4πfc t)   (10)
whose spectrum Z(f ) is
                                                 ac
                Z(f ) = ac [δ(f ) + X(f )] +        [X(f − 2fc ) + X(f + 2fc ) + δ(f − 2fc ) + δ(f + 2fc )]   (11)
                                                 2
Notice that scaled replicas of the message spectrum appear at the baseband frequency range and at 2fc .
Additionally, components at 2fc and 0 Hz also appear. Therefore, a bandpass1 filter is necessary to remove
the DC and high frequency components. The output y(t) of the filter is
                                                           y(t) = ac x(t)
which is the message signal scaled by a factor ac .
1.4.2   Demodulation with envelope detector
Since the envelope of the modulated signal has the shape of the message signal (as long as |x(t)| < 1 and
has no DC component), the received signal can be rectified by a diode and the rectified signal can then be
smoothed by an RC network in order to recover the message signal. Fig. 2 shows the envelope detector circuit
for AM demodulation. The requirements for best operation of this demodulator are that fc >> fx , and that
the discharge time constant RC is adjusted such that the negative rate of the envelope never exceeds the
exponential discharge rate of the RC network. For the specific case of tone modulation (the message signal
is a sinusoid), the time constant RC is related to the parameters of the AM signal by
                                                      √
                                                        1 − m2
                                               RC ≤                                                     (12)
                                                       2πfx m
  1 During   the lab a lowpass filter will be used for simplicity.
EE3150 E. Cura                                                                                               3
2     Prelab instructions
The prelab for this experiment is based on PSPICE modeling and simulations. Enclosed in brackets is the
number of points assigned to each question/plot.
    1. From the functional block diagram of Fig. 1 in the AD633 data sheet, build a PSPICE model of this
       multiplier circuit considering the following hints: [4]
         • All the amplifiers shown in the block diagram provide unity gain and the inputs X2 and Y 2 will
           be connected to ground (in the circuits for this experiment), hence all the amplifiers and the
           terminals X2 and Y 2 can be neglected to build the PSPICE model.
         • The multiplier block can be implemented by the MULT part included in the PSPICE libraries.
           Similarly, the summation block can be implemented by the SUM part. The constant 1/10 V block
           can be implemented with the CONST block with a value of 0.1.
         • Notice that because of the 1/10 V block, and just for the circuits in this experiment, the signal
           applied to the X1 input (pin 1) is actually 10 times the message signal x(t). In the following, the
           signal applied to pin 1 is called simply the message signal, but keep in mind it is a scaled version
           of x(t).
    2. Using your PSPICE model of the AD633, (a) simulate the output of the circuit of Fig. 1 of this
       experiment. The parameters for the message signal x(t) are: Sine wave, Ax = 8 V, fx = 500 Hz, and
       for the carrier signal: Sine wave, Ac = 5 V, fc = 9 kHz. Use a time span of T S = 5 ms. For the
       simulation you need to connect a resistor (> 1 kΩ) from the output to ground in order to obtain the
       simulated output [4]. (b) To observe an overmodulated signal, repeat the previous step with Ax = 13
       V, fc = 18 kHz, and T S = 4 ms [4].
    3. Using Eq.(12), (a) calculate the range of values of R when C = 10 nF, m = 0.5, fx = 1 kHz [2]. (b) Use
       a value of R = 18 kΩ to simulate the output of the envelope detector of Fig. 2 from 0 to T S = 2 ms.
       The parameters for the message signal are: Sine wave, Ax = 5 V, fx = 1 kHz, and for the carrier signal:
       Sine wave, Ac = 5 V, fc = 98 kHz [4]. (c) Repeat part (b) changing T S = 10 ms (this time-domain
       plot is not required), and from the Trace menu select Fourier, then from the Plot menu select Axis
       settings... and set the Data range from 0Hz to 100KHz in the X-Axis and set the Scale to Log
       in the Y-Axis. The resulting plot is the spectrum of the output of the envelope detector, include this
       plot in your prelab [4].
    4. Simulate the output signal of the coherent detector of Fig. 4 (neglect the op-amp amplifier). The
       parameters for the message signal are: Sine wave, Ax = 13 V, fx = 500 Hz, and for the carrier signal:
       Sine wave, Ac = 5 V, fc = 18 kHz, T S = 4 ms [4].
3     Lab procedure
GENERAL INSTRUCTIONS:
    • Load the virtual instrument TIMEFREQ.VI by double-clicking the shortcut located in the computer
      desktop.
    • After taking each plot make sure to ask your TA to verify that your results are correct.
      This also serves to monitor your progress and performance.
3.1     AM signal generation
In this section AM signals are generated by multiplying message signals with a carrier and adding the carrier
to this product. The amplitude of the message signal is varied to produce different values of the modulation
index.
EE3150 E. Cura                                                                                          4
  1. With the power supply off, assemble the circuit of Fig. 1. Use FG1 as the message signal and FG2
     as the carrier signal. Set the following parameters in FG1: Amplitude=8 V, Frequency=500 Hz, sine
     wave. For FG2: Amplitude=5 V, Frequency=9 kHz, sine wave. Connect channel 1 probe of the
     oscilloscope to the output of the modulator (at pin 7).
  2. Turn the power supply on and capture the AM signal and its spectrum by executing TIMEFREQ.VI
     with the following parameters: Channel=1, TS=5m, FS=10, Save data=ON, a proper file name. [Plot
     P1, 5 points].
  3. Change the amplitude of FG1 to 2 V and capture the AM signal and its spectrum, use a different file
     name. [P2, 5].
3.2    Demodulation of AM signals using envelope detection
In this section the message signal is recovered by using an envelope detector.
  1. Assemble the circuit of Fig. 2 using a value of R = 18 kΩ. Use FG1 as the message signal and FG2 as
     the carrier signal. Set the following parameters in FG1: Amplitude=5 V, Frequency=1 kHz, sine wave.
     For FG2: Amplitude=5 V, Frequency=98 kHz, sine wave. Use the channel 1 probe of the oscilloscope
     to observe the output signal.
  2. Capture the output signal and its spectrum by executing TIMEFREQ.VI with the following parameters:
     Channel=1, TS=2m, FS=100, Save data=ON, a proper file name. [P3, 5].
  3. Increase the carrier frequency (FG2) to 450 kHz. Capture the output signal and its spectrum by exe-
     cuting TIMEFREQ.VI with the following parameters: Channel=1, TS=2m, FS=500, Save data=ON,
     a proper file name. [P4, 5].
3.3    Overmodulated AM signals
In this section the case of AM signals with modulation index m > 1 is considered.
  1. With the power supply off, assemble the circuit of Fig. 3. Use FG1 as the input signal and FG2 as the
     carrier signal. Set the following parameters in FG1: Amplitude=6.5 V, Frequency=500 Hz, sine wave.
     For FG2: Amplitude=5 V, Frequency=18 kHz, sine wave. Use the channel 1 probe of the oscilloscope
     to observe the AM signal.
  2. Turn on the power supply and use channel 2 to measure the peak amplitude (make sure that the
     attenuation factor of this probe is at 10) of the signal applied to pin 1 of the AD633. This is the
     message signal and its amplitude is ten times the modulation index m. Record this value m =       .
  3. Capture the AM signal and its spectrum with the following parameters: Channel=1, TS=4m, FS=20,
     Save data=ON, a proper file name. [P5, 5].
3.4    Coherent detection of overmodulated AM signals
In this section the need for using coherent detection to demodulate AM signals with modulation index m > 1
is considered.
  1. With the power supply off, assemble the circuit of Fig. 4. Use FG1 as the input signal and FG2 as the
     carrier signal. Set the following parameters in FG1: Amplitude=6.5 V, Frequency=500 Hz, sine wave.
     For FG2: Amplitude=5 V, Frequency=18 kHz, sine wave. Use the channel 1 probe of the oscilloscope
     to observe the product signal and the channel 2 probe to observe the output signal.
  2. Turn on the power supply and capture the product signal and its spectrum with the following param-
     eters: Channel=1, TS=4m, FS=40, Save data=ON, a proper file name. [P6, 5].
  3. Now capture the output signal and its spectrum with the following parameters: Channel=2, TS=4m,
     FS=40, Save data=ON, a proper file name. [P7, 5].
EE3150 E. Cura                                                                                               5
4     Analysis
This section contains questions regarding the results obtained during the lab.
    1. Include in your report all the plots obtained during the lab. Make sure to label properly all the plots.
       The number of points assigned to each plot is specified in the lab procedure. Refer to Appendix B
       section 3.4 for instructions regarding the plotting of experimental results.
    2. From plots P1 and P2: (a) estimate the modulation index of each AM signal.[4 points]. (b) Describe
       the effect of the modulation index on the magnitude of the sidebands in the spectra of these signals.
       [2].
    3. Comparing the time signals in plots P3 and P4, and giving arguments from their spectra, (a) explain
       why the signal of P4 shows less ripple. [2]. (b) Would you connect the LPF of Fig. 4 to the output of
       the envelope detector in order to remove the ripple in the case of P3? Justify your answer. [2].
    4. Could the message signal be recovered from the AM signal of plot P5 using an envelope detector?
       Justify your answer. [2].
    5. From plot P7: (a) explain the presence of a DC offset in the output signal. [2]. (b) How would you
       eliminate the DC offset at the output? [2].
    6. (a) Compute the power efficiency E for the AM signals of plots P1, P2 and P5. [6][Hint: Keep in mind
       that the AD633 divides the product of the input signals by 10]. (b) Without considering the value of
       the carrier frequency, but considering everything else, which of these signals would you choose to use
       in a practical system? Justify your answer. [2].
                                                                                   2                                                                                                                                                       1
                                                             +17V                                                                                                                         +17V
            message_signal                 AD633                                                                                                 message_signal           AD633                                       output_signal
                                           P1           P8           AM_signal                                                                                             P1        P8           D1N4148
                                           P2           P7                                                                                                                 P2        P7
                                           P3           P6                                                                                                                 P3        P6                           C
               carrier                                                                                                                              carrier
                                           P4           P5                                                                                                                 P4        P5                                       R       ?k
                                                                                                                                                                                                              10n
                                  0
                                                              -17V                                                                                                                         -17V
                                       0                                                                                                                             0                                                    0
                                                                                                                                                                                                                                  0
                                 Fig. 1 AM modulator                                                                                                                     Fig. 2 Envelope detection of AM signals.
B                                                                                                                                                                                                                                                                                         B
                                 +17V
                             U1              7
                         3                               5                                       +17V
                             +
      input_signal                    V+                        message_signal AD633
                                             OS2
                                                         6
                                             OS1
                                                                               P1           P8                AM_signal
                                      V-                                       P2           P7
                         2                               1
                             -                                                 P3           P6
                                      4            -17V           carrier      P4           P5
                    uA741
                                                                                                  -17V
                                                                               0
                                  1k
                        1k
                     0
                                 Fig. 3 Test circuit to demonstrate overmodulation.
                             +17V
                                      7
                    3                               5                                       +17V                           +17V        product_signal
                         +
    input_signal                 V+                           message_signal AD633                            AD633
                                       OS2          6
                                       OS1
                                                                             P1        P8                      P1     P8                                                        output_signal
                                 V-                                          P2        P7                      P2     P7
A      uA741        2
                         -
                                 4
                                                    1
                                                 -17V          carrier
                                                                             P3
                                                                             P4
                                                                                       P6
                                                                                       P5
                                                                                                               P3
                                                                                                               P4
                                                                                                                      P6
                                                                                                                      P5
                                                                                                                                   0
                                                                                                                                               1k
                                                                                                                                                              0.1u
                                                                                                                                                                  100k
                                                                                                                                                                                1n
                                                                                                                                                                                                                                                                                          A
                                                                           0
                                                                                             -17V                           -17V
                                                                                                                                                              0             0
                             1k                                                                          0
                   1k                                                                                        Coherent detector                          Lowpass filter
                0
                             Fig. 4 Test circuit for coherent detection of overmodulated AM signals.
                                                                                                                                                                                                      EE3150 Communication Systems Lab                               Page Size:       A
                                                                                                                                                                                                      Experiment 4. Linear Modulation: AM
                                                                                                                                                                                                      Fall 2001
                                                                                                                                                                                                      E. Cura
                                                                                                                                                                                                      Revision:       -                        January 1, 2000   Page 1   of      1
                                                                                   2                                                                                                                                                       1