Linear Programming
1. Consider the following set of constraints:
Step 1
(a) Maximize z = 3x1 − x2 + 3x3 + 4x4
(b) Minimize z = 5x1 − 4x2 + 6x3 - 8x4
                                                3     -1      3           4    0   0   0
                          Solution     Values                                               Rasio
  0                              40             1      2      2            4   1   0   0    10
  0                              8              2     -1      1            2   0   1   0     4
  0                              10             4     -2      1           -1   0   0   1    -10
                                                0      0      0            0   0   0   0
                                                3     -1      3            4   0   0   0
Key element = -1
Step 2
          [           ]                               [           ]
      [       ]                                       [       ]
      [           ]                                       [           ]
      [       ]                                       [       ]
      [       ]                                       [           ]
      [       ]                                       [       ]
      [       ]                                       [       ]
      [       ]                                       [       ]
                                                3     -1      3           4    0   0   0
                          Solution     Values                                               Rasio
  0                               0             -15   10      -2          8    1   0   -4     0
  0                              -12             -6    3      -1          4    0   1   -2     2
  4                              -10             -4    2      -1          1    0   0   -1    2,5
                                                -16    8      -4          4    0   0   -4
                                                 19   -9       7          0    0   0    4
Step 3
  —
   -1                                 0           1                                                  0
                  [           ]                                                  [       ]
              [           ]                                                  [       ]
          [               ]                                              [           ]
              [               ]                                              [       ]
          [                   ]                                          [               ]
      [                   ]                                              [               ]
          [           ]                                                  [               ]
              [                   ]                                          [               ]
                                                      3     -1   3   4           0   0           0
                              Solution       Values                                                  Rasio
  1
                                         0            1                              0                10
  0
                                      -12             -12   -1                       1                   4
  4
                                      -10             0                              0               -10
                                                      1          2                   0
                                                      2          1                   0
(a) Maximize z = 3x1 − x2 + 3x3 + 4x4 = 0 - 0 - 30 + 0 = -30
(b) Minimize z = 5x1 − 4x2 + 6x3 - 8x4 = 0 – 0 -60 – 0 = -60
X1 = 0
X2 = 0
X3 = -10
X4 = 0
2. Max Z = 2x1 + 20x2
Z(A) = 0 + 50 = 50
Z(B) = 10 + 0 = 10
Z(C) = 0 + 60 = 60
Z(D) = 6 + 0 =6
The Value is 60
Network Model
1. Djikstra’s algorithm
Nodes       Routes                   Distance
1           1-2                      100
2           1-4                      30
3           1-3-4                    40
4           1-3-5                    90
2. Prim’s and Kruskal’s algorithm!
- Prim’s Algorithm
Weigh of minimum spanning tree = 54
A, D, C, E, B, F, G
- Kruskal Algorithm
14+21+5+7+3+4 =54