0 ratings0% found this document useful (0 votes) 194 views20 pagesYasnac Servo Pack
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
SIE-C717-3E
DESCRIPTIVE
INFORMATION
‘Servopack
Type CPCR-MR 052K
1, GENERAL DESCRIPTION
Servopack type CPCR-MREIK 1s designed as
servo unit controller for our CNC YASNAC LX
1/2 and MX1/2 series Servopack can control
a wide variety of speed range for servomotor
feed drives (Cup Motor, Minertia Motor or Hi-
Cup Motor)
‘Servopack with a transistorized PWM control
offers a highly responsive servo system with
superior stability In addition, low-noise servo
drives and low-heat generation are two of Servo-
pack’s main features
This manual is used as a selection guide to
determine a servo system for the CNC YASNAC
LX1, MX1, LX2 and MX2
CONTENTS
1 GENERAL DESCRIPTION
2 RATINGS AND SPECIFICATIONS :
3. COMBINATION OF SERVOPACK WITH SERVOMOTOR
AND REACTOR
4 CHARACTERISTICS IN COMBINATION OF SERVOPACK
WITH SERVOMOTOR
5 INTERNAL BLOCK DIAGRAMS.
5 1 Servopack
5 2 Power Supply Unt
6 INPUT/OUTPUT SIGNALS
6 1 List of Input/Output Signals
6 2 Description of Input/Output Signals
69 List of Terminal and Connector
1
2
7 CONNECTION DIAGRAM
711 Connection for YASNAC LX1
7.2 Connection for YASNAC MX1
8 CHARACTERISTICS OF SERVOPACK AND.
‘SERVOMOTOR COMBINATION
8 1 Characterties Description
8 2 Torque-Speed Characters.
9 APPLICATION TECHNIC OF YASNAC
9.1 Servomoter Selection
8 2 Coasting Distance After YASNAC Emergency Stop
8.3 Minimum Dog Length for Returning to Home Position
APPENDIX SELECTION LIST OF DC SERVOMOTOR,
FOR YASNAC
12
12
12
18
18
18
20RATINGS AND-SPECIFICATIONS
Table Ratings and Specifications of Servopack
RO wno7aK | _ MRO: MATS Ra
Main Grea DO Votage ZrO Supplied om power supply unk)
Control Power Supply ZOO/ZBOVAC 60760 He (upped from power supply uni)
‘Ambient Temperate De +60 (Fin: O10 +4570)
Storage Temperature =20% to +85
Storage Humity 30% oF below
Vibration, Shock Vibration, O56 or lst, Snock 2G or fas
Control Method “Transitorized/PWM contol
Maximum 404,
peeenen eee een 2254 :
BAecoleration/Deceleraton |iymosex si6a)| “8A | yanosax T9A)[MRSAK? 2258) 240A 2004
Continuous Outpt Curent] 50a za aA SIA aA ERA
Continuous Output Votage Ea00v
Reference Input a
Reference neat Rated speed at 4 to 50V
Drferental input
Detorenal input Fed speed at 4 10 10V
[or pahiste Maximum accelerabon/decelerabon current at +10V.
une: [Sen ON/OFF Servo ON at COW levelfwih pulkup renior
" [Dynamic Brake Operated at alarm, Servo OFF or control power OFF
fre on/OFF To detecing eve! SS 302°7 or tas (open cotetor)
(Gverioad Datecton Tot operaied a 125%, 150 ses at 150%, 60 see a 200%
ponies Current at 2V/100%, Speed at 36V/1000rpm, maximum output current : 10mA
Device Uae of fue
Protee-[TS Toate ‘Shortareui, Open, wrong, connecton, overspeed(i20% to 140%)
tion” [Overcurrent Vex dtechon Vee 7¥)
[Overvotage Proteced at 400 t 420V
= Power ON (areer)
{nde Jhep “Input ON LIN}, Te ON [Ta]wtte)
«TG trouble, overcurrent, overvoltage, overload, blown fuse (red)
‘TYPE DESIGNATION
serach —] Liretrcup sar rover] | L contgurton
Son rein
& Speen ope
Transorzo/eu—|
Contac For Mina Motor J Sees Lous curran
Seek Ueieo Sota ne
Servontar Ou B%hpe USMED SOTA 8h
sty & aon
& iow ervonio Type ae
%. 38H SCepmaor
sow FER r sands
2 teow ps
Sow 4 Sra mtr J sre
5 eiSpoace3. COMBINAFION OF SERVOPACK WITH SERVOMOTOR AND REACTOR
Table2 Combination of Servopack with Servomotor and Reactor
ope] Poa Sarvapaek] — Appice ;
cats. | Sevomerer | (sonata insatosy — | YBa | Ser¥amotr (Separately iitaes
Tunos2K | UGOWED.ca | 1Omt4A(Owa No DE6405508)| WR154IC[UGJMED-GOLA | SH AT A(Owa No DESAUZTA#)
TMRO59x [UGMMEW-10 _|10mH, 8a(Ows No o€8402608)| wn165K1] UGHMED-12AA [iOmH.14A (Ow No DESAD2606)
‘MR054x [UGIMED-4OL [som ¢a(Ows No OE8402608)| wn165K2|UGHMED-1266 [10m 14A(Owg No DES4I2696)
'MR056K [UGHMED-0906]tomH, 1ea(Ow No DEedoze86)| wR2z2K |UGCMED-22 [1OmH.1BA(Ow9 No DESATO090)
TMRG7aK_[UGMMEN.25 _|fomt, ¢a(Ows No oEedoze06)| unzzaK |UGJMED-COLA | Sm 25A(0w9 No OESADZ746)
1MR0#2x [UGCMED.08 — |1OmH, sea(Ows No OE e402688)| MR226K| UGHMED-20AA [iO mH ;BA(Ow) No DESADGO90)
MR084K [UGJMED-6OMA| SmH.11 A(Owg No DE8402744)| MR225I[UGHMED-2066] 1OmH.18A(Owa, No OF 8409090)
MR085K1 | UGHMED-06,A []0mH, a(Owg No OE8402606)| MR72K [UGCMED-A7 _|10mH 25A(Owa No OE 8402600)
‘MR085K2| UGHMED-086G|10mH, 14a(Owg No DE6402556)| MR7SK_[UGMMED.1A _|10mH 254 (Ong No DF 8402000)
R182 [UGCMED.15 [10m 16a(Ows No OEe402656)| MRA7AK |UGJMED-00KA | 10mH,25A or 260 (Owg No DEGADI6O5)
1MRv85x [UGMMEW-50 [TOM 14A(Owg No, 08402668 MRS7SKi | UGHMED-00AA| 10mH,26A(Ow9 No OEBA0Z600)
TMRY58K [UGIMED-9OMA| Smit A(Ows No DE2402744)] MR87SK2|UGHMED-20G6|10mH.25A(Ow9 No DES4D2609)
4. CHARACTERISTICS IN COMBINATION OF SERVOPACK WITH SERVOMOTOR
Table3 Characteristics in Combination of Servopack with Servomotor
‘A overspeed
7A Faied Operation
Servopack | gervemotor [Mima [Continuous instantaneous [Continsous| instantaneous] "Coad
"ype ‘Wyoe' "| Sitont [Rated Spoed| Entectwe | “Ettectve |Overspeod| fftocive. | Goer
Per. went com) | Torque | ‘Torque | (rpm). Torque | (CO,
{kg om) {kgrom) (kg em)
wROsaK | UGGMED-04 25__[ws0| 212 | 708 | 2000. 70__| 324
‘maossK | uGMwewts 25 | 9000 | 124 | «a2 = = = vat
‘unos4K | ugsMeD-40. | 16 | 1000 | 252 | ea | 1600_| 17 a7 200
‘mnossk | uGHMEDosGa | 25 | 1000 | 228 | ree | 1600 | 228 79 | 208
mno7aK | ugMwen2s [30 | s000 | 298 | 861 = = = 283
‘mn0s2x | uacMen-os | 25 | 1750] 996 | ters | 2400 | oa veo | 360
‘wnoeak | usmeo-cowa | 19 | 1000 | «18 _| 1er7 | 1500 | a7 105 | 480
‘wnosski | uaHMEDocaa | 25 | 1000 | 58 | 2099 | 1500 | a8, zs | 733
‘mnoesk2 | uaHMedosas | 25 | 1000] 475 | 1e¢0 | 1500 | 38. 195} 330
Mais2k | UGCMED.A5 0_[ 1750 | 70a | ose | e400 | ea ‘200 | 101
mntssk | ucMmewso | 40 | 2000 | «7s | veze | — | — = 200
Mnts4k | ugMeD-sowa | a2 | 1000 | 4017 | _a192 | 1200 | 108 27 | v0
MA154K2 | UGJMED-oLA | 25 | 1000 | 7e9 | 2104 | 1500 | 59. 175] 30
MAIS5K1 | UGHMED-12AA | 40 | 1000 | 1112 | a6 | 1400 | 04 a7 [194
mnrssk2 | ucHMeD-t266 | 40 | 1000 | 1112” | 4aa6 | 1400 | 00. 320 [194
mnzzaK | uacmenze | 40 | 1750 | 1160 | 2063 | 200 | 65, 205 | 182
‘unzeaK | uGsmeD-sora | 40 | 1000 | 1889 _| 9808 | 1500} 110 200 | 245
‘wnzzski | ughMeDzoaa | 40 | 1000 | 1853 | __«7s0| 1400 | 168 203 | 202
'mnz2sk2 | uaHMeD2zoGs | 40 | 1000 | 1683 | 4320 | 1500 | 190 war | 208
MAS72K | UGCMED.S7 co | 1760__|~1957_| 4057 | 2200 | 190. 405 | 208
mas7aK| uGMmew-1a | 60 | 3000 | 950 | aes | — = = 252
mns7ak | UgsMeD-soKa | 43 | 1000 | 2420 | sast | 1000 | Tes a5 | 295
MAg75Ki_| UGHMED20AA | 60 | 1000 | a7ra_| 7524 | 1200 | 188 752 | 498
mns7sk2 | uaHMensoe | 60 | 1000 | 2680 7a66 | 1200 | 175 706 | 3655. INTERNAL BLOCK DIAGRAMS
Fig 1 Internal Block Diagram of Servopack5.2. Power Supply Unit
Wun Aiddng smog jo wesBeig 001g PUY 2614
*atidog 2dKx aun Aqddne somod jo sreuyuzey axe sqoquie poztsoyiuored 5
(xv waav0)
ee
a6. INPUT/OUTPUT SIGNALS
6.1 List of Input/Output Signals
6.2. Description of input/Output Signals
+ Input Signals (Input through open-collector)
Tabled List o Input/Output Signals TableS Input Signals
i I — |
‘tar Grat | HOR saVOS rrr
wan | Powe Soy | (Suppo om poner that emus 0 4 SER papal
roe | ee {Urea on her powor lapped i ho conor
i Satan creat using SERVO BREngeal
7 sr | 0/2200 ROP apd in rca a v0 OW saa
+ | Senet” | onthe pons pp se HIGH tro conta power and mam ercut
(on SERVOON
an [tute | Bofager | cence smarty Gowen power pe
pier ‘SUPPLY (F, 1)
: ; wan cinCUT _
na [Moor | & Seed o motor tamil A POWER SUPPLY (,N)
‘'SERVO-ON gy es ae
Capea aban Tea
er | Remogwerd | srvinarta Moor J venes wh
eit
[+4 _['SERVOON | "See Table 5 + Output Signals (Output through open-collector Isink=
F[oventonn | Tees Suto Sr
for [Senn | eT 6
8 oa Table Output Stnas
es Sanat ane Fanciers
coat Seo “SanalVane ]Fanons
Greut | oy rar eee (3) on TEGH signal turns LOW when motor spoed ox
Sra seal an Toode Veo tho td poe
—™CsS igh up when T@ feure Gasomnecion
177 | Reference oe eee ‘shortewcult, reverse connection) or motor over-
oo servo aan sped ine
gh on overcurant dtc
0] SRO ALAR | Se Te ese ren
143 80 ov SGV _Signal grounding ‘Applying power to main circuit without genera-
[ora = ed
eee
ee-.__-.
ee ee
Smut s Steed
SSE GEE | Bg ews te Savane on ae
6.3 List of Terminal and Connector
+ Terminal (Type LC-01-30)
e[y[u[elAlel |e
Fig 3 Torminal List
+ Connector (Type MR-20 RMA)
signal LOW.
7 5 7 7 qi ¢ 7 7 ED
SeWo-oH OVERLOAD | ROTHER] TON | TOC) |paBBEEBR FUSE OFF [Ren na
ag [Asc | Ron FAN sor et Ave crs NL OS |
Tor | Tem | Sov te [te [ee] 90 | eroune
Fig 4 Connector List7. CONNECTION DIAGRAM
7.1. Connection for YASNAC LX1/LX2
200/220/230 VAC peceNeRATIVE
4 RESISTOR UNIT
Power UNIT a REACTOR
Taeaeniioa |
POWER INPUT +
Note
1. Where suppiyng 250VAG, connect a control power sup-
Bly across terminals @23) (ZB) and © (@) of a power
tt
2 For a Servomotor (Minerta motor J series) with buit-n
thermostat, connect the thermostat leads tothe external
terminals @ and of Sorvopack See figure surrounded
by sold ine al nght. ia Servomotor without thermostat
wil be used, short-crcult across the terminals @ and ©
‘Connection of Minerta Motor
‘J Sones and Servopack
Fig 5 Connection for YASNAC LX1/LX2‘+ Wiring of Servopack and YASNAC LX1/LX2
YASNAC LXT/AX2
POWER INPUT UNIT
anon]
DRIVE UNIT
1 Connection for YASNAC LX1/LX2 (Cont'd)
+ Detau! of Wiring
‘Svone
“YASNACIXI/IX2——]
xmas
SANG owe.
SRDX
E
x-axis
2c
FUX
oc
oux*
1
oc
ez
zcaxis
ca
BCR MRE!
FEEDBACK UNIT
Auxt
oc
cone
2c
x-axis.
Teeth
Fig 6 Wiring of Servopack and YASNAC LX1/LX2
nz []|[ +
z-axis
febett
Fw ‘SGX
‘sNormaly closed contact
Fig 7 Detall of Wiring7.2 Connection for YASNAC MX 1/MX2
‘THREE: PHASE.
20072207230 Vac
REGENERATIVE
RESISTOR UNIT
POWER unr Serpe REACTOR
pcan T M
cn sr 4
ont
Note
1" Vinore suppinng 230VAC, connect a control power sup-
ly across terminals (23 (G23) and © (©) of @ power
ti
2 For a Servomotor (Minerta motor J serves) with buittan
thermostat, connect the thermostat leads to tho external
terminals @ and @ of Servopack See figure surrounded
by solid ine at nght it a Servomotor without thermostat
willbe used, short-circut across the terminals @ and
‘Connection of Minerta Motor
‘J Sones and Servopack
Fig 8 Connection for YASNAG MX1/MX27.2 Connection for YASNAC MX1/MX2 (Cont'd)
+ Wiring of Servopack and YASNAC MX1/MX2
YASNAC MX1/MX2
POWER INPUT UNIT
"TYPE cra
10
YASNAC MX 1/MX2
POWER INPUT UNIT
"TYPE SRaIv0?
DRIVE UNIT bRive UNIT
X-AXIS: “THC ARIS.
10 }——[]] sen
CP CR-MRCIK croR-MRCIK
Y-AXIS Fras
10N i
CP CR-MRCIK creme >|
FEEDBACK UNIT
Z-Axis ATH AXIS
ren
True-0
CPCR-MRCIK
TEARS
FEEDBACK UNIT.
XE AXIS presi
rue.
YoaxIs
TrUE-0
Tae (Nez HANDLE PG)
rue
Fig 9 Wing of Servopack and YASNAC MX1/MX2+ Detail of Wiring
YASNAC MX1/MX2
YASNAG MX17MX2
POWER INPUT UNIT Stina POWER INPUT UNIT | on
pit AXIS Twecre, ZAKS
E-w am fy LCN Boz er ae LON-12
rx tft row 6 sz eft Lens
pax) | news Pe paz | | acer
sox if i 10813 on soz ft rowaas
svonxe {1 | seNa Het svonzs' 1 | 104
toonxe |! CNS Hes ToONz* ! TONS
acres 1ewat Hm wc tt ena
sex tena ne | seoz) | | sews
oc fi | iene Hs ect || sen
rx} i [aces ws rz) | | acne
oc TP ene ect! | aenar
ouxe i i | sens aaa
era 10N.16 a)
uxt | {| sono cto race
1oN-18 18 ect 1eN-18
wm [ez 7
cPCR-MROK CPR MRC
Servopack "YASNAG MX1/WX2 Servopeck
Y-AXIS Trees | AxIS
1eN-12 Ew are one
106 Be are 10N6
LeN-7 Et cae 1cN-7
tae =a sco Plt [rane
roe svonee i | [acne
rows cone | 1 | sens
toe ect | fies
ew En es LCN
Fo ec 1eN-18 Ee a
ro roy rows et rove alae
oc Lent E17 — LoN-t7
ous 108-3 et owe!) [sews
oct 186 E16 ect! | se
Lye jt 1.CN-10 E-10 — 1CN-10
ect S| sew roe
F-0 EPY a
‘creR-4nk cron- MRC
‘Normally closed contact,
Fig 10, Detail of wiring
n7.2 Connection for YASNAC MX1/MX2 (Cont'd)
‘Table7 Relation between Servopack and DC Reactor
ee —Bervopack | DC Reactor Resistance ‘OC Reactor
YASNAC MX 1/MX2 Servopack ‘Type CPCR- a) Speaitication Numbers
FOMER pur tr ar WROSLIK 02 De 6400088
F-12 ATS 42 22 DES«o2088
a 02 DE 8402698
Fe ACIS 015 (DE 8403030,
Fr] one 070 De e00809
re | sce Tote. For Servomor characerics st rater fo the following
Fei SVONG® cn
+ Cup Motor A senes 074980107
Fs | Toowe TRvBup Motor sones “67 s060100
ru [ec
P-4 SRDS 8.2 Torque-Speed Characteristics
ian (ate In combination of Servomotor (Cup Motor A series,
Fae oc
F-0 Aue
Fe °c
‘crOR-MRCIK
Hi-Cup Motor G series) with Servopack (Type CPCR-MR.
3K), torque-speed characteristics are shown below.
Cup Motor A Serio
+ Gup-Motor Type: UGCMED-04 AA
+ Servopack Type: CPCR-MR 052 K
softeners 9d
ont)
Fig 10 Detail of Winng (Cont'd)
8. CHARACTERISTICS OF SERVOPACK
AND SERVOMOTOR COMBINATION
8.1. Characteristics Description
‘When Servopack 1s combined with DC Servomotor (Cup-
Motor or Hi-Cup Motor), a torque-speed characteristics
ccan be obtained by the following formula.
16. te
We AC pat voltage te Servonich
ep) Own erent to Serpe
EP evel lage of Serene
Fig 11 Connection of Servopack and Servomotor
Et=Ko-N+(Ra+Ak)-la+ Vr+6
‘ke: Motor voltage constant(V/rpm)
'N- Motor Speed (rpm)
‘Ra Armature resistance (0) at 20°C
[Rk DC reactor resistance (0)
Vr: Ripple vottage(V)
6. Transistor vokage drop(V)
12
= A
a SS!
fed
seer
emt
@
+ Cup Motor Type- UGCMED-08 AA
* Servopack Type: CPCR-MR 082 K+ Cup Motor Type UGCMED-15 AA
* Servopack Type CPCR-MR 152 K
es |
ES wf i
el i
se i
ar
con
©
* Cup Motor Type’ UGCMED-22 AA
+ Servopack Type: CPCR-MR 222 K
+ Cup Motor Type: UGCMED-37 AA
+ Servopack Type’ CPCR-MR 372 K
om
coral
©
Fig 12 Torque-Speod Characteristics of
‘Cup Motor A Series
Figure Description
‘An output torque of y-distance is expressed as a
percentage.
+100% Output Torque=Torque Constant Rated
Current.
= instantaneous Max Torque (1 sec)
+ Torque Constant= Trstantaneous Max Current {T Sec)
Dashed Bold Lino Servopack max output current
Vertical Line. Continuous output current
‘Tmax Instantaneous max torque, 1 sec (kgem)
N max. Instantaneous max speed, se° (rem)
Vso. Input vottage(V)
la Armature current(A)
Msp)max._Max output current at driven side
A" Continuous rating range
B Instantaneous rating range
138.2 Torque-Speed Characteristics (Cont'd)
Hi-Cup Motor G Series
+ Hi-Cup Motor Type: UGHMED-20 GG
+ Hi-Cup Motor Type: UGHMED-03 GG + Servopack Type. CPCR-MR 225 K 1
* Servopack Type: CPCR-MR 055 K
ene sol ToectBig een
(a)
‘+ Hi-Cup Motor Type: UGHMED-06 GG
+ Hi-Cup Motor Type: UGHMED-30 GG
+ Servopack Type: CPCR-MR 085 K 1 + Servopack Type: CPCR-MR 375 K 2
sof Toe-seue =) awe
Perr)
‘+ Hi-Cup Motor Type: UGHMED-12 GG
+ Servopack Type: CPCR-MR 155 K 1
Fig 13 Torque-Spoed Characteristics of
Hi-Cup Motor G Series
149. APPLICATION TECHNIC OF YASNAC
9.1 Servomotor Selection
Where selecting DC Servomotor, the functions shown
below should be considered The motor is selected in
accordance with customer's requirements.
+ Motor speed
+ Torque
+ Positioning time
+ Dimensions
For an example of motor selection, Table 8 is used In
this case, the motor speed and the torque are important
in selecting the motor.
8.1.1 Prerequate
‘o-solect the motor, ts prerequiste fs shown below
(1) Ball Screw Length and GD?/4 (Fig. 14)
‘The ball screw GDE/4 Is obiained by the folowing for.
me
avers M(B)
= of Byer 2) 4 xct0-th9-0m9)
= dy wo 07 10-349 :6m9}
serow dlametor [em]
42. Ball sorew length fom] (sorew section + 400mm)
Iron spectic gravity [787 g/em?]
'M_ Ball screw weight [kg]
10
co,
eems
imc
Te
Te
Bal Seew Lent)
Fig 14. Ball Screw Length and Ball Screw GD2/4
(2) Moving Member Weight and Ball Screw Shaft Inertia
GD2/4 (Fig. 16)
Ball screw shaft inertia GD2/4 for moving member weight
(work table, tool fixture, tool) depends on a ball screw
pitch. The formula is as follows.
aota=wx( 2) kg-em]
Ball screw pitch fom]
W: Moving member weight (ko)
‘Moving Member Woe
Fig 15 Moving Member Weight and Ball Screw
Shaft Inertia GO®/4
How to Obtain Rotor Inertia GD2/4 from Load
Inertia GD2/4
MovING MEMBER
J UNcLUDING TABLE,
Lik, Nomber fgg ath
s.2s4 deb Jeaxk
(8) Motor Torque-Thrust Load
Fig 16 shows the relationship of motor torque and thrust
Toad. The thrust load (F) is from the following formula.
Fe BEXTikg] F
7: Motor torque (kgm
: Ball sorow pitch a
i Tota reduclon ato. sake gene ecm
‘Note: Data is under no friction and 100% atfciency.
Fig 16 Ball Screw Torque and Thrust Load
159.1 Servomotor Selection (Cont'd)
(4) Load GD2/4— Accelerating Torque
Accelerating torque(T1) used to accelerate to N rpm at
accelerating time (ta) Is calculated by the following for-
mula. The same formula is used for decelerating torque
See Figs 17 and 18
Te
Fig 17 Speod-Time and Torque-Time
Accelerating torque T= gy S02 Mar tharoml
fa Acokraing ime se
N__ Speed [rpm].
bos oe ee agen
$dom ors
‘Actual accelerating torque
Tore Te
ee)
Toa Lod Inert 74g
Fig 18 Total Load Inertia GD#/4
‘and Accelerating Torque
16
9.1.2 Selection Example
In this secon, a Servomotor which mat selecton enter
shown in Tales bs slocee
(1) Motor Speed.
Rolor to Nos 6, 7,12 and 18 in APPENDIX
(a) At quick toa
12.000 tmmimin}=W:X410 (m/v)
(b) At cutting feed (Ns)
N= 2800300 frp
vox
Motor Speed _1500(rpmi}--- (A)
(2) Motor Torque at Cutting Operation
Refer to Nos 6, 7 and 10 in APPENDIX
(a) At feed of low speed
Friction torque T'=25 [kg-cm]- - ©
{b) Cutting thrust
+ Ball screw torque 160 {kg cm] (See Fig. 16.)
+ Tota reduction ratiok.
Rotor torque T=160xK
se0x-$
=128[kg-cm]-- - @
Actual rotor torque 1s obtained as follows
Refer to Paragraph 9.1 1(3)
= 2a
1000kg BaxT
$10 tmmvrev)
on
27.4 {kg-orn]
1000 10-1 fem/mm}
Therefore, actual motor torque fs as follows
@+@=25+128=153 orem)
(©) Maximum torque at cutting operation
165 [kg:cm]=1 08 X153 [kg-cm]
Motor Torque at Cutting Operation T63kgemI] (8)
From (A) and (8), Servomotor type UGHMED-206G,
an be selected as the first motor selection. See Tables 2
and 3. In this example, Cup motor and Hi-Cup motor
only are considered for the selection(8) Motor Accelerating/Decelerating Torque at Quick Feed
{a) How to obtain total load inertia GD2/4
1 Balser inertia GO*74
Refer to Fig. 14.
Ball screw inertia=30 [kg-cm2]------@
For calculation by the formula, see Paragraph 9.1.1(1).
«Ball crew shat Inerta GO#/4 to moving member
eat
For to Not in APPENDIX and Fig.
Ball screw shaft inertia=29.5 [kg-cm2]------@
For calculation by the formula, see Paragraph 9 1 1(2)
+ Rotor ine G04 from tad inera GD2/4
‘See Paragraph 9.1.1 (2)
Rotor inertia=(@+@)x Ke
=(30+295)x(4)F
= 381 [kg-cm2}
However, No.9 In APPENDD that
Rotor inertia=68.9 [kg-cm?2]------©
Tho rotor inerta In APPENDIX contains couping
and gear inertias Therefore, 68.9kg-m? should be
used to obtain the total load inertia GD2/4
+ Total load inertia GD2/4
Rotor inertia of Hi-Cup motor type UGHMED-20 GG
is 234kg-cm? See Table2 As a result of that,
Total Load inertia GD2/4=234+@)
| :34+68.9
=302 9 [kg-cm2}
{b) Accelerating /decelerating torque
Reter to Fig 18 Where accelerating/decelerating time at
Quick feed ta=0.2s0¢, total load inertia=302 9 kg-cm?
ana motor soeed=1000 rpm, accelerating torque Tt 1s
160kg:cm roweve , since actual motor speed at quick
feed 1s 1500rpm, actual accelerating/decelerating toraue
fs as follows,
‘Accelerating/ decelerating torque=160X1.5
=240 [kg-em]-~
For calculation by the formula, see Paragraph 9 1.1 (4)
(c) Friction torque at quick feed
746 fkg-emp----®
[Actual Reselerating/Decelerating
| Torque at Quick Feed=O+® |
; =240+45,
85 [ka-em]
©
D
(4) Final Motor Selection
. at Quick Feed 1500 [rpm]
fotor Speed | at Cutting Feed ‘300 {rpm}
{Motor Torque at Cutting Feed 163 kg-cm]
+ Motor Accelerating/Decelerating Torque
at Quick Feed "av? 285 kgm)
‘The following Servomotor is selected in accordance
with the valu
Hi-Cup Motor Type UGHMED-206G
9.1.3 Selected Motor Check
In combination of Hi-Cup motor type UGHMED with
‘Servopack type CPCR-MR 225 GD, torque-speed charac-
teristics of Fig. 19 can accept the three selecting onteria
described in Paragraph 9.1.2(4). Therefore, Hi-Cup
motor type UGHMED-20 GG is selected.
‘pe Bono mc
Tie PS)
nc are AT
Servo
Smee
‘Trae 750)
Taro igo)
wats)
Creve 28)
Mm toqured Torus ot
‘Aecel/Deel
Requred Togs a
‘Cong Operon
Rave (HD
Input Votage
‘Armature Current
Continuous Rating Range
Instantaneous Rating Range
lam Output Current at Drwve Side
Fig.19 Torque-Speed Characteristics in Combination of
Hi-Cup Motor Type UGHMED-20G6 with
Servopack Type CPCR-MR225GD
Furthermore, these values are within limits of the follow-
ing three items shown in Table 3 Characteristics in Com-
bination of Servopack and Servomotor.
+ Overspeed 1500 [rpm]=1500 (rpm)
(Motor speed at quick toed)
166.3 [kg-cm} > 153 [kg-om]
(Motor torque at cuting feed)
+ Continuous Effective
Torque at Rated
Operation
+ Instantaneous
Effective Torque
at Overspeed.
438 [kg-cm] > 285 kg-om]
(Motor accel/decel torque at quick
‘eed
79.2 Coasting Distance After YASNAC Emergency Stop
2.2.1 Calelation of Coasting Ditance ee
The emergency stop Is achioved by @ dynamic brake
The coasting distance after YASNAC emergency stop
functions during quick feed is Obtained as shown bolo TH coasting latance(Soe) by the dynamic. brake le
bose ls oblained as show Obtained by the folowing formula,
on SOP @Du. Load GO" [kg m*}
Dynamic braking renstancelO] — Sop=(VXtolx( Vax) [mm]
rca .
rrrt~”r—~—C—C;SCzSsKSNSCMSNSCNCCCW
? Baclerang conse)
Fig. 21 shows relationship of Soe and GDi2/4 for DC
Servomotor (Cup Motor A series, Hi-Cup Motor G series).
‘These relationships are obtained using formulas ® and
@®, under to=0.04sec.
Fig 20 Coasting Distance
VeVer pu (GD%t GD) (Rot Ra)
BreKekr el
(2) Type UGCMED-04AA (@) Type UGCMED-22AA
ay
pToR INERTIA (52)
OPH (ew) ‘cofvatue =!
(b) Type UGCMED-08 AA
es sm) (0) Type UGCMED-37 AA
a &
a ee
x Sees
vue =)
(©) Type UGCMED-15AA
a
<
“ Oe
KAGE
» Cor
» as
Soa Conshing distance after
1F gorow wenn gon) ‘emergency stop mm]
Ye Quek food speed [mm/rn}
Tie ato ato ata ston + Gb. toad Go" om)
eoyte =) Fig 21. Relationship of Sos and GDux/4 for
‘Cup Motor A Series
18(a) Type UGHMED-036a
ny) (8) Type UGHMED-2006
sof worn waar G0) sovon ween exe
cole = cou Ge =
Ej) ©) Type UGHMED-o6G6 sa) (0) Type UGHMED-30GG
= a
| oe
“| Oe
A
ao| ie
tovon wexTi 2)
Ce oro ITA 188)
cobtte
(©) Type UGHMED-12G6
Sea Coasting distance after
‘emergency stop mm)
Ve Quick Teed speed mm/min}
Gdy Load GD" kgm")
Fig 22 Relationship of Soe and GDi2/4 for
Hi-Cup Motor @ Series
cobain =
9.3 Minimum Dog Length for Returning to Home Position
For returning to home position, minimum dog length is
‘obtained by the following formula. Refer to Fig. 23.
Lo WGP + Yoxtotmm)
Vo: Quick feed speed [mm/sec]
Viz Approach speed 1 [mm/sec}
De Quick feed accel/decel constant [mm/sec]
Lo: Dog length [mm]
10: Delay time of emergency stop reference to On POSTION sna
deceleration sec}
Ve: Approach speed 2{mm/sec] Fig 23 Time Chart for Returning to Home Postion
19APPENDIX SELECTION LIST OF DC SERVOMOTOR FOR YASNAC
Selection List of DC Servomotor for YASNAC
MACHINE NAME ‘APPvL [GK [SEL
MAGHINE TYPE
(CNG NAME YASNAG.
Ne. Teme. x ¥ Zz
1_| Moving Direction Horizontal, Verical, Rotating, Diagonal) | —Horlzontal
2_| Max Stroke (between Machine Ends) m){ 1000
'3_| Table Support (Sip, Raling) ‘Sip
'4_ [Moving Membor Woight (with Workpiece) 7)
‘5 | Counterbalance (ea) =
° Diameter Yom) @
Ball Serow Toad (eum) 10
Length (um) | 7606
7_| Total Reduction Ratio a5
| Friction Cootfcient
(| Rotor inertia GO#/4 Waremj | 680
‘Ai Low Feed ‘egrom) 25
‘At Quick Food: tegrem) 45
oa Guiting Thrust (a) | 000
‘At Max Cutting teem) 165
a low Max Cuting Duly —_(%ED-min)| —45%/2min
Postioning Frequency (sec/time) 6
7 [Quick Food (eam/min)| 72,000,
13 | Max Cutting Speed (am/min)| 2400
14 | Position Detection Mathod
‘Type TFUE-
(eee Feed per Revolution —(mm/rev)
“Type
0, rec ‘Quick Food Speed Com) | TiBG0T > | Obtained in Paragraph OT Ztap
17_| Servopack Type GPOR-
18 | Postion Loop Gain Kp (coal
Beseleraiion Stop (eam)
19 | Decolerating Distance | Emergency Stop (nm)
Zoro Point Dog Length (mm)
‘Accelerating/Deceleratng Time at Guick Feed: 02 [sed]
20 | Remarks,
‘seeeeeennannintnmanssaintmmnnetnmsmnttntnenmennnttattntinmtitnnnnenenterantinnen
(ee Tomer Indy oe atte
YW YASKAWA Electric Mfg. Co., Ltd.
‘om Boe ee NaS a) a3
Pre )SoerrS8 S10 Fagan ven Taman
‘nef a ats i) SPOT aR ENC NOMK Fa (12 co6e76
Hai Rp ra, caters ste U 8 6
‘one Uh rvtitTon Cy ese ASKAWAUS TET. Fan (14) TE e34
‘Se aah esran far on esse Nem More US
ech) Sti eC) Sas NGOS FL ca carr
2 energetic meaning mt mace
Printed in Japan December 1985 24.2 17