NANOFABRICATION
NANOIMPRINT LITHOGRAPHY
            Dr. Nikos Kehagias
     Head of Nanofabrication division
 Catalan Institute of Nanotechnology (ICN)
                 B
                 Barcelona
                       l
                    Spain
    Email: nikolaos.kehagias.icn@uab.es
           nikolaos kehagias icn@uab es
                        Outline
• Nanofabrication techniques:
   ¾ Resolution and limits
   ¾ Alternative nanolithography techniques
   ¾Nanoimprint lithography: issues, challenges, potentials
• Nanoimprint lithography applications:
   ¾ Examples of passive photonic devices
   ¾ Functional materials
   ¾ 2D PhC devices for enhanced light extraction
• Nanometrology
   ¾ Non destructive techniques
Nanotechnology: enabling multi-billion
          dollar industry
Approach towards Nanotechnology
   Key Requirements of Lithography for
          Manufacturing ICs*
• Critical Dimension Control
– Size of features must be controlled within wafer and wafer‐to‐wafer
  Size of features must be controlled within wafer and wafer to wafer
• Overlay
– For high yield, alignment must be precisely controlled
  For high yield, alignment must be precisely controlled
• Defect Control
– Other than designed pattern, no additional patterns must be imaged
• Low Cost
– Tool, resist, mask; fast step‐and‐repeat 30‐40% of total semiconductor 
manufacturing cost is due to lithography (Masks, resists, metrology)
– At the end of the roadmap, μP will require 39 mask levels
*ITRS 2005/6, Lithography
NANOFABRICATION
   METHODS
Fabrication methods for small structures
Decrease in minimum feature size with
          time (Moore’s
               (Moore s law)
       Nanopatterning techniques
• Nanolithography      techniques
   • EUV/UV lithography
               lith    h
   • Electron beam lithography
   • Focused ion beam lithography
   • X-ray
     X ray lithography
• Alternative   lithography techniques
   •Template assisted self assembly techniques
   • Micro-contact printing
   • Nanostensil technique (nano-mask
                            (nano mask lithography)
   • Ink-jet lithography
   • Nanoimprint lithography
               Nanopatterning techniques
Patterningg time for 10% of a 4” wafer as function of obtainable line width for different
lithography techniques. The arrows and the question mark in the NIL bar indicate
that faster imprint times may be obtainable by optimizing the imprint process.
Template assisted self assembly techniques
““Self-assembly”
    lf      bl ” refers
                   f    to the
                            h deposition
                               d         off an organized
                                                        d layer
                                                          l     onto a
substrate with a high-degree of control and/or ordering.
         Colloidal self assembly
Set-up
                     Material: Polymethyl metacrylate with
                     a mean diameter of 368nm
                     (<5% polydispersity)
                     Substrate: Glass
                     Concentration: 4% wt in de-ionized
                     water
                     Acoustic vibration: white noise (40-
                     4kHz)
                     Drawing speed: stepping motor at
                     1.3mm/hr
Colloidal self assembly
Cross section SEM images: 3D ordering
Stochastic resonance-like behaviour
                             L – noise level
                             L40 - best
                          Standing wave formation
                          at high noise level leads to
                          locally suppression (or
                          optimization) of noise
                          vibration
                          Local but uncontrollable
                          i
                          increase i llattice
                                   in   tti ordering.
                                              d i
Block copolymer self assembly
            Requirements for graphoepitaxy
                                                             Patterned sidewall material
         Mesa width ~ 50 nm                                  - Would like to test both PS
                                       Groove width
         (or as narrow as possible)                          and PMMA wetting walls
                                       40 – 200 nm
                                                             - Fab-friendly materials ideal
Wall height ~ 30 nm                                           Base must have surface OH
                                                              groups to allow us attach
                                                              Neutral
                                                                eu a po
                                                                      polymer
                                                                         y e bbrush
                                                                                us
                                                               Substrate
           Patterned Silicon dioxide                  Patterned HSQ
 Designed Nanostructures via Templating
Silicon-based trenches and   Angled lamellae nanostructures
aligned nanostructures
        nanostructures.
                      Nanostensil Lithography
The Nanostensil
Th  N    t   il ttechnique
                    h i    iis a patterning
                                   tt i method
                                            th d b
                                                 based
                                                     d on
shadow mask evaporation
A thin membrane is used as a solid mask to transfer the patterns
from the membrane to the substrate during the evaporation
Full-wafer stencils              Side view stencil
                Nanostensil Lithography
Main advantages:
• No resist, development or baking
• Non contact
• Re usable
• Micro and nanostructuring in a single step
• High flexibility of materials (metals, oxides, SAMs)
Challenges:
• Clogging occurs due to the accumulation of
deposited material on top and inside the membrane
apertures.
• Blurring
• Contamination of stensil
• Stiffness of stensil
              Dip-pen Lithography
Ink transfer using a coated AFM tip by capillary effect.
Dip-pen lithography of SAMs
              Introduction to Nanoimprint
      Proposed by S.Y. Chou (Minnesota Uni., USA) in 1995
               (Appl. Phys. Lett., 67, 3114 (1995))
Idea: a nanometer-size pattern is transfered not by electron, ion or
other beams, but by a stamp via mechanical contact between the
stamp and a substrate with a polymer.
                            Advantages:
                     • Cost
                       C    efficient
                             ffi i
                     • High throughput
                     • High
                       Hi h resolution
                                l i
                     • Simple
                     • Flexible
                       Fl ibl
                Current Fabrication methods
Electron Beam Lithography         Extreme UV Lithography             Scanning Probe 
                                                                     Lithography
Ad t
Advantages                        Ad t
                                  Advantages                         Ad t
                                                                     Advantages
• Very accurate control of        • Extreme UV is 10‐14nm            • Very good control of 
pattern with direct writingg
p                                 wavelength source
                                          g                          pattern and resolution
                                                                     p
• No mask needed                  • Resolution approaching                Approximately 
• Highly automated                30nm                                    10nm possible
• 5nm resolution possible         • High Throughput                  • Highly automated
Disadvantages                     Disadvantages                      Disadvantages
•Very low throughput              • Mask fabrication is difficult    • Very slow process
     Less than 10 wafers per      • Reflective optics can be         • Instrument can be 
     hour                         expensive                          costly
• Expensive                             CaF instead of SiO2 optics   • Time of process 
     Hardware cost 6‐10 Million
     Hardware cost 6‐10 Million   • Cost of EUV startup ~50‐60
                                  • Cost of EUV startup   50‐60      eliminates
                                  million                            industrial feasibility
  Alternative method:Nanoimprint Lithography
• Nanoimprint lithography (NIL) is simple in comparison to alternatives
• High throughput capabilities
• Low cost for a next-generation technology (No need for small λ laser sources
and optics)
• High cost in master mold, but all other molds can be made from this master
      Lithography     Resolution       Cost  (M $)    Throughput          Feasible
                        (nm) 
        248 nm             90              8               √                 √
        193 nm             45              20              √                 √
        157 nm             32              50              √                 √
         EUV
         EUV               16             100              √                 √
        Ebeam              10             5‐10             x                 √
        Imprint            14              1               √                 √
    R&D machines can be          1 master Æ10.000 sub mastersÆ100 million disks
     purchased for 100k          $250.000Æ $1.000 eachÆ10c per disk for mask cost
  Nanoimprint enables multiple billion dollar
                 industries
                    MEMS/NEMS
     Displays                      Wireless Com.
                                            Com
                      NIL
Data storage                              Etc.
       Biotech                      Semicond. IC’s
                  Pharmaceutical
      Nanoimprint Lithography (NIL)
                  Stamp (Si
                        (Si, Quartz
                             Quartz, etc)        Advantages
                  Resist (polymer, monomer)      • Resolution (sub 10 nm)
                  Substrate                      • Fast (sec/cycle)
                                                 • Low
                                                   L   costt ($0.2M
                                                             ($0 2M vs $25M)
                                                 • Simple
                  Imprint                        • Flexible (UV, heat)
                  (Pressure +heat or UV light)
                                                 Applications
                  Release                        • Semiconductors
                  (
                  (cool
                      lddown )                   • Optics
                                                   O ti
                                                 • Bio
                                                 • Organic electronics
                  RIE of residual layer          • Sensors
High resolution               Complex patterns             Functional devices
                     Multimode NIL
Thermal                   Reversal NIL                          Reverse UV NIL 
                                                      Transparent stamp with metal protrusions
                                                                UV light, pressure, heat
                     Inking          Whole layer transfer
                                                                      Development
   Single NIL tool capable of multiple modes pattering/fabrication
           Highly versatile, yet simple, nanofabrication tool
Step & Stamp/flash NIL
             NPS 300 Nano imPrinting Stepper
             • Thermal + UV nanoimprinting
             • Up to 300 mm wafers
             • Sub‐20 nm features
               S b 20    f t
             • 250 nm overlay accuracy
             • Automatic alignment
                  ~ 10 nm holes in polymer
                T. Haatainen et al., VTT 2001
     Step and Stamp nanoimprint lithography
                                                                         In liquid alignment:
                                                                         Pre- and post-exposure.
                                                                        Defects caused due to material
                                                                        failure in small features with large
S.V. Sreenivasan et. al., Semiconductor Fabtech, 25th ed., 111, 2005.   feature height.
                                Roll-to-Roll NIL
                                                          Bendable Ni stamp 
                                                     AFM images of stamp and imprint
• Printing speed from 0.3 to 20 m/min
• Line depth of 151 – 112 nm 
• Min feature at 5m/min is 50 nm
  Min feature at 5m/min is 50 nm
                                 Courtesy of T. Mäkelä et al., VTT, Finland
                                Roll to roll NIL
Se Hyun Ahn et al., ACS Nano, 3, 8, 2304, 2009     Adv. Mater. 2008, 20, 2044–2049
Polymer stamps
        State of the art of NIL techniques
             Smallest/     Min    Largest   Overlay       t align,
              largest     pitch    wafer    Accuracy      t print,
            features in   (nm)    printed     (nm)      t release,
            same print             (mm)                   t cycle
  NIL         2 nm,                                      Minutes,
                                                        10s, Min,
               N/A         14      200        500
                                                        10-15 min
                                                       Full cycle 2.5
              8 nm,                                    min
                                                         i with,
                                                             ith 20 s
 SSIL      50 nm/5 µm      50      200        250
                                                        without full
                                                            auto
                                                        collimation.
              10 nm        50      300        50          20
 SFIL       25 nm/ µm                                  wafers/hr
UV-NIL     9nm/100µm       12      200        20        20s/step
                                                       3 wafers/hr
Soft
S ft UV
     UV-                                               4-5
                                                       4 5 min
                                                            i ca.
           25nm/ 20µm     150      200      1-50µm     12wafer/hr
  NIL
            NIL issues and complications
NIL
NIL metrologies critically needed:
      t l i       iti ll      d d                                       Blazed gratings
• Critical Dimension measurements of sub‐50 nm features
• Quantify fidelity of imprint pattern transfer
• Feedback on pattern quality needed to engineer and optimize NIL
      db k                  li      d d         i  d    i i
NIL materials science :
• Resist material selection is done empirically                         Tearing of pillars
• Guidelines for imprinting functional materials?
  Guidelines for imprinting functional materials?
• Imprinted nanostructures may have different properties
• Possible orientation and anisotropic properties
• Low temp and low pressure
• Minimal shrinkage
• Mechanical strength and tear resistance
• Mold fill  Æ Viscosity
• Tg 
• Tg for thermoplatic resist (imprint usually done 70
      for thermoplatic resist (imprint usually done 70‐80°C
                                                       80 C above T
                                                            above Tg)
                NIL issues and complications
Template
• Usually fabricated from Si, quartz, or nickel
• Critical dimension control
• Critical dimension control
• Defect free fabrication & Inspection
• Adhesion and use of antisticking coating on template
• Cleaning & re‐use
• designing for imprint uniformity –> Uniform residual layer
                                                              Courtesy of Dr C Gourgon (CNRS‐LTM)
                                                              Courtesy of Dr C. Gourgon (CNRS LTM) 
Overlay accuracy
                                                                    Moiré concentric circles 
• NIL has no distortion due to lens (since no lens is used)
  NIL has no distortion due to lens (since no lens is used)
• Smaller error budget for template pattern placement                                   Aligned 
• Mask/template distortion due to pressure and/or 
temperature & defects
                                                                                      Misaligned 
                   Principles of NIL
                               T‐P vs. time diagram of NIL process 
        Stamp
   Polymer layer         (a)
    Substrate
       Heat
Apply pressure           (b)
 Cool down
                                          Demolding 
  Separate               (c)
Residual layer           (d)
   Etch residual
                         (e)
       layer
Viscosity dependance on MW, P and T
        MW dependance
        MW dependance
      ⎧Μ ,           M < Mc
η 0 ∝ ⎨ 3.4± 0.2                               Temperature 
      ⎩Μ         ,   M > Mc                    dependance
                                            C1 (T − Tg )      η (T )
                                 log aT = −              = log 0
    Pressure dependance                     C 2 + T − Tg      η 0 (Tg )
 Δ ln η             − 2 Δ ln η      William Landel Ferry equation 
          ≈ −4 × 10
ΔP (bar )                ΔT
Squeeze flow theory during a typical NIL process
                                        z
                       Stamp            z                 wi
                                       S                       S/2
                                                                                          h pr
                        Polymer
                          l            x                       vy=0             vy((z))
                                                      y                                     h(t)
                       Substrate
                                               N                         N                         N
 Continuity equation:                       ho ∑ (s i + wi ) = h f ∑ (si + wi ) + h pr ∑ (wi )
                                               i =1                      i =1                      i =1
 Navier Stokes equation:                    ∇p = η 0 ∇ 2 u
   Residual Polymer height                                           Estimated imprinting time 
         1     1   2 F pr                                                         ηο s 2 ⎜⎛ 1
                                                                                         1                ⎞
                                                                                                          ⎟
             = 2 +          t                                           tf =           − 2
        2
       h (t ) h0   n0 Ls  3                                                      ⎜   2
                                                                             2 P ⎝ h f ho                 ⎟
                                                                                                          ⎠
                                 H. Schift and L.J. Heyderman, Nanorheology“. 
          Chapter 4 in, Alternative Lithography“, ed. C. Sotomayor‐Torres. Kluwer Academic (2003).
                 Polymers used in NIL
    Material          Glass            Molecular        Viscosity   Solvent
                    transition          weight
                                           g
                   Temperature
     PMMA              105 oC              75k            10 ± 2    Anisole
                                                         (mPas)
   mr-L 6000            40 oC              7k             2,4 ±1    PGMEA/
  mr-NIL 6000                                            (mPas)     Anisole
   mr-II 7000
   mr                   60 oC             120k            4±2       PGMEA
                                                         (mPas)
   mr-I 8000           115 oC             120k             5±2      PGMEA
                                                         ((mPas))
  Polystyrene          100 oC              50k               -      Toluene
     (PS)
Typical refractive index values for polymer are between 1.3 ‐ 1.6
                            Functional polymers
Polymers with embedded NC’s (CdSe, CdSe, etc.), 
NP (Au, TiO
   ( ,      2 etc.), Dyes (Rhodamine etc.)
            2,    ), y (                 )
Polymers with embedded NP (Au, TiO2, etc.)
Surface modification of  polymers (nanoparticle deposition, 
change of the polymer surface tension, etc.)
 h       f th   l         f   t i       t )
                                                                            [ -6.63V -> -3.96V ] -9.02V -> -1.99V    [V]
                                                                                                                    -2.00
                                                               5.00
                                                                                                                    -3.00
Di‐block co‐polymers (PS‐b‐PMMA)                                                                                    -4.00
                                                                                                                    -5.00
                                                               [ µV ]
                                                                                                                    -6.00
                                                                                                                    -7.00
                                                                                                                    -8.00
                                                                                                                    -9.00
                                                               0
                                                                        0                  [ µV ]           5.00
Conductive polymers (polypyrrole, polyaniline etc.)
NIL process challenge: imprint quality
               control
           Fundamental process challenges
           Critical Dimensions
                                           Critical dimensions (CD)
                                           Critical dimensions (CD) 
               Width              Height
       Slope
                       Residual layer
1 μm
Residual layer thickness and uniformity 
over large areas (> 300mm)                                   Residual layer
                                                  100 nm
                 Nanoimprint lithography process
      Stamp                      Stamp with different size protrusions
 Polymer layer
  Substrate
    Heat
                                                           Imprint
C l down
Cool d
                                           Stamp bending
  Separate
 Etch residual
     layer                         Different filling factors Æ lead to
                                    inhomogeneous residual layer
                   Photonic circuit
Combination of variable scale features on the same stamp
                                                        Mathematical model
The resist movement is determined by the 2D pressure distribution P(x,y,t) calculated from the following
problem:
    {                           3
                                                 }
  ∇ [D( x, y ,t ) + h( x, y )] ∇P ( x, y ,t ) = 12η
                                                             ∂D( x, y ,t )
                                                                ∂t
                                                                           , ( x, y ) ∈ Ω f , t ∈ (0,T ],       P ( x, y ) = 0, ( x, y ) ∈ Ω / Ω f ,
                                                                                                                                                       (1)
                        t
  D( x, y ,t ) = d0 − ∫ Vst (ζ ) dζ + δ st ( x, y ,t ) + δ sb ( x, y ,t ),
                        0
where d0 is the initial resist thickness; h is the stamp relief height; δst and δsb are the normal displacement
of the stamp and substrate surface, respectively; Vst is the stamp velocity; T is the duration of the
imprinting process; η is the dynamic viscosity of the resist; Ω is the considered domain of the stamp; Ωf is
the part of Ω, in which all cavities are filled with the resist.
  q
Equations   ((1)) is derived from 3D Navier-Stokes equations
                                                    q        with the understanding
                                                                                  g that the resist motion is
largely directed along the substrate surface.
For the calculation of δst and δsb, the stamp and the substrate are represented as semi-infinite regions (an
elastic medium bounded by a plane). In this case, the elastic normal displacement is described by the
following expression:
                                               1− σ 2          P ( x ′, y ′,t ) dx ′dy ′
                               δ ( x, y ,t ) =
                                                πE      ∫∫
                                                        Ω     ( x − x ′) + ( y − y ′)
                                                                         2                 2
                                                                                               , ( x, y ) ∈ Ω, t ∈ (0,T ],
where
 h    σ is
        i Poisson's
           P i   ' ratio
                     ti and
                          d E is
                              i modulus
                                  d l off elasticity.
                                           l ti it
                       Experimental parameters
Polymer used: PMMA and mr-I8030E
Initial polymer thickness: 340 nm and 318 nm
Imprinting
   p       g temperatures:
                p          180 oC - 200 oC
Dynamic Viscosity : 2×104 Pa⋅s @ 180°C and 3×103 Pa⋅s @ 200°C.
Chirped grating structures stamp was used
Stamp relief: ~300 nm
                                                     Stamp design
Simulation parameters:
• stamp velocity:1 nm/s,
• duration of the imprinting process: 268 sec
• grid size:128×128 pixel
Instruments used:
• Dektak profilometer (Veeco instruments)
• Reflectometer
 Resist PMMA 75K.
 Imprinting parameters: the stamp cavities depth - 300 nm, the initial resist thickness - 340 nm,
 the imprint temperature - 190°C, the resist viscosity - 104 Pa⋅s.
                           Experiment                                         Simulation
        500
        400
                                            experiment                        Comparison
                                                                                   p     of measured and
                                            simulation
H, nm
        300                                                                   simulated values of resist
                                                                              thickness
        200
                                         Accuracy
        100
               1.5% 1.3% 2
                         2.6%
                           6% 2
                              2.1%
                                1%
                                   0.5% 0.5% 1.5%
                                                  1 9% 2
                                                  1.9% 2.4%
                                                         4%           2 4%
                                                                      2.4%
                                                            0%   0%
          0
           0         2         4        6          8       10          12
                                     zone number
Resist mr-I 8000 (Micro Resist Technology GmbH).
Imprinting parameters: the stamp cavities depth - 300 nm, the initial resist thickness - 318 nm,
the imprint temperature - 180°C, the resist viscosity - 2×104 Pa⋅s.
                                                                                    600
                                                                                    500
                                                                                    400
                                                                            H, nm
                                                                                    300
                                                                                    200
                                                                                    100                     simulation
                                                                                                            experiment
                                                                                      0
                                                                                    -4200   -4000   -3800   -3600    -3400   -3200   -3000
                                                                                                            x, μm
                                                                      (a)                                                                    (b)
             600                                                                    600
             500                                                                    500
             400                                                                    400
     H, nm
                                                                            H, nm
             300                                                                    300
             200                                                                    200
             100                     simulation                                     100                     simulation
                                     experiment                                                             experiment
               0                                                                      0
             -4200   -4000   -3800   -3600
                                     x, μm
                                              -3400   -3200   -3000
                                                                      (c)           -4200   -4000   -3800   -3600
                                                                                                            x, μm
                                                                                                                     -3400   -3200   -3000
                                                                                                                                             (d)
((a)) The
      Th optical
            ti l microscopy
                   i        i
                            images   off the
                                         th test
                                             t t structure
                                                  t t      i
                                                           imprinted
                                                               i t d in
                                                                     i the    i t att 180°C. Horizontal
                                                                        th resist            H i    t l color
                                                                                                          l lines
                                                                                                              li
indicate zones of profilometer measurements of resist thickness. White isolines specify the calculated
distribution of the stamp/substrate deformation (numbers signify the elastic displacement in nanometers). (b)-
(d) Comparison of measured and simulated profiles of resist thickness for the test structure.
Resist mr-I 8000 (Micro Resist Technology GmbH).
Imprinting parameters: the stamp cavities depth - 300 nm, the initial resist thickness - 318 nm,
the imprint temperature - 200°C, the resist viscosity - 3×103 Pa⋅s.
                                                                                    600
                                                                                    500
                                                                                    400
                                                                            H, nm
                                                                                    300
                                                                                    200
                                                                                    100                     simulation
                                                                                                            experiment
                                                                                      0
                                                                                    -4400   -4200   -4000   -3800    -3600   -3400   -3200
                                                                                                            x, μm
                                                                      (a)                                                                    (b)
             600                                                                    600
             500                                                                    500
             400                                                                    400
     H, nm
                                                                            H, nm
             300                                                                    300
             200                                                                    200
             100                     simulation                                     100                     simulation
                                     experiment                                                             experiment
               0                                                                      0
             -4400   -4200   -4000   -3800
                                     x, μm
                                              -3600   -3400   -3200
                                                                      (c)           -4400   -4200   -4000   -3800
                                                                                                            x, μm
                                                                                                                     -3600   -3400   -3200
                                                                                                                                             (d)
((a)) The
      Th optical
            ti l microscopy
                   i        i
                            images   off the
                                         th test
                                             t t structure
                                                  t t      i
                                                           imprinted
                                                               i t d in
                                                                     i the    i t att 200°C. Horizontal
                                                                        th resist            H i    t l color
                                                                                                          l lines
                                                                                                              li
indicate zones of profilometer measurements of resist thickness. White isolines specify the calculated
distribution of the stamp/substrate deformation (numbers signify the elastic displacement in nanometers). (b)-
(d) Comparison of measured and simulated profiles of resist thickness for the test structure.
   Viscosity estimation for resist mr-I 8000 at 180°C.
                              the resist dynamic viscosity = 3 ×103 Pa⋅s                                                                           the resist dynamic viscosity = 10 4 Pa⋅s
        500                                                                                                               500
        400                                                                                                               400
H, nm
                                                                                                                  H, nm
        300                                                                                                               300
        200                                                                                                               200
              -4800   -4600   -4400   -4200   -4000      -3800     -3600     -3400    -3200   -3000   -2800                     -4800    -4600   -4400    -4200   -4000     -3800   -3600   -3400   -3200   -3000   -2800
                                                      x, μm                                                                                                               x, μm
                                                                                     the resist dynamic viscosity = 2 ×104 Pa⋅s
                                                         500
                                                         400
                                                 H, nm
                                                         300
                                                         200
                                                                 -4800     -4600     -4400    -4200   -4000     -3800       -3600       -3400    -3200    -3000   -2800
                                                                                                              x, μm
                                                         The best fit of simulation results to the experimental data.
                              the resist dynamic viscosity = 3 ×104 Pa⋅s                                                                           the resist dynamic viscosity = 10 5 Pa⋅s
        500                                                                                                               500
        400                                                                                                               400
H, nm
                                                                                                                  H, nm
        300                                                                                                               300
        200                                                                                                               200
              -4800   -4600   -4400   -4200   -4000      -3800     -3600     -3400    -3200   -3000   -2800                     -4800    -4600    -4400   -4200   -4000     -3800   -3600   -3400   -3200   -3000   -2800
                                                      x, μm                                                                                                               x, μm
NIL Potentials
Intel microprocessor-Brief history
Intel microprocessor-Fabrication steps
     35 nm
     35 nm   Three dimensional Si stamp for NIL applications 
            3D nanofabrication techniques
C
Conventional methods:
      ti   l   th d
     Electron beam           Focused ion beam             Two photon polymerization
Non‐conventional methods:
 Combination of NIL and X‐     Combination of lithographic           Reverse NIL
 ray Lithography               steps and wet etching
              3D nanofabrication techniques
        Direct patterning of three dimensional structures by NIL
Transistor Metal T‐gate with    3D‐Hot embossing of     Triangular Profile Imprint
90 nm wide foot                 undercut structures
      M. Li et. al                N. Bogdanski et. al            Z. Yu et. al
3D nanofabrication techniques
      Towards three dimensional photonic crystals
                          Woodpile‐like structure
            Determistic defect
Reverse UV NIL technique
      Selective Transfer mode
        3D woodpile like structures
          1 Layer        2 layers
 1 μm
                        10 μm
             3 layers
4 μm