Final Exam
Math 1103, Fall 2012
1. Find the slope and y-intercept of the line that is parallel to 2𝑥 + 3𝑦 = 5 and passes
   through the point (1, −1)
                 !                    !
   a. 𝑆𝑙𝑜𝑝𝑒 = ! ; 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =    !
                     !                    !
   b. 𝑆𝑙𝑜𝑝𝑒 = − ! ; 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =    !
                     !                        !
   c. 𝑆𝑙𝑜𝑝𝑒 = − ! ; 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =    − !
                     !                    !
   d. 𝑆𝑙𝑜𝑝𝑒 = − ! ; 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =    !
   e. None of the above
                                                  !
2. Find the domain of the function 𝑓 𝑥 = ! ! !!!!
   a.   (−∞, ∞)
   b.   𝑥≠1
   c.   𝑥 ≠ −2
   d.   𝑥 ≠ 2, −1
   e.   𝑥 ≠ −2,1
3. If the point −2,1 is on the graph of 𝑓(𝑥) and 𝑓(𝑥) is known to be odd, what other point
   must be on the graph of 𝑓(𝑥)
   a.   −2, −1
   b.   2, −1
   c.   −2,1
   d.   1, −1
   e.   0, −1
                                                                                           1
4. Find the value of 𝑓 2 − 𝑓(0), if
                                           2 − 𝑥,                                        𝑥 < 1
                                𝑓 𝑥 =
                                           𝑥 ! − 𝑥 + 1,                    𝑥 ≥ 1
   a.   3
   b.   −1  
   c.   2
   d.   0
   e.   1
                   !             !
5. If 𝑓 𝑥 = ! + 1 and 𝑔 𝑥 = ! − 1, find 𝑓𝑔 (𝑥).
        !
   a.   !!
             −1
   b. 1
   c. 1 − 𝑥  
                                                           
         !
   d.   !!!
                
                                                           
   e. 0
6. The length of a rectangle is 5 units longer than twice its width. Assuming that the width
   of the rectangle is w and the area is 𝐴, find the area  as a function of the width.
   a. 𝐴 𝑤 = 𝑤 ! + 5𝑤
   b. 𝐴 𝑤 = 2𝑤 ! + 5
   c. 𝐴 𝑤 = 2𝑤 ! − 5𝑤
   d. 𝐴 𝑤 = 2𝑤 ! + 5𝑤
   e. None of the above
                                                                                                 2
7. 1000 dollars grows to 1 million dollars after 60 years in a bank. If interest is compounded
   continuously, what is the rate of interest per year?
   a.   1.83%
   b.   11.51%
   c.   28.13%
   d.   3.84%
   e.   0.12%
8. Find the sum of all the zeros of the polynomial 𝑓 𝑥 = 𝑥 ! + 2𝑥 ! − 5𝑥 − 6
   a. −5
   b. −2  
   c. 0
   d. 2
   e. 6
9. The graph of 𝑦 = (𝑥 − 4)! + 5 can be obtained by the transformation of 𝑔 𝑥 = 𝑥 ! .
   Which of the following transformations must be used?
   I.     Move 5 units down.
   II.    Move 5 units up.
   III.   Move 4 units down.
   IV.    Move 4 units left
   V.     Move 4 units right.
   a.   V, then II
   b.   IV, then II
   c.   III, then I
   d.   II, then III
   e.   III, then II
                                                                                             3
10. Which of the following functions represents the inverse of the function 𝑓 𝑥 = 3𝑒 !   .
    a. 𝑓 𝑥 = 3𝑒 !!
                   !
   b. 𝑓 𝑥 = !! !
                       !
   c. 𝑓 𝑥 = ln  (!)
               !
   d. 𝑓 𝑥 = ! ln  (𝑥)
                           !
   e. 𝑓 𝑥 = log  (!)
11. The vertex of the parabola 𝑓 𝑥 = 2𝑥 ! − 4𝑥 + 7 is
    a. −1  , 13
    b. 1  , 7
    c. 2  , 5
    d. −1  , 5
    e. 1  , 5
                                                   
12. Find the horizontal asymptote (HA) and vertical asymptote (VA) of
                                                𝑥! − 4
                                       𝑓 𝑥 =
                                               𝑥(𝑥 + 2)
   a. HA: 𝑦 = 1                 VA: 𝑥 = 0, 𝑥 = −2
   b. HA: 𝑦 = 0                 VA: 𝑥 = 0, 𝑥 = −2
   c. HA: 𝑦 = 1                 VA: 𝑥 = 0
   d. HA: 𝑦 = 0                 VA: 𝑥 = 0
   e. HA: None                 VA: 𝑥 = 0, 𝑥 = −2
                                                                                             4
13. Find the oblique asymptote of   
                                               𝑥! + 1
                                         𝑓 𝑥 =
                                               𝑥−1
    a.   𝑦=1
    b.   𝑦 =𝑥−1
    c.   𝑦 = 𝑥! + 1
    d.   𝑦 =𝑥+1
    e.   𝑦=0
                   !                !
14. If 𝑓 𝑥 = ! and 𝑔 𝑥 = 1 − !   , find (𝑔 ∘ 𝑓)(𝑥)
    a. 1
    b. 1 − 𝑥
                    !
    c. −1 + ! !
         !     !
    d.   !
             − !!
    e. 0
15. What are all the possible rational roots of 𝑓 𝑥 = 6𝑥 ! − 𝑥 ! − 4𝑥 ! − 𝑥 − 2?
                                !   !
    a. ±1, ±2, ±3, ±6, ± ! , ± !
                        !   !   !   !
    b. ±1, ±2, ± ! , ± ! , ± ! , ± !
             ! !
    c. − ! , !
               !
    d. −1, !
    e. None of the above
                                                                                   5
16. Which of the following intervals represents the solution set to the inequality
   !!!
   !!!
          >3
   a.     −4, ∞
                !"
   b.     −∞, − !
               !"
   c. − ! , −4
   d. (−4,1)
   e. −∞, 3)
                                                    
17. Which of the following statements are true?
    I.    (ln 𝑥)! = 2 ln 𝑥
    II.   log ! 3𝑥 ! = 4 log ! (3𝑥)
                                !"# !
   III.        log 𝑥 − 𝑦 = !"# !
                     !
   IV.         log ! ! = 2 − log ! 4
   V.          ln 𝑥 ! = 2 ln 𝑥
               a.   I and II only
               b.   I, II, and III only
               c.   I and III only
               d.   IV and V only
               e.   I and IV only
18. Solve 𝑙𝑜𝑔(𝑥 − 1) + 𝑙𝑜𝑔(𝑥 + 1) = 0
   a.     𝑥   = 2
   b.     𝑥   = −1, 𝑥 = 1
   c.     𝑥   =1
   d.     𝑥   = − 2, 𝑥 = 2
   e.     𝑥   =2
                                                                                     6
19. Solve the equation 2!!! = 16!
    a. 𝑥 = 0
    b. 𝑥 = 1
    c. 𝑥 = 2
    d. 𝑥 = 3
            !
    e. 𝑥 = !
                                !
20. Convert the equation 3!! = !   to logarithmic form
                !
   a. log ! ( !) = −2
                        !
   b. log ! ( −2) = !
                    !
   c. log !! ( !) = 3
   d. log ! (3) = −2
           !
   e. log ! (−2) = 3
           !
                                                         !
21. Find the range of the function 𝑓 𝑥 = 5 sin[2(𝑥 + ! )] − 4
   a.  [−1,1]
          ! !
   b. [− ! , ! ]
   c. [−1,9]
   d. [−9,1]
   e. None of the above.
                                                                7
                                !
22. Suppose that sin 𝜃 = ! and 𝜃 is in Quadrant 2. Evaluate cos 𝜃
     !!
a.    !"
      !
b.    !"
           !"
c. −       !
      !"
d.    !
      !"
e.    !
23. Find the quadrant in which the terminal side of 𝜃 = 4  𝑟𝑎𝑑𝑖𝑎𝑛𝑠    is located
     a.    One
     b.    Two
     c.    Three
     d.    Four
     e.    None of the above.
                ! !!! !!(!)
24. Find      !
                              if 𝑓 𝑥 = 𝑥 ! + 2𝑥 − 1
    a. ℎ + 6
    b. 2
    c. 2 + ℎ
    d. ℎ! + 2ℎ − 1
    e. 1
                                                                                   8
25. Find the exact value of 𝑐𝑜𝑡 !! (−1).
             !
   a. − !
        !
   b.   !
        !!
   c.   !
             !!
   d. −      !
   e. None of the above.
                                                  !         !            !
26. Find the inverse of the function 𝑓 𝑥 = sin(!), where − ! 𝜋 ≤ 𝑥 ≤ ! 𝜋,
                      !
   a. 𝑓 !! 𝑥 = !"#(!!)
   b. 𝑓 !! 𝑥 = csc(5𝑥)
                  !
   c. 𝑓 !! 𝑥 = ! sin!! (𝑥)
   d. 𝑓 !! 𝑥 = 5sin!! (𝑥)
                          !
   e. 𝑓 !! 𝑥 = sin!! (!!)
                                              !
27. By using sum or difference formulas, cos( ! − 𝑥) can be written as
   a. − cos 𝑥
   b. sin 𝑥
   c. cos 𝑥
   d. − sin 𝑥
   e. None of the above
                                                                             9
28. Which of the following is an expression for cos(2𝛼)
      a. 1 + 2cos  ! (𝛼)
      b. −1 + 2cos ! 𝛼
      c. 1 − cos  ! (𝛼)
      d. −1 − cos  ! (𝛼)
      e. 2cos(𝛼)
   29. A 41 meter guy wire is attached to the top of a 34.6 meter antenna and to a point on the
       ground. What angle, in degrees, does the guy wire make with the ground?
       a. 1°
       b. 57.55°
       c. 37.65°
       d. 45°
       e. None of the above.
30. Find an angle 𝜃  between 0∘ and 360∘ that is coterminal with −790∘
       a. 𝜃 = 90°
       b. 𝜃 = 70°
       c. 𝜃 = −70°
       d. 𝜃 = 290°
       e. None of the above
                                                                                                  10
31. The general solution of the equation cos  (2𝜃) = 1 is
        a. 𝑘𝜋, where 𝑘 is an integer
        b. 0
        c. 2𝑘𝜋, where 𝑘 is an integer
           !
        d. ! + 2𝑘𝜋 , where 𝑘 is an integer
             !!
        e.    !
                  + 2𝑘𝜋, where 𝑘 is an integer
   32. Simplify
                                          sec 𝑥 − sec 𝑥   . sin! 𝑥    
        a.   1
        b.   sec 𝑥  
        c.   sin! 𝑥
        d.   cos ! 𝑥
        e.   cos 𝑥
   33. Find the length of the side 𝑐 in the triangle 𝐴𝐵𝐶 where 𝑎 = 3, 𝑏 = 3 and ∠𝐴𝐶𝐵 = 120°
                                  (Note the figure is not drawn to scale)
   a.    27
   b. 27
   c.    18 − 9 3
   d.    18 + 9 3
   e.    10
                                                                                              11
34. For what values of 𝑥 in the interval [−2𝜋, 2𝜋] does the graph of 𝑦 = cot(2𝑥) have a
    vertical asymptote? (Angles are measured in radians)
     a. −2, −1, 0, 1, 2
                        !!            !     !        !!
     b. −2𝜋, −          !
                             , −𝜋, − ! , 0, ! , 𝜋,   !
                                                          , 2𝜋
     c. −2𝜋, −𝜋, 0, 𝜋, 2𝜋
            !! !!
     d. −   !
                ,   !
     e. −2𝜋, 0, 2𝜋
35. In the figure below, ∠𝐶 = 125°  , 𝐴𝐵 = 8.6  𝑖𝑛𝑐ℎ𝑒𝑠,  and 𝐴𝐶 = 5.7  𝑖𝑛𝑐ℎ𝑒𝑠. Find ∠𝐵 in
    degrees.
                                          (Note the figure is not drawn to scale)
a.   ∠𝐵   = 29.8°
b.   ∠𝐵   = 32.9°
c.   ∠𝐵   = 35.7°
d.   ∠𝐵   = 38.2°
e.   ∠𝐵   = 30.6°
                                                                                            12
SOLUTION KEY
  1. c
  2. e
  3. b
  4. e
  5. a
  6. d
  7. b
  8. b
  9. a
  10. c
  11. e
  12. c
  13. d
  14. b
  15. b
  16. c
  17. d
  18. a
  19. e
  20. a
  21. d
  22. c
  23. c
  24. a
  25. c
  26. d
  27. b
  28. b
  29. b
  30. d
  31. a
  32. e
  33. a
  34. b
  35. b
               13