CIVE 2004
Permeability
         Flow of water through soils
• The ease with which a fluid flows through a porous
  medium is an engineering property known as
  permeability
• In soil mechanics, the fluid is water and the porous
  medium is the soil mass
• In soils, the voids are interconnected and form
  continuous paths for the movement of water
          Flow of water through soils
It is important to assess the permeability of a soil mass:
• Evaluate the amount of water that will enter a pit
  during construction, or the amount of stored water that
  may be lost by percolation through or beneath a dam
• Evaluate the uplift or seepage forces beneath
  hydraulic structures for stability analyses
• Provide control of seepage velocities so that fine-
  grained soils are not eroded from the soil mass
          Flow of water through soils
There are two issues:
• Quantity of flow
• Porewater pressures
                    Types of flow
•Laminar flow: each particle of water flows along a
definite path which never intersects the path of another
particle
•Turbulent flow: paths taken by water particles are
irregular and twisting
The flow velocity in soils is generally low so that the flow
is laminar
               Bernoulli equation
The Bernoulli equation is commonly used in pipe flow
but is also applicable to flow of water through a soil
mass:
                Bernoulli equation
Bernoulli equation:
• Total head causing flow = Elevation head + Pressure
  head + Velocity head
• Since velocity of flow in soils is small, the velocity
  head is usually ignored
• Flow takes place between 2 points, if and only if there
  is a difference in total heads between the 2 points
                     Darcy’s law
Darcy found that the rate of flow, q, was:
•   Proportional to the head difference h
•   Proportional to the cross sectional area A
•   Inversely proportional to the length L of the soil
    sample
                        h
                    qk    A
                        L
                     Darcy’s law
                     q  kiA
k = Coefficient of permeability (m/s)
i = Hydraulic gradient
A = Cross-sectional area
 Discharge (or flow) and seepage velocity
The discharge velocity, v = ki.
v is a superficial velocity which is determined relative
to the soil total cross-section area, A.
The flow velocity through the voids is higher and is
termed seepage velocity, vs.
Rate of flow = q = Av = Av vs
where Av is the cross-section area of voids.
               Av
Porosity,   n
               A
Discharge (or flow) and seepage velocity
              v ki
          vs  
              n n
                Determination of k
Laboratory methods:
• Coarse-grained soils – constant head test
• Fine-grained soils – falling (or variable) head test
           Determination of k (m/s)
Constant head test
            Determination of k (m/s)
Falling (or variable) head test
            Determination of k (m/s)
Falling (or variable) head test
                      al       ho 
                k             ln 
                   A(t1  to)  h1 
                      al             ho 
                k             log 10 
                   A(t1  to)        h1