TRIGONOMETRIC IDENTITIES
GCSE 10-12
ADDITIONAL MATHEMATICS
QUICK REVISION
SAMUEL KASHINA (JR)
Trigonometric Identities
5.1 Fundamental Identities
Reciprocal Identities
          1                1               1
cot            sec           csc  
        tan             cos            sin 
Quotient Identities
              sin                cos 
      tan               cot  
              cos                sin 
Pythagorean Identities
sin 2   cos 2   1      tan 2   1  sec 2 
1  cot 2   csc 2 
Negative-Angle Identities
cos    cos     sec    sec 
sin      sin  csc     csc 
tan      tan  cot      cot 
            5
If tan    and θ is in quadrant II:
            3
Find sec θ
Find sin θ
Find cot(–θ)
Write cos x in terms of tan x
       1  cot 2 
Write              in terms of sin θ and cos θ,
       1  csc 
               2
then simplify the expression so that no
quotients appear.
5.2 Verifying Trigonometric Identities
Hints for Verifying Identities
 1.      Learn the fundamental identities.
    Whenever you see either side of a
    fundamental identity, the other side
    should come to mind. Also, be aware of
    equivalent forms of the fundamental
    identities.
 2.      Try to rewrite the more complicated
    side of the equation so that it is identical
    to the simpler side.
 3.      It is sometimes helpful to express
    all trigonometric functions in the
    equation in terms of sine and cosine
    and then simplify the result.
 4.      Usually, any factoring or indicated
    algebraic operations should be
    performed. (e.g. squares of sum and
    difference, sum and difference of
    squares and cubes.)
  5.     As you select substitutions, keep in
     mind the side you are not changing,
     because it represents your goal.
  6.     If an expression contains 1 sin x ,
     multiplying both numerator and
     denominator by 1 sin x would give
    1 sin 2 x , which could be replaced with
     cos 2 x .
Verifying identities by changing only one side.
Verify cot   1  csc  cos   sin  
                 x1  cot x  
             2            2             1
Verify tan
                                   1  sin 2 x
       tan t  cot t
Verify                sec 2 t  csc 2 t
        sin t cos t
         cos x     1  sin x
Verify           
       1  sin x     cos x
Verifying identities by working with both sides.
  sec   tan  1  2 sin   sin 2 
                
  sec   tan         cos 2 
Tuners in radios select a radio station by
adjusting the frequency. A tuner may contain
an inductor L and a capacitor, C. The energy
stored in the inductor at time t is given by
Lt   k sin 2 2Ft  and the energy in the
capacitor is given by C t   k cos 2 2Ft ,
where F is the frequency of the radio station
and k is a constant. The total energy E in the
circuit is given by E t   Lt   C t . Verify
the energy is constant.
5.3 Sum and Difference Identities for Cosine
Difference Identity for Cosine
Cosine of a Sum or Difference
cos A  B   cos A cos B  sin A sin B
cos A  B   cos A cos B  sin A sin B
Find cos15
         5
Find cos
         12
Find cos 87 cos 93  sin 87 sin 93
cos90    
Cofunction Identities
sin   cos90    cos   sin 90   
sec   csc90       csc   sec90   
tan   cot 90      cot   tan90   
Find a value of θ such that cot   tan 25
Find a value of θ such that sin   cos 30
                                3
Find a value of x such that csc     sec x
                                 4
Write cos180    as a function of θ alone
                                    3
Find coss  t , given that sin s  ,
                                    5
         12
cos t   , and both s and t are in quadrant II
         13
Alternating current implies that current
alternates direction in the wires. The
voltage in a typical 115V outlet cam be
expressed by V t   163 sin t , ω is angular
speed (radians/sec) of the generator at the
plant and t is time in seconds.
Determine ω at 60 cycles per second.
Determine a value of  so that the graph of
V t   163 cost    is the same as the
graph of V t   163 sin t .
           3  
Verify sec  x    csc x
           2   
5.4 Sum and Difference Identities for Sine
and Tangent
Sum and Difference Identities for Sine
sin  A  B   cos90   A  B  
sin A  B   sin A   B  
Sine of a Sum or Difference
sin A  B   sin A cos B  cos A sin B
sin  A  B   sin A cos B  cos A sin B
                  sin  A  B 
tan  A  B                   
                  cos A  B 
Tangent of a Sum or Difference
                 tan A  tan B
tan  A  B  
                1  tan A tan B
                 tan A  tan B
tan  A  B  
                1  tan A tan B
Find sin 75
         7
Find tan
         12
Find sin 40 cos160  cos 40 sin 160
Write sin 30    as a function of θ
Write tan 45    as a function of θ
Write sin 180    as a function of θ
Suppose A and B are angles in standard
                       4 
position, with sin A    ,  A   , and
                       5 2
           5           3
cos B   ,   B  .
          13            2
Find sin  A  B 
Find tan  A  B 
the quadrant of A  B
                         
Verify sin      cos     cos 
           6          3    
5.5 Double-Angle Identities
cos 2 A  cos A  A 
sin 2 A  sin  A  A 
tan 2 A  tan  A  A 
  Double-Angle Identities
cos 2 A  cos 2 A  sin 2 A cos 2 A  1  2 sin 2 A
cos 2 A  2 cos 2 A  1        sin 2 A  2 sin A cos A
                             2 tan A
                 tan 2 A 
                           1  tan 2 A
                  3
 Given cos        and sin   0 , find sin 2
                  5
              3
 Given cos   and sin   0 , find cos 2
              5
             3
Given cos   and sin   0 , find tan 2
             5
Find the values of the six trig fcns of θ if
         4
cos 2  , 90    180
         5
Verify cot x sin 2 x  1  cos 2 x
Simplify cos 2 7 x  sin 2 7 x
Simplify sin 15 cos15
Write sin 3x in terms of sin x
                                 V2
The formula for wattage is W  , V is
                                  R
voltage, R is resistance in ohms.
From last section, V  163 sin 120t
Find max and min wattage.
Product-to-Sum Identities
cos A  B   cos A cos B  sin A sin B
cos A  B   cos A cos B  sin A sin B
sin A  B   sin A cos B  cos A sin B
sin  A  B   sin A cos B  cos A sin B
Product-to-Sum Identities
              1
cos A cos B    cos A  B   cos A  B 
              2
             1
sin A sin B  cos A  B   cos A  B 
             2
             1
sin A cos B  sin  A  B   sin  A  B 
             2
             1
cos A sin B  sin  A  B   sin  A  B 
             2
Write 4 cos 75 sin 25 as a sum or difference
of two functions.
Sum-to-Product Identities
                        A B  A B
sin A  sin B  2 sin         cos   
                       2   2 
                        A B  A B
sin A  sin B  2 cos         sin   
                       2   2 
                         A B  A B
cos A  cos B  2 cos          cos    
                         2   2 
                         A B  A B
cos A  cos B  2 sin          sin  
                        2   2 
Write sin 2  sin 4 as a product of two
functions
5.6 Half-Angle Identities
cos 2 x  1  2 sin 2 x
Half-Angle Identities
   A    1  cos A          A    1  cos A
cos                   sin  
   2         2             2         2
               A    1  cos A
            tan  
               2    1  cos A
   A   sin A               A 1  cos A
tan                    tan 
   2 1  cos A             2   sin A
Find the value of cos 15°
Find the value of tan 22.5°
    A     sin A
tan 
    2 1  cos A
              2 3                    s
Given cos s  ,     s  2 , find sin ,
              3 2                     2
   s          s
cos , and tan
   2          2
           1  cos12 x
Simplify 
                2
         1 cos 5
Simplify
          sin 5
                       2
        sin x  cos x   1  sin x
Verify                
            2       2