0% found this document useful (0 votes)
35 views3 pages

Beam 13 & 29

The document outlines the calculations for designing beams, including total load, moment at support, and required steel ratios for reinforcement. It provides detailed formulas and values for dead loads, live loads, and material properties, leading to the determination of required steel areas and spacing for reinforcement bars. Additionally, it checks for shear and ensures that the design meets structural criteria.

Uploaded by

Arnel Cds
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
35 views3 pages

Beam 13 & 29

The document outlines the calculations for designing beams, including total load, moment at support, and required steel ratios for reinforcement. It provides detailed formulas and values for dead loads, live loads, and material properties, leading to the determination of required steel areas and spacing for reinforcement bars. Additionally, it checks for shear and ensures that the design meets structural criteria.

Uploaded by

Arnel Cds
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 3

BEAM 13 & 29:

E. Compute the total load to be carried by the


Design Criteria:
beam.
Live Load:
W u =11.4584+ 2.491+51.83
Residential – 4.8 kPa
W u =65.7794 kN /m
f’c = 20.7 Mpa
F. Moment at support
fy = 276 Mpa
γc = 23.56 kN/m3
β=0.85 M u=−W u ¿ ¿
CC =40 mm M u=−65.7794 ¿¿
Transferred load=51.83 kN/m M u=−65.7794 kN ∙ m

Slab thickness: 100 mm Compute for steel ratio:


Diameter of main reinforcement: 16 mm 0.85 f ' cβ 600
ρbal =
b=250 mm f y (600+ f y )
d=1.5b=1.5 ( 250 )=375 0.85(20.7)(0.85) 600
h=375+8+ 40=423 ρbal =
276(600+276)
ρbal =0.03711
A. Weight of slab. (Assuming the beam is
carrying the same Dead load and Live load) ρmax =0.75 ρbal
ρmax =0.75( 0.03711)
DL=( 0.10 ) (23.56)
DL=2.356 kPa ρmax =0.02784

¿=4.8 kPa 1.4


ρmin =
fy
B. Weight of beam. 1.4
ρmin =
W b =γ c bh 276
W b =23.56 ( 0.25 ) (0.423) ρmin =0.005072
W b =2.491 kN /m
ρmax > ρmin *use ρmax
C. Weight of wall
W w =γ c bh G. Computing for the strength ratio ( w)
W w =23.56 ( 3 ) (0.2)
ρmax f y
W w =14.136 kN /m w=
f 'c
D. Compute the factored load. 0.02784(276)
w=
U =1.4 DL+1.7≪¿ 20.7
U =1.4 ( 2.356 ) +1.7( 4.8) w=0.3712
U =11.4584 kN /m2
H. Compute for the value of M umax
M umax=∅ f ' c wb d 2 (1−0.59 w)
M umax=0.9(20.7)(0.3712)( 250)¿ M. Compute for steel ratio ( ρ)
M umax=189.876 kN ∙ m
M u=∅ Rnb d 2
M u < M umax (singly reinforced )
75.176 ×106 =0.9 Rn( 250)(375)2
Rn=2.376 Mpa
I. Compute for steel ratio ( ρ)
M u=∅ Rnb d 2
65.7794 × 106=0.9 Rn(250)(375)2 0.85 f ' c 2 Rn
Rn=2.079 Mpa ρ=
fy ( √1− 1−
0.85 f ' c )
0.85 (20.7) 2(2.376)
ρ=
0.85 f ' c
fy ( √1− 1−
2 Rn
0.85 f ' c ) ρ=
276 ( √
1− 1−
0.85(20.7) )
ρ=0.00928
0.85 (20.7) 2(2.079)
ρ=
276 ( √
1− 1−
0.85(20.7) )
ρ=0.00804 N. Computing for required steel area ( A s)

J. Computing for required steel area ( A s)


A s=ρbd
A s=0.00928 ( 250 ) ( 375 )
A s=ρbd
A s=0.00804 ( 250 ) ( 375 ) A s=870.454 mm 2
A s=753.707 mm2 O. Computing for required number of
reinforcing steel bars
K. Computing for required number of
reinforcing steel bars As
N=
A¯¿ ¿
As
N= 870.454
A¯¿ ¿ N=
π (162)
753.707
N= 2 4
π (16 )
N=4.329 pcs .*say 5 pcs.
4
N=3.749 pcs .*say 4 pcs. Use 5-16 mm∅ RSB for tension bars

Use 4-16 mm∅ RSB for tension bars P. Moment at end support
M u=−U ¿ ¿
L. Moment at midspan
M u=−65.7794 ¿¿
M u=U ¿ ¿
M u=−105.247 kN ∙ m
M u=65.7794 ¿ ¿
M u=75.176 kN ∙ m
M u < M umax (singly reinforced )
M u < M umax (singly reinforced )
Q. Compute for steel ratio ( ρ)
M u=∅ Rnb d 2 U. For allowable shearing stress.
105.247 ×106 =0.9 Rn( 250)(375)2
Rn=3.326 Mpa V a =0.09 √ f ' c
V a =0.09 √20.7
0.85 f ' c 2 Rn V a =0.409 Mpa <υ *not ok need for
ρ=
fy ( √1− 1−
0.85 f ' c ) stirrups

0.85 (20.7) 2(3.326)


ρ=
276 ( √
1− 1−
0.85(20.7) ) v' =υ−V a
v' =1.4−0.409
ρ=0.0135 v' =0.991 Mpa

R. Computing for required steel area ( A s)

A s=ρbd
V. Spacing of stirrups *use 10 mm∅ RSB for
A s=0.0135 ( 250 ) ( 375 ) stirrups
A s=1263.263 mm2
π D2
S. Computing for required number of Ab =
4
reinforcing steel bars
π 102
Ab =
4
As
N= Ab =78.54 mm2
A¯¿ ¿
1263.263
N= 2
A v =2 A b
π (16 )
A v =2(78.54)
4
N=6.283 pcs .*say 7 pcs. A v =157.08 mm2

Use 7-16 mm∅ RSB for tension bars Av f y


S=
v' b
T. Check for shear. (157.08)(276)
S=
0.991(250)
V S=174.991mm∗say say 170 mm
υ=
bd
W u La d 375
V= −Wd Smax = = =187.5 mm∗say 180 mm
2 2 2
65.7794 (4.0)
V= −65.7794 (0.375)
2 *adopt 170 mm O.C. spacing of bars
V =106.891 kN
106,891
υ=
(250)(375)
υ=1.4 Mpa

You might also like