0% found this document useful (1 vote)
3K views3 pages

Steel Corbel Design Based On AISC-ASD 9th, Appendix F Design Criteria

1. The document summarizes the design of a steel corbel based on AISC-ASD 9th edition specifications. 2. Input data for the corbel dimensions, material properties, and loads are provided. Allowable stresses are then calculated for flexure, shear, and axial compression. 3. The capacities of different sections of the corbel are checked against the calculated allowable stresses to verify the design is adequate for the given loads.

Uploaded by

Prayas Subedi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (1 vote)
3K views3 pages

Steel Corbel Design Based On AISC-ASD 9th, Appendix F Design Criteria

1. The document summarizes the design of a steel corbel based on AISC-ASD 9th edition specifications. 2. Input data for the corbel dimensions, material properties, and loads are provided. Allowable stresses are then calculated for flexure, shear, and axial compression. 3. The capacities of different sections of the corbel are checked against the calculated allowable stresses to verify the design is adequate for the given loads.

Uploaded by

Prayas Subedi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 3

PROJECT : PAGE :

CLIENT : DESIGN BY :
JOB NO. : DATE : REVIEW BY :
Steel Corbel Design Based on AISC-ASD 9th, Appendix F

DESIGN CRITERIA
1. IN ORDER TO QUALIFY UNDER THIS DESIGN, THE TOP & BOT
FLANGES SHALL INPUT ZERO (APP. F7.1.b, page 5-102),
ALTHOUGH TOP FLANGE ALWAYS EXISTS.
2. FOR RECTANGLE GUSSET PLATE, INPUT
d0 EQUAL TO dL .
3. THE END FORCES, P, F & M, SHOULD INCLUDE
IMPACT FACTOR, IF THEY ARE FROM DYNAMIC
LOADS. (A4.2, page 5-29)

INPUT DATA & DESIGN SUMMARY


CORBEL DIMENSIONS bf = 1.25 in ( 32 mm )
tf = 1.25 in ( 32 mm )
tw = 1.25 in ( 32 mm ) THE CORBEL DESIGN IS ADEQUATE.
dL = 22 in ( 559 mm )
d0 = 12 in ( 305 mm ) LOADS (ASD) F= 16.0 kips ( 71.2 kN )
L= 3 ft ( 0.9 m ) P= 80.0 kips ( 355.8 kN )
STEEL YIELD STRESS Fy = 50 ksi ( 345 N / mm2 ) M= 30.0 ft-kips ( 133.4 kN-m )

ANALYSIS
DETERMINE ALLOWABLE FLEXURAL STRESS (APP. F7.4, pg 5-103)

  
 2 1.0  Fy
 F y 0.60 F y , for F b  F y / 3
3
F b   6 B F s  F w 
2 2

 B F 2s F 2w , for F b F y / 3

where Af = tf bf g = MIN[(dL - d0) / d0 , 0.268 L/d0, 6.0]
ATo = tf bf + d0 tw / 6 ITo = (tf bf3 + d0 tw3 / 6) / 12

I To 12000
r To 
ATo
F s 
h sL d o / A f

 1.0  0.0230 Ld 0 170000


hs F w 
 h wL / r To 
Af 2

L 1.75
hw  1.0  0.00385 B 
r To 1.0  0.25 

Length g ATo ITo rTo Hs Hw Fsg Fwg B Fbg


Corbel 3.029 0.80 4.06 1 0.36 1.31 1.03 33.20 16.07069 1.43 28.06

DETERMINE ALLOWABLE SHEAR STRESS (F4, pg 5-49)

where h = dL - 2 tf
0.4 F , for h / t 380 F
 y w y
Fv  C F
  45000 k v
 v y 0.4 F y , for h / t w380 F y  4.0
5.34
, for a / h1.0  , for C v 0.8
 F y h / t w 
2
 2.89   a / h 2
kv   Cv  
5.34  4.0  190 k v , for
, for a / h 1.0 h/t C v 0.8
  a / h 2 w Fy
0.5  
a h h / tw 380 / Fy Kv Cv Fbg
Corbel 3.0 19.50 16 54 6.51 4.40 20.00

DETERMINE ALLOWABLE COMPRESSIVE STRESS (APP. F7.3, pg 5-102)

where Kg = (effective length factor by an analysis)


 2  S = Kg l / rox
 1.0  S  F y
 2C c2 
 , for S C c
 5 3S 3
F a   3  8  8S 3 2 2E
 Cc Cc Cc 
 2 E= F
29000
y ksi
12 E , for S 
 Cc
 23S 2 Kg Cc Ix rox Fag
l A S
Corbel 3.0 2 107 236.25 18.13 3.61 19.94 28.31

CHECK EACH SECTION CAPACITIES


d0 dL tf bf tw Af
Corbel 12 22 1.25 1.25 1.25 1.5625
(cont'd)

Section Fixed 1/3 L 2/3 L End


d (in) 22 19 15 12
I (in4) 1487.29 949.75 559.21 292.50
Aw (in2) 27.50 23.33 19.17 15.00
N (kips) 16.0 16.0 16.0 16.0
V (kips) 80.0 80.0 80.0 80.0
M (ft-k) 270 190 110 30
fa (ksi) 0.52 0.60 0.72 0.88
Fa (ksi) 28.31 28.31 28.31 28.31
fv (ksi) 2.91 3.43 4.17 5.33
Fv (ksi) 20.00 20.00 20.00 20.00
fb (ksi) 24.0 22.4 18.1 7.4
Fb (ksi) 28.06 28.06 28.06 28.06

fa < Fa [Satisfactory] fv < Fv [Satisfactory] fb < Fb [Satisfactory]

CHECK COMBINED FLEXURE AND AXIAL FORCE (APP. F7.4, pg 5-104)

 f a0 f f a0
  bl , for  0.15
 F a F b F a
1.3
  f a0 C m ' f bl 

   
 f a , f b   a  1  f a 0 
F 
F b
 
 L arg er of   f
 F 'e   , for a0
 0.15
   F a
  f a0 f 
   bl 
 f
 f 0.6 F y F F b
F  Feg' Cm' ( fa , fb )
a0 bl ag bg
Column 0.52 23.96 28.31 28.06 375.47 1.00 0.87 [Satisfactory]

Technical Reference:
1. AISC: "Manual of Steel construction 9th", American Institute of Steel Construction, 1990.
2. AISC: "Design Guide 25: Frame Design Using Web-Tapered Members, 2010.

You might also like