0% found this document useful (0 votes)
357 views55 pages

Design Data : Abutment

The document provides design data for an abutment including the deck level, high flood level, low water level, scour level, founding level, soil bearing capacity, properties of backfill soil, and seismic coefficients. It then calculates the loads on the abutment including the dead load, live load reactions and braking forces for different traffic load cases. The maximum and minimum reactions and braking forces are summarized. The frictional resistance and earth pressures on the abutment are also calculated.

Uploaded by

tchangmai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
357 views55 pages

Design Data : Abutment

The document provides design data for an abutment including the deck level, high flood level, low water level, scour level, founding level, soil bearing capacity, properties of backfill soil, and seismic coefficients. It then calculates the loads on the abutment including the dead load, live load reactions and braking forces for different traffic load cases. The maximum and minimum reactions and braking forces are summarized. The frictional resistance and earth pressures on the abutment are also calculated.

Uploaded by

tchangmai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
You are on page 1/ 55

Abutment

ABUTMENT

Design data ;

1. Deck level (top of w.c) = 477.740 m

2. H.F.L = 475.580 m

3. L.W.L = 474.700 m

4. Scour level = 474.154 m

5. Founding level = 472.554 m

6. S.B.C at founding level = 30.0 T/m2


o
o
7. Properties of backfill soil f= 30 d = 20.1

d dry
= 1.90 T/m3 d wet
= 1.00 T/m3

9. Seismic coefficients :-
Seismic forces are calculated as per cl. 219 of IRC:6-2017. The location falls in the zone V
of the seismic map. The importance factor has been considered as 1.2

Z= 0.36 ( From Table 16 of IRC:6-2017 corresponding to zone v)

I= 1.2 ( From Table 19 of IRC:6-2017 )

Sa/g = 2.5 (From footnote of IRC:6-2017 )


R= 3.0 ( Table 20 of IRC:6-2017 )

Horizontal Seismic coefficient as per relation given at page 50 of IRC:6-2017


A h = Z / 2 * I / R * Sa /g

= 0.36 / 2 * 1.2 / 3.0 * 2.5

= 0.180
Vertical Seismic coefficient = A h * 2 / 3 = 0.12
(cl. 219.3 of IRC:6-2017)
Abutment

RL 477.740
200

200
200
RL 476.834
500

600 HFL = 475.58 m

Scour level
824 474.55 m

RL 473.15

600 600
400 RL 472.55
X RL

2400 1000 2000


Abutment

150 150

200

1000 12000

350
150 150

Load from Superstructure


A) Dead Load
From design of superstructure
Reaction on each side = 150.0 T ( Refer design of superstructure )

B) Live Load Reaction on Abutment


Refer Table 6 & 6A bridge has to be designed for
I) One lane of class 70 R + lane of Class 70 R or
ii) Three lanes of class 'A" loading whichever, produces worst stress.
Abutment

a) Due to class 70 R Wheeled

I) For Max Reaction on Abutment

Maximum Reaction occurs at end "A"


17 12
17 12
1370 3050 1370 2130 1520

400 10000 400


VB
VA = [ 17.0 10.40 9.03 5.98 4.61 12.00 2.48
x( + + + )+ x( +
= 0.96 10.0 = 55.16 T
)]/
VB = 92.0 - 55.16 = 36.84 T

Braking Force = 0.20 x 92.0 == 9.0


T

b) Due to class 70 R Tracked


I) For Max Reaction on Abutment
Minimum Reaction occurs at A

4570

-
400 10000 400
VA VB

VA = 1 / 10.0 x 70.0 7.72 = 54.01 T


x
VB = 1 x 70.0 - 54.01 16.00
= T
Braking Force = 0.20 x 70.0 = = 14.00 T

c) Due to class "A" ( Three lanes )


I) For Max Reaction on Abutment
Maximum Reaction occurs at end "A"

11.4 11.4 6.8 6.8

1200 4300 3000

400 10000 400


Abutment

VA 17 17 VB
8 12 17 17
Vertical Reaction for three lanes of loading
VA = 3x [ 11.4 10.4 9.2 6.8 4.90 1.90 10.0
x( + )+ x( + )]/
= 80.9
T
VB = 109.2 - 80.9 28.30 36.4
= T
Braking Force = 0.20 x 36.4 = 7.3
T
Summary of L.L Rection and Braking force

Loading class Maximum Reaction Minimum Reaction Braking Force (Tonne) Case
(Tonne) (Tonne)

Class 70R (wheeled) 55.16 36.8 9.0 I


- single lane
Class 70R (Tracked) 54.01 16.0 14.00 II
- single lane
Class A (three lanes) 80.90 36.4 7.3 III
Class 70R (wheeled)
-1 lane + class A 1 82.13 49.0 16.3 IV
lane
Class 70R (tracked)
-1 lane + class A 1 80.97 28.1 21.28 V
lane
From above it can be seen that case (IV) will be critical
As per cl. 211.5.1.1 of IRC 6 - 2017 friction coef .for concrete over concrete surface
m = 0.50
Frictional force due to dead load + maximum live load reaction
,= 0.50 x( 150.0 + 82.13 )
= 116.1 T
Moment at R.L 472.55 m =( 476.8 - 472.55 116.1
)x
= 496.8 Tm
473.15 m =( 476.8 - 473.15 116.1
)x
= 427.1 Tm
As per cl. 211.5.1.2 of IRC 6-2017 maximum of m.Rg or Fh is to be considered. Hence ignore
other horizontal force on superstructure including seismic force.

Earth Pressure
Coeff of active earth press. KA = Cos 2 30.0
30.0 20.1 30.0 20.1 2
1 + sqrt[ {sin ( + )x sin ]
= 0.279

} / cos
Coeff of passive Earth press. KP = Cos 2 30.0
30.0 20.1 30.0 20.1 2
1 + sqrt [ {sin ( + ) x sin }/ cos
= 5.751
Abutment

a) LWL case

1200
Deck Level =
477.74
RL
0.279 1.2 1.9 0.637
x x =

0.279 4.59 1.9 2.434


x x = 473.15
RL
0.279 0.60 1.9 0.318
x x =
472.55
RL

Earth Pressure and Moment @ RL 473.15 m


Sl Item Earth Pressure (Tonnes) L.A (M) Moment (T-M)
0.637 4.586 12.000
x `x
1 From RL 477.740 = 35.05 2.94 102.87
RL
To RL 473.154 2.43 4.59 12.000
1/2 x x x
= 66.97 1.93 129.00
Total = 102.02 231.87

Earth Pressure and Moment @ RL 472.55 m


Sl Item Earth Pressure (Tonnes) L.A (M) Moment (T-M)
From RL 477.740 231.87
RL
1 To RL 473.154 102.02 0.60 61.21
2.43 0.600 12.300
x x
From RL 473.154 = 17.96 0.38 6.90
RL
2 To RL 472.554 0.32 0.600 12.300
1/2 x x x= 1.18 0.25 0.30
Total = 121.16 300.28
Abutment

b) HFL case

1200
Deck Level =
477.74
RL
0.279 1.2 1.9 0.637
x x =

0.279 2.16 1.9 1.146


x x = 475.58 HFL

0.279 2.43 1.0 0.678


x x = 473.15
0.279 0.60 1.0 0.168 RL
x x = 472.55
RL

Earth Pressure and Moment @ RL 473.15 m


Sl Item Earth Pressure (Tonnes) L.A (M) Moment (T-M)
0.637 2.16 12.00
1 From RL 477.740 x x= 16.51 3.81 62.87
RL
To RL 475.580 1.15 2.16 12.00
1/2 x x x= 14.86 3.33 49.52
1.783 2.43 12.00
2 From RL 475.580 x x= 51.92 1.21 62.97
RL
To RL 473.154 0.68 2.43 12.00
1/2 x x x= 9.86 0.80 7.90
Total = 93.15 183.26

Earth Pressure and Moment @ RL 472.55 m


Sl Item Earth Pressure (Tonnes) L.A (M) Moment (T-M)
From RL 477.740 183.26
RL
1 To RL 473.154 93.15 0.60 55.89
2.46 0.600 12.300
From RL 473.154 x x= 18.16 0.30 5.45
RL
2 To RL 472.554 0.17 0.600 12.300
1/2 x x x= 0.62 0.20 0.12
Total = 111.93 244.72
Abutment

Loads and Forces on Foundation


The loads and forces on foundation and their moments about toe marked "X" are as follows
V H Lever Arm Moment
Sl Particulars of Dead Load
(T) (T) (m) (T-m)

1 Dead Load from superstructure 150.0 2.60 390.0

2 Dirt Wall = 12.00 0.20 0.91 5.4 2.90 15.8


x x x 2.5
3 Bearing Beam

12.000 0.60 0.50 2.50 9.0 2.70 24.3


4 Front Wall x x x
+ (b) ) x x 2.4
12.00 0.60 3.38 2.50 60.8 2.70 164.3
x x x
12.00 0.4 3.38 2.50 20.3 2.27 46.0
1/2x x x x
5 Return wall

2.40 0.35 4.59 2.50 19.3 4.50 86.7


2x x x x
2.40 0.35 4.59 2.50 9.6 4.00 38.5
2x1/2x x x x
6 Raft
x x x 2.4
5.40 12.30 0.40 2.50 66.4 2.70 179.3

2.00x 12.30 x 0.20 x 2.50 6.2 1.33 8.2


1/2x x x x
2.40 12.30 0.20 2.50 7.4 3.80 28.0
1/2x x x x
7 Earth on toe upto scour level

12.30 2.00 1.50 1.90 70.1 1.00 70.1


x x x
8 Earth behind front wall
11.83 2.40 4.69 1.90 252.7 4.20 1061.2
x x x
9 Earth on two side
x x x
0.15 3.40 4.69 1.90 4.5 4.20 19.1
2x x x x
10 Sub-Total without L.L 681.7 2131.5

11 L.L (max) 82.1 2.60 213.5

L.L (min) 28.1 2.60 73.1

12 Total with L.L (max) ( Normal case) 763.9 2345.1

Total with L.L (min) ( Normal case ) 709.9 2204.7

13 Total with L.L (max) ( Seismic case) 698.2 2174.2

Total with L.L (min) ( Seismic case ) 687.4 2204.7


Abutment

Buoyancy force on foundation

(a) Under LWL condition


Volume = 5.40 12.30 2.15 142.54 M3
x x =
Upward force = -142.54 T

Weight of water in front

Downward load of water in front = 2.00 12.30 2.15


x x
= 52.79 T

Net upward force = -142.54 + 52.79 = -89.75 T


x
(b) Under HFL condition
Volume = 5.4 12.30 3.03
x x = 200.99 M3

Upward force = -200.99 T

Weight of water in front


x
Downward load of water in front = 2.00 12.30 3.03
x x
= 74.44 T

Net upward force = -200.99 + 74.44 = -126.55 T


x
Seismic force on foundation

Seismic coefficient = = 0.180

Seismic force and moments @ 472.55


RL H.F L.A
Sl Vertical load (T) Moment (T-m)
(T) (m)

1 Super structure D.L = 150.00 0.00 0.00 0.0

2 Dirt Wall = 5.44 0.98 4.73 4.63

3 Bearing Beam = 9.00 1.62 4.03 6.53

4 Front wall = 60.84 10.95 2.29 25.08

20.28 3.65 1.73 6.30

5 Return Wall 19.26 3.47 4.89 16.94

9.63 1.73 3.06 5.30

6 Earth on back of front wall

252.68 45.48 2.84 129.31


7 Earth on two side =

4.54 0.82 2.84 2.32

Total = 68.70 196.41

Vertical seismic force = 2 / 3 x 68.70 45.80 T


Abutment

=
x =
Check for safety and stability of the Foundation

Area of the foundation A = 12.30 5.4 66.42 M2


x =
Section Modulus Z xx = 12.30 5.40 2 = 59.78 M3
x /6
Section Modulus Z yy = 5.40 12.302 = 136.16 M3
x /6
For F.O.S against faiulure refer cl.706.3.4 of IRC 78 - 2014

A ) Seismic Condition

1) LWL Condition

a) L.L (max ) case - Seismic downward


I) Base pressure

Vertical Load "P" = 698.2 45.80 89.75 654.21 T


+ - =
Moment @ toe Mt = -2345.1 0.0 300.28 496.8 196.4
+ + + +
+ 0.0 0.00 -1351.63
- = T-m
Eccentricity "e" from c.g = -1351.63 654.21 2.70 0.63
/ + = m
Moment @ C.g = 654.21 0.63 414.73 T-m
x =
Base pressure = 654.21 66.42 +/- 414.73 59.78
/ /
= 9.85 +/- 6.94 /

Pmax = 16.79 T/m2 Pmin = 2.91 T/m2


30.0
< 1.25 x T/m2

ii) Sliding

Coefficient of friction between concrete against soil = Tan f


For f = 36 o Tan f = 0.73

Vertical Load "P" = 654.21 T

Restoring force = 0.73 654.21 0.00 474.99 T


x + =
Disturbing force = 116.07 121.16 68.70 0.00 305.93 T
+ + + = T T
F.O.S = 474.99 305.93 = 1.55 > 1.15 - (SAFE) -
/ m m

iii) Overturning

Stabilising Moment = 2345.1 0.00 2345.1 Tm


+ =
Disturbing Moment = 0.00 300.28 496.8 196.41 = 993.45 Tm
+ + + T T
F.O.S = 2345.1 993.45 = 2.36 > 1.50 - (SAFE) -
/ m m
Abutment
T T
- -
/ m m

b) L.L (min ) case - Seismic upward

I) Base pressure

Vertical Load "P" = 687.35 45.80 89.75 = 551.81 T


- -
Moment @ toe Mt = -2204.7 0.00 300.3 496.8 196.4
+ + + +
+ 0.00 -1211.22
= T-m
Eccentricity "e" from c.g = -1211.22 551.81 + 2.70 = 0.505 m
/
Moment @ C.g = 551.81 x 0.505 = 278.66 T-m

Base pressure = 551.81 / 66.42 +/- 278.66 59.78


/ /
= 8.31 +/- 4.66 /

Pmax = 12.97 T/m2 Pmin = 3.65 T/m2

< 1.25 x 30.0 T/m2

ii) Sliding

Vertical Load "P" = 551.81 T

Restoring force = 0.73 551.81 + 0.00 400.64 T


x =
Disturbing force = 116.07 + 121.16 + 68.70 0.00 = 305.93 T
T T
-
- -
F.O.S = 400.64 / 305.93 = 1.31 > 1.25 m
(SAFE) m

iii) Overturning

Stabilising Moment = 2204.7 + 0.00 2204.67 Tm


=
Disturbing Moment = 0.00 + 300.28 + 496.8 + 196.41 = T 993.45 T
- -
F.O.S = 2204.7 / 993.45 = 2.22 > 1.5 m
(SAFE) m
2) HFL Condition

a) L.L (max ) case


I) Base pressure

Vertical Load "P" = 698.15 - 126.55 - 45.80 = 525.81 T

Moment @ toe Mt = -2345.1 + 0.0 + 244.7 + 496.8 + 196.41

- 0.00 = -1407.2 T-m

Eccentricity "e" from c.g = -1407.2 525.81 + 2.70 = 0.024 m


/
Moment @ C.g = 525.81 x 0.024 = 12.49 T-m

Base pressure = 525.81 / 66.42 +/- 12.49 59.78


/
/
= 7.92 +/- 0.21
Abutment

Pmax = 8.13 T/m2 Pmin = 7.71 T/m2

< 1.25 x 30.0 T/m2

ii) Sliding

Vertical Load "P" = 525.81 T

Restoring force = 0.73 x 525.81 + 0.00 = 381.76 T

Disturbing force = 116.07 + 111.93 + 68.70 = 296.69 T T


-
F.O.S = 381.76 / 296.69 = 1.29 > 1.25 (SAFE) m

iii) Overturning

Stabilising Moment = 2345.1 + 0.00 = 2345.1 Tm

Disturbing Moment = 0.00 + 244.72 + 496.8 + 196.41 = 937.89 T


-
F.O.S = 2345.1 / 937.89 = 2.50 > 1.50 (SAFE) m

b) L.L (min ) case


I) Base pressure

Vertical Load "P" = 687.35 - 126.55 - 45.80 = 515.01 T

Moment @ toe Mt = -2204.7 + 0.0 + 244.72 + 496.8 + 196.41

- 0.00 = -1266.78 T-m

Eccentricity "e" from c.g = -1266.78 / 515.01 + 2.70 = 0.240 m

Moment @ C.g = 515.01 x 0.240 = 123.74 T-m

Base pressure = 515.01 / 66.42 / +/- 123.74 / 59.78


/
= 7.75 +/- 2.07

Pmax = 9.82 T/m2 Pmin = 5.68 T/m2


< 1.25 x 30.0

ii) Sliding

Vertical Load "P" = 515.01 T

Restoring force = 0.73 x 515.01 + 0.00 = 373.92 T

Disturbing force = 116.07 + 111.93 + 68.70 = 296.69 T T


-
F.O.S = 373.92 / 296.69 = 1.26 > 1.25 (SAFE) m

iii) Overturning
Abutment

Stabilising Moment = 2204.7 + 0.00 = 2204.67 T-m

Disturbing Moment = 0.00 + 244.72 + 496.8 + 196.4 = 937.89 TT


--
F.O.S = 2204.7 / 937.89 = 2.35 > 1.50 (SAFE) mm

B ) Normal Condition

1) HFL Condition

a) L.L (max ) case


I) Base pressure

Vertical Load "P" = 698.15 - 45.80 = 652.35 T

Moment @ toe Mt = -2345.1 + 244.72 + 496.76 - 0.0 + 0.0 = -1603.6 T


-
+ = 0.242 m m
Eccentricity "e" from c.g = -1603.59 / 652.35 2.70

Moment @ C.g = 652.35 x 0.242 = 157.76 T-m

Base pressure = 652.35 / 66.42 +/- 157.76 / 59.78


/
= 9.82 +/- 2.64

Pmax = 12.46 T/m2 Pmin = 7.18 T/m2

< 30.0 T/m2 (SAFE)

ii) Sliding

Vertical Load "P" = 652.35 T

Restoring force = 0.73 x 652.35 + 0.0 = 473.6 T

Disturbing force = 111.93 + 116.07 = 227.99 T = TT


--
F.O.S = 473.64 / 227.99 = 2.08 > 1.50 (SAFE) mm

iii) Overturning

Stabilising Moment = 2345.1 + 0.0 = 2345.1 Tm

Disturbing Moment = 244.72 + 496.76 - 0.0 + 0.0 = 741.5 Tm TT


--
F.O.S = 2345.1 / 741.48 = 3.16 > 2.00 (SAFE) mm

b) L.L (min ) case


I) Base pressure

Vertical Load "P" = 687.35 - 45.80 = 641.55 T

Moment @ toe Mt = -2204.7 + 244.7 + 0.0 + 496.8 - 0.00 = -1463.2 T


-
+ = m m
Eccentricity "e" from c.g = -1463.19 / 641.55 2.70 0.419
Abutment

x =
Moment @ C.g = 641.55 0.419 269.00 T-m
/
Base pressure = 641.55 66.42 / +/- 269.00 / 59.78
/
= 9.66 +/- 4.50
Abutment

Pmax = 14.16 T/m2 Pmin = 5.16 T/m2

< 30.0 T/m2 (SAFE)

ii) Sliding

Vertical Load "P" = 641.55 T


x + =
Restoring force = 0.73 641.55 0.0 465.8 T
+ + = TT
Disturbing force = 111.93 116.07 0.00 227.99 T
--
/ mm
F.O.S = 465.80 227.99 = 2.04 > 1.50 (SAFE)

iii) Overturning
+ =
Stabilising Moment = 2204.7 0.0 2204.7 T
+ + = TT
Disturbing Moment = 244.72 0.00 496.8 741.48 --
/ mm
F.O.S = 2204.7 741.48 = 2.97 > 2.00 (SAFE)

2) LWL Condition

a) L.L (max ) case


I) Base pressure
=
Vertical Load "P" = 698.15 - 89.75 608.41 T
+ + + - = T
Moment @ toe Mt = -2345.1 0.00 300.3 496.8 0.00 -1548.04 -
+ = m m
Eccentricity "e" from c.g = -1548.04 / 608.41 2.70 0.156
x =
Moment @ C.g = 608.41 0.156 94.66 T-m
/ /
Base pressure = 608.41 66.42 +/- 94.66 59.78
/
= 9.16 +/- 1.58

Pmax = 10.74 T/m2 Pmin = 7.58 T/m2


T/m2
< 30.0 (SAFE)

ii) Sliding

Vertical Load "P" = 608.41 T


x + =
Restoring force = 0.73 608.41 0.0 441.74 T
+ + = TT
Disturbing force = 116.07 121.16 0.00 237.23 T --
/ mm
F.O.S = 441.74 237.23 = 1.86 > 1.50 (SAFE)

iii) Overturning
+ =
Stabilising Moment = 2345.1 0.0 2345.1 Tm
Abutment

+ + = TT
Disturbing Moment = 0.00 300.28 496.8 797.04 --
/ mm
F.O.S = 2345.1 797.04 = 2.94 > 2.00 (SAFE)

b) L.L (min ) case


I) Base pressure
=
Vertical Load "P" = 687.35 -
89.75 597.61 T
+ + + - = T
Moment @ toe Mt = -2204.7 0.00 300.3 496.8 0.00 -1407.63 -
+ = m m
/
Eccentricity "e" from c.g = -1407.63 597.61 2.70 0.34
x =
Moment @ C.g = 597.61 0.3 205.91 T-m
/ /
Base pressure = 597.61 66.42 +/- 205.91 / 59.78

= 9.00 +/- 3.44

Pmax = 12.44 T/m2 Pmin = 5.55 T/m2


T/m2
< 30.0 (SAFE)

ii) Sliding

Vertical Load "P" = 597.61 T


x + =
Restoring force = 0.73 597.61 0.0 433.90 T
+ + = TT
Disturbing force = 116.07 121.16 0.00 237.23 T --
/ mm
F.O.S = 433.90 237.23 = 1.83 > 1.50 (SAFE)

iii) Overturning
+ =
Stabilising Moment = 2204.7 0.0 2204.7 Tm
+ + = TT
Disturbing Moment = 0.00 300.28 496.8 797.04 --
/ mm
F.O.S = 2204.7 797.04 = 2.77 > 2.00 (SAFE)

Design of Raft

500
Y
X1
X3 X2

o
5.71
X2 X1
X3
Y
1800
Abutment

2400 1000 2000

Case I - Seismic downward - LWL-L.L (max)


X Y

2.91
T/m2 7.54 9.08 10.48 16.79
12.06 T/m2
X
Y

UPWARD SOIL PRESSURE

9.85

3.80

DOWNWARD SOIL PRESSURE

= x x - x
S.F at Y-Y 12.06 1.50 + 1/2 x 4.73 1.50 3.80 1.50
= 15.93 T 2
x x / 2 + 1/2 x x 0.67 x
B.M at Y-Y = 12.06 1.50 1.50 4.73 1.50
2
x =
- 3.80 1.50 2 12.85 Tm
2
x x / 2 + 1/2 x x 0.67 x
B.M at X1-X1 = 10.48 2.00 2.00 6.31 2.00
2
x / =
- 3.80 2.00 2 21.81 Tm
2
x x / 2 + 1/2 x x 0.33 x
B.M at X2-X2 = 2.91 2.40 2.40 6.17 2.40
2
x / =
- 9.85 2.40 2 -14.13 Tm
2
x x / 2 + 1/2 x x 0.33 x
B.M at X3-X3 = 2.91 1.80 1.80 4.63 1.80
2
x =
- 9.85 1.80 2 -8.77 Tm

Case II - Normal - LWL-L.L (max)

7.58
Abutment

T/m2 8.63 8.98 9.30 10.74


9.66 T/m2

UPWARD SOIL PRESSURE

9.85

3.80

DOWNWARD SOIL PRESSURE

= x x - x
S.F at Y-Y 9.66 1.50 + 1/2 x 1.08 1.50 3.80 1.50
= 9.61 T
2
x x / 2 + 1/2 x x 0.67 x
B.M at X1-X1 = 9.66 1.50 1.50 1.08 1.50
2
x / =
- 3.80 1.50 2 7.41 Tm
2
x x / 2 + 1/2 x x 0.33 x
B.M at X2-X2 = 7.58 2.40 2.40 1.41 2.40
2
x / =
- 9.85 2.40 2 -5.22 Tm
2
x x / 2 + 1/2 x x 0.33 x
B.M at X3-X3 = 7.58 1.80 1.80 1.06 1.80
2
x / =
9.85 1.80 2x -3.12 Tm
+

Use M 35 grade concrete with Fe 500 rebar, permissible stresses as per


Table A4.2 and A4.4 of IRC 112 are
Kg/ cm2 Kg/ cm2
s c = 116.7 s t = 2400 m= 10
( x ) = 0.33
n= 10 116.7
( x + )
10 116.7 2400
/3=
j= 1 - 0.33 0.89
1/2 x x x
Q= 0.33 0.89 116.7 = 17.01

a) At section X1-X1
Seismic case will be critical
- =
Effective Depth = 60.0 10.0 50.0 cm
2
x x
M.R =1.5x 17.01 100 50.0 = 63.78 T-m > 21.81 T-m (OK)
Abutment

x 10 5 / ( x x
As = 21.81 0.89 50.0 3600 ) = 13.60 cm2

Min steel @ 0.13 % = 6.50 cm2

Provide 20 dia @ 200 c/c at bottom

As provided = 15.70 cm2

Check for shear at Y-Y


- =
Effective Depth = 55.0 10.0 45.0 cm
S.F = 15.93 T B.M = 12.85 Tm
Refer cl. A4.6.1 (b) of IRC:112
Effective S.F = 15.93 - 12.85 x tan 5.71
0.45
= 13.08 T
x
)=
Nominal shear stress = 13.08 x 1000 / ( 100.0 50.0 2.62 Kg/cm2
% age of tension reinforcements = 15.70 / ( 100 x 50.0 ) x 100 = 0.31 %
From Table A4.6 of IRC 112, Permissible shear stress = 2.30 Kg/cm2
=
Under seismic case = 1.5 x 2.30 3.45 Kg/cm2

b) At section X2-X2
Seismic case will be critical
-
Effective Depth = 60.0 10.0 = 50.0 cm
2
M.R =1.5x 17.01 x 100 x 50.0 = 63.78 T-m > 14.13 T-m (OK)
x 10 / (5
As = 14.13 0.89 x 50.0 x 3600 ) = 8.81 cm2

Min steel @ 0.13 % = 7.60 cm2

Provide 16 dia @ 200 c/c at top

As provided = 10.05 cm2

Design of Abutment Shaft

Seismic force at the base of the shaft

Seismic coefficient = = 0.18

Seismic force and moments @ RL 473.15

Sl Vertical load (T) H.F L.A Moment (T-m)


(T) (m)

1 Super structure D.L = 150.0 0.00 0.00 0.0

2 Dirt Wall = 5.44 0.98 4.13 4.04


3 Bearing Beam = 9.00 1.62 3.43 5.56

4 Front wall = 60.84 10.95 1.69 18.51


Abutment

20.28 3.65 1.13 4.11

5 Return Wall 19.26 3.47 4.29 14.86

9.63 1.73 2.46 4.26

6 Earth on back of front wall 252.68 45.48 2.24 102.02

Total = 67.88 153.36


=
Vertical seismic force = 2 / 3 x 67.88 45.26 T

Loads and Forces at the base


The loads and forces on shaft and their moments about toe are as follows
V H Lever Arm Moment
Sl Particulars of Dead Load
(T) (T) (m) (T-m)

1 Dead Load from superstructure 150.0 0.100 15.0

2 Dirt Wall = 5.4 0.400 2.2

3 Bearing Beam + )x x 2.4 9.0 0.200 1.8


4 Front Wall 60.8 0.200 12.2

x x 20.3 -0.232 -4.7

5 Sub-Total without L.L 245.6 26.4

6 L.L (max) 82.1 0.100 8.2

L.L (min) 28.1 0.100 2.8

7 Total with L.L (max) (Normal case ) 327.7 34.7

Total with L.L (min) (Normal case) 273.7 29.3

8 Total with L.L (max) (Seismic case ) 262.0 28.1

Total with L.L (min) (Seismic case) 273.7 29.3

Summary of Force and Moments @ at base of shaft


1) Normal case under LWL
I) Max L.L case
Sl. No Item Vertical H.F ( T ) Moment ( T-m )
Load (T)
Long Tran Long Tran
1 Vertical Load 327.7 0.00 0.00 0.00 0.00
2 Eccentricity of Load 0.00 0.00 0.00 -34.65 0.00
3 Earth Pressure 0.00 102.02 0.00 231.87 0.00
4 H.F at Bearing 0.0 116.1 0.00 427.12 0.00
Total = 327.7 218.1 0.0 624.3 0.0
Abutment

ii) Min L.L case


Sl. No Item Vertical H.F ( T ) Moment ( T-m )
Load (T)
Long Tran Long Tran
1 Vertical Load 273.7 0.00 0.00 0.00 0.00
2 Eccentricity of Load 0.0 0.00 0.00 -29.25 0.00
3 Earth Pressure 0.0 102.02 0.00 231.87 0.00
4 H.F at Bearing 0.0 116.1 0.00 427.12 0.00
Total = 273.7 218.1 0.0 629.7 0.0

2)Seismic case Under LWL


I) Max L.L case
Sl. No Item Vertical H.F ( T ) Moment ( T-m )
Load (T)
Long Tran Long Tran
1 Vertical Load 262.0 116.07 0.00 427.12 0.00
2 Eccentricity of Load 0.0 0.00 0.00 -34.65 0.00
3 Earth Pressure 0.0 102.02 0.00 231.87 0.00
4 H.F at Bearing 0.0 116.1 0.00 427.12 0.00
Total = 262.0 334.2 0.0 1051.5 0.0

ii) Min L.L case


Sl. No Item Vertical H.F ( T ) Moment ( T-m )
Load (T)
Long Tran Long Tran
1 Vertical Load 273.7 116.07 0.00 427.12 0.00
2 Eccentricity of Load 0.0 0.00 0.00 -29.25 0.00
3 Earth Pressure 0.0 102.02 0.00 231.87 0.00
4 H.F at Bearing 0.0 116.1 0.00 427.12 0.00
Total = 273.7 334.2 0.0 1056.9 0.0

Abstract of Force and Moments at the base of the shaft


Sl No Item Vertical Load ( T ) H.F ( T ) Moment (T-m) Remarks
1 Normal Condition
I) L.L (Max) 327.7 218.09 624.34
ii) L.L (Min) 273.7 218.09 629.74
2 Seismic Condition
(Seismic upward)

I) L.L (Max) 262.0 334.15 1051.46


ii) L.L (Min) 273.7 334.15 1056.86

From, above Seismic - L.L (Min) case will be critical


Abutment

Design of Shaft
1) Case -1 LWL-Seismic-Min L.L
Design Data
Overall depth of the section h = 100.0 Cm
d
Effective Cover d = 10.0 Cm
Overall width of the section b = 1200.0 Cm
Thrust N d = 273.7 T As
Moment M d = 1056.9 T-m h
Modular Ratio m = 10.0

As

Calculation
=
Eccentricity e = 1056.86 / 273.7 3.86 M
Effective depth d = 90 Cm
Follow method 3 ( of Table 140 of Reynold's Handbook)

Method - 3
(Applicable when e > 1.5 * h

Providing 80 Nos 25 dia on earth face and 80 Nos.16 dia on other face
Area of steel provided A st = 392.8 Cm2 A sc = 160.8 Cm2

Taking moment about N-A c

b x n x n/2 + (m-1)x Asc x (n-d' ) = m x Ast x (d - n ) c


n
or, 1200 xn / 2 + 9 x
2
160.8 x ( n - 10 ) = 10 x 392.8
x ( 90.0 - n)
Or, 600 n + 2
1447.2 n - 14472.0 - = 353520 + 3928 n
Or, n2 + 8.96 n - 613.32 = 0
Or, n = 20.69 cm
(d-n)

c = 0.52 c

Lever arm 90.0 20.69/ 3 = 83.10 cm


-
=
Equating external Moment with that of the internal moment at the c.g of tensile steel
1200.0 x 20.7xC/2 x 83.10 + 9 x 160.8 x 0.52 xCx ( 90.0 - 10.0 ) = 1056.86
Abutment

Or, C = 96.8 Kg/cm2


Abutment

From the stress diagram


t= 3244.5 Kg/cm2

Stress in concrete due to direct load


c= 273.7 x 1000 / [ 1200 x 20.69 + ( 10 - 1) x 392.8 ]
c= 9.7 Kg/cm2
Total stress
In concrete = 96.8 + 9.7 = 106.5 Kg/cm2 < 1.5 x 116 for M35 conc.
In Steel = 3244.5 - 10 x 9.7 = 3148.0 Kg/cm2 < 1.5 x 2400

Check for Shear


Horizontal force H = 334.15 T

Nominal shear stress t= 334.15 x 10 3 / ( 1200 x 90.0 )= 3.09 Kg/ cm2


)
% age of tension reinforcements = 392.8 / ( 1200 x 90.0 ) x=100 = 0.36 %
From Table A4.6 of IRC 112, Permissible shear stress = 4.05 Kg/cm2
(under seismic case)
Hence no shear reinforcements is required.

Dirt Wall
Earth Pressure

1200 Deck Level =


RL 477.74

0.279 x 1.2 x 1.90 = 0.637

0.279 x 0.91 x 1.90 = 0.481

RL 476.83

S.F at RL. 476.83 m = 1.00 x 0.637 x 0.91


+ 1/2 x 0.48 x 0.91 = 0.58 + 0.22
= 0.79 T
B.M at RL 476.83 m = 0.58 x 0.64 x 0.91 + 0.22 x 0.42 x 0.91
= 0.42 TM
Effective Depth at A = 20.0 - 5.8 = 14.2 cm
Abutment

2
M.R = 17.01 x 100 x 14.2 = 3.43 T-m > 0.42 T-m (OK)

As = 0.42 x 10 5 / ( 0.89 x 14.2 x 2400 ) = 1.37 cm2

Min steel @ 0.2 % = 2.84 cm2

Dirt wall to act as reaction block in the eventuality og earth quake provide extra reiforcement in
vertical direction

Provide 16 dia @ 150 c/c in vertical direction in both face and 12 dia @ 200 c/c in horizontal
direction
Abutment

2.54599999999999
Abutment

600
3000

5.186
5400

474.70
474.55

400 824

476.334 473.154
3.18

SAFE
#REF! 5400
5400
Abutment

0
0

4860

0.017444
Abutment

92

11200
10000
5700
Abutment

-3000

-6000

36.4

0.017444
cos f = 0.866158 cos2 f = 0.75023
sin( f+)d)== 0.766881 cos d = 0.939155
sin f = 0.49977
sin f + d = 0
cos d = 0.939155 cos f = 0.866158
sin f = 0.49977 sin (f+)d)== 0.766881
Abutment

0.69974612111964

`
Abutment

sin f = 0

`
Abutment

2 x 1/2 x

2 x 1/2 x
Abutment

`
Abutment

126.55

0.00
Abutment

4000 #REF!
Abutment

1
1

SAFE

474.99

4000 12

T/m2
Abutment

0.00

4000 #REF!
Abutment

0.00

4000 #REF!
Abutment

5400

1.9 1.9
Abutment

15 50

20 66.7
25 83.3

30 100
35 116.7
Abutment

0.60
Abutment

2
Abutment

16.67
50.00
150.00
Follow method 1
Follow method 2
Follow method 3
Follow method 3

58.055

3277.158

50.33

20.69

81.4664
150

10

d-n = 69.312
1091357
Abutment

d-n = 69.312
Abutment

n= 20.69
t/m = 9.683898 184.6154

`
Abutment
Abutment
Abutment
Abutment

75.35642
Abutment

+
Abutment

RETURN WALL

1.20

b = 4.79

4.79

2.540 0.637
a = 2.40

Earth pressue at top of pile cap = 0.279 x 1.90 x 4.79 = 2.54 t/m2

Pressure due to surcharge on return = 0.637 t/m2

Ref : Formulas for stress and strain by "Raymond J. Roark & Warren C. Young".

a = 2.40 m b = 4.79 m
a / b = 2.40 / 4.79 = 0.51

Case 11d for earth fill @ page no. 400


b1 = 0.34 b2 = 0.21 g1 = 0.50
moment at base of abutment
0.34 x 2.54 x 4.79 2 x 4.79 /( 6 x 4.79 )= 3.30 t-m/m
moment at face of abutment
0.21 x 2.54 x 4.79 2 x 2.40 /( 6 x 2.40 )= 2.04 t-m/m
Case 11a for surcharge @ page no. 399
b1 = 0.65 b2 = 0.65 g1 = 0.90
moment at base of abutment
0.65 x 0.64 x 4.79 2 x 4.79 /( 6 x 4.79 )= 1.58 t-m/m
moment at face of abutment
0.65 x 0.64 x 4.79 2 x 2.40 /( 6 x 2.40 )= 1.58 t-m/m

Total moment at base of wall = 3.30 + 1.58 = 4.88 t-m/m


Total moment at face of wall = 2.04 + 1.58 = 3.62 t-m/m

Overall thickness of Return wall = 350 mm


Effective thickness = 350 - 85 = 265 mm
2
M.R = 17.01 x 100 x 26.5 = 11.94 T-m > 4.88 Tm

Reinforcement in vertical direction


At = 4.88 x 10 5 / ( 0.89 x 26.5 x 2400 ) = 8.61 cm2
Provide 16 dia @ 150 c/c in vertical direction on earth face
Abutment

Reinforcement in horizontal direction


At = 3.62 x 10 5 / ( 0.89 x 24.5 x 2400 ) = 6.90 cm2
Provide 16 dia @ 200 c/c in horizontal direction on earth face

Shear stress
Maximum shear force = 0.50 x 2.540 x 4.79 + 0.90 x 0.637 x 4.79
= 8.82 T
Nominal Shear stress =

8.82 / ( 4.79 x 0.265 )= 6.96 t/m2 = 0.70 kg/cm2


OK
Abutment

1.80936
Abutment

You might also like