DRAM Design Overview by Junji Ogawa
DRAM Design Overview by Junji Ogawa
1999
Stanford University
Junji Ogawa
jogawa@cis.stanford.edu
Contents
Page 1
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
200
256M Production
100 64M
16M 128M
50 1G
i-line KrF KrF+α ArF ?
Rule
0.50 0.35 0.25 0.18 0.13 0.10 (um)
20
90 92 94 96 98 00 02 04 06 08 10
Year
Feb. 11th. 1998 Junji Ogawa
3 -1
10 10
size
Die
Density(Mbits)
ity
Die Size(mm2)
Bit Cost($)
2 -2
10 ns 10
Rule(µm)
De
1 -3
10 10
Bit Cost
0 -4
10 Rule 10
-1 16M -5
10 64M 10
256M
1G
-2
4G -6
10 10
1980 1985 1990 1995 2000 2005 2010 Year
Page 2
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
VCCx10
TRAC
8
10
1 10
1/tAA
f CLK
7
1 10
4M 16M 64M 256M 1G 4G
25 -- ?
FPM >128M
64M SD
20 -- SD
64M RD
Rambus
16M
EDO SD SDRAM
10 -- 16M EDO
4M
0 --
'97 '98 '99 2000
Year
Page 3
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
ASSP/ASIC
Function rich DRAM
Customizability
DRAM/Logi
c
WRAM
CDRAM High-speed
VRAM MDRAM DRAM
Standard
EDRAM SLDRAM
DDR
RAMBUS Target
SDRAM
EDO
6
Power Supply Voltage (v)
Word Boost Voltage (v)
0
4M 16M 64M 256M 1G 4G
Bit Density
Page 4
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
1 1
10 10
Active Power tRC=min. (A) VCC
Power Supply Voltage (V)
Stand-by Power
-1 -1
10 10
Active Power
-2 -2
10 10
4M 16M 64M 256M 1G 4G
4 2
10 10
Busy Rate (µ S)
Refresh Cycles
3 1
10 10
2 0
10 10
1M 4M 16M 64M256M 1G 4G
Page 5
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
History
・1K DRAM Intel 1103 introduced late 1971
-3Tr PMOS, 1P1M,
-Vdd=0v,Vss=16v,Vbb=20v, Trac=300ns
・4K DRAM TI TMS4030 introduced 1973
-1Tr NMOS, 1P1M, TTL I/O
-Vdd=12v,Vdd=5v, Vss=0v,Vbb=-3/-5v
S/As S/As
Open BL Folded BL
Memory
Array Cell Size 6F2 Cell Size 8F2
/BL WL pitch: 3F WL pitch: 4F
BL pitch: 2F BL pitch: 2F
Page 6
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
History (cont’d)
・64K DRAM (’80,conference’79)
-Many changes at once - no dominant design
-Standardized, Page mode, Refresh functions
-Vcc=5v only,Vss=0v,Internal Vbb, Trac=200ns
-Boosted wordline, Active restore
History (cont’d)
・1M DRAM (’86,conference’84)
-N-well CMOS, 3P1M, Vdd/2 cell plate
-Half Vdd bitline reference and pre-charge,
-Shared folded bitline
-x4/x8, Package and module variety, Test circuits
Page 7
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
S/As S/As
WLL WLL
Memory
Array
Memory
/BLL BLL BLL
Array
History (cont’d)
・16M DRAM (’92, conference’90)
-N-well CMOS, 4P2M
-Internal Vdd down-converter (5v ext.---3.3v int.)
-Shared Y-decoder, Interleaved S/A,
-Vpp supply WL driver, RDRAM(PLL/DLL)
Page 8
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
Page 9
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
Storage Node
Cs
Cbl
BL /BL BL
Plate
10
3Tr
Stack
0.1
DRAM
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Design Rule [um]
Feb. 11th. 1998 Junji Ogawa
Page 10
MH students Feb. 11th. 1999
32M-CELL BLOCK
S/A)
4096S/A+16R**S/A+64Red-S/A+16Mark-RAM(64
Mark-RAM
(4S/A
K)for 64 100%
3.5%+0.39% +1.56% + 1.56% =
CL)
(1024
32 Mbit array.
4R**S/
A 1024S/A+4R**S/A
+16Red-S/A+4Mark-RAM
7
A
4 Red-S/
A
256S/ Sub-Word Decoder
A
256S/
MWDEC (256CL)
MWDEC ←s/a-
0
MWL
256
256K Cell
Array 1M BLOCK #0
Standard DRAM Array Design Example
1
←s/a-
DQ
MWL
Junji Ogawa
0
←s/a-
2
8 global data buses
1M BLOCK #2
←s/a-
3
and 8 amplifiers
1M BLOCK #3
←s/a-
4
1M BLOCK #4
64 Mbit DRAM
32 Mbit arrays
5
←s/a-
consists of two
1M BLOCK #5
←s/a-
6
1M BLOCK #6
←s/a-
7
1M BLOCK #7
←s/a-
8
Page 11
1M BLOCK #8
9
←s/a-
1M BLOCK #9
bank 0 bank 8 bank 0 bank 8
←s/a-1
0
15
1M BLOCK #10
15
←s/a-1
1
1M BLOCK #11
←s/a-1
2
DQ
7
8
←s/a-2
6
15
1M BLOCK #26
32 Mbit
7 ←s/a-2
7
1M BLOCK #27
←s/a-2
8
1M BLOCK #28
DQ
9
←s/a-2
0
7
Stanford CS Junji Ogawa
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
Q
P
Q
P
P
Clump TR or so
Main Row Dec
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
Q
P
P
Q
P
VCC
Addresses WDi Contact only (Strapping)
Page 12
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
Clump TR or so
level MWL
Pre-decode
address
Reset
P1 sub-word line P
Dynamic P
NAND
Negative Voltage?
ldb0x
ldb0z
nsa
psa
BLL BLR
/RAS
CL
BS WD WL
BL PSA
RAS
/BL NSA
t
Add. LE
Feb. 11th. 1998 Junji Ogawa
Page 13
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
Bitlines
Nch Pch
Nch Pch
Page 14
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
1000 μPU
60%/year
100
Increasing
The Gap
10
1 DRAM7%/year
80 85 90 95 00
Year
Page 15
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
4MB 32 8
Memory/DRAM
Main Memory Size
growth @60%/year
8MB 16 4
16MB 32 8 2
32MB 16 4 1
64MB 8 2
Memory/System
128MB growth @25%/year 4 1
256MB 8 2
Feb. 11th. 1998 Junji Ogawa
External
4.0 Standard DRAM
3.0
Power [W]
0.35um
2.35W 8M Macro
I/O Load
2.0 Charging
70%
1.11W
1.0 Re-design
0
8 32 64 128 256
1 16 I/O width
Feb. 11th. 1998 Junji Ogawa
Page 16
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
1.11W 70%
Load 1pF
0.78W
depend on I/O No.
Load 1pF (Column)
75% depend on I/O
No.
(Row)
15%
Independen
External use of 8M Macro t
Standard DRAM Macro Re-design & Shrink on I/O No.
M32R/D(Mitsubishi)
・0.45µm DRAM
・32-bit RISC CPU
+ 16Mbit DRAM
2
・Die Size: 153.7mm
Feb. 11th. 1998 Junji Ogawa
Page 17
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
A
B
1500 MCU Core
E
E (TV)
500 H
D DRAM
E’ Rich
K
150
C
F
50
L J (HDD)
2 4 8 32 74
16
DRAM Size (M bits )
Feb. 11th. 1998 Junji Ogawa
e
Ar
M
100 Mb 0.18 um
D RA MDL Technology
0.25 um
0.35 um A
1 Pure Logic
0. Technology
10 Mb B
5
D
C 0.0
MDL Process
SRAM
1 Mb
10 K 100 K 1M 10 M Gates
Feb. 11th. 1998 Junji Ogawa
Page 18
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
10mm
B
E
Cost Effective
Region? G
0
0.50 0.35 0.25 0.18 Rule(um)
Feb. 11th. 1998 Junji Ogawa
Page 19
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
Parallel to Serial
Sift Register
BUS
CRT RAM CPU
Time Share
変
換
CPU efficiency 50%
BUS
SAM
CRT CPU
RAM
Conditional Dual Port )
1024 bit transfer @100ns
CPU efficiency 95%
(b) 2D Graphic System used VRAM
Feb. 11th. 1998 Junji Ogawa
Column Dec.
(Serial Port)
A mp.
SAM Sout/Sin
S/A
A mp.
Dout/Sout
R
o (Random Port)
w
D Cell A rray
e
c
.
Page 20
Stanford CS Junji Ogawa MH students Feb. 11th. 1999
Summary
・Passive 1Tr1C cell leads all the features of dynamic
circuits and design complexity.
・The row circuits is fully different from SRAM.
Page 21