Free A320 Oral Questions 2001
Free A320 Oral Questions 2001
com
Airbus & Boeing Aircraft Training Downloads
AIRBUS A319/320/321
Sample Oral Questions
January 1, 2001
(Updated 1/18/01)
1. What is the minimum height for autopilot engagement after takeoff (SRS indicated)? PHB 2.13.1
2. What are the maximum winds for an autoland approach, landing, and rollout? PHB 2.13.3 & 2.3.1
Headwind 30 knots
Tailwind 10 knots
Crosswind other than CAT II/III 20 knots
Crosswind CAT II/III 10 knots
3. What is the maximum takeoff weight for the A319/320/321? PHB 2.2.2
4. What is the maximum landing weight for the A319/320/321? PHB 2.2.2
5. What are the maximum flaps/slats extended speeds (V FE) for the A319/320/321? PHB 2.4.1
Normal Takeoff Note: At heavy takeoff weight, the S speed on the A321 may be higher than the MAX speed of
CONF 1+F (225 knots). In this case, continue to accelerate. On reaching 210 knots the automatic flap retraction
will occur and the MAX speed will move to 235 knots (PHB 18.3.2).
6. What is the turbulence penetration speed at or above 20,000 feet for the A319/320, A321 PHB 2.4.1
A319/320 A321
At or above 20,000 feet 275 KIAS/.76M 300 KIAS/.76M
Below 20,000 feet 250 KIAS 270 KIAS
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
OPERATION LIMITS
Maximum 90 degree crosswind componend (including gusts) for takeoff and landing: 29 knots
Maximum 90 degree crosswind component (including gusts) for CAT II/III approaches: 10 knots
Limiting tailwind component for takeoff and landing: 10 knots
Maximum operating altitude: 39,000 feet
SPEED LIMITS
Maximum operating airspeed (VMO): 350 KIAS
Maximum operating mach number (MMO): 0.82M
Maximum gear extension speed (VLO): 250 KIAS
Maximum gear retraction speed (VLO): 220 KIAS
Maximum gear extended speed (VLE): 280 KIAS/0.67M
FUEL
A319/320 Usable Fuel Tank Quantity: 42,000 lbs
A321 Usable Fuel Tank Quantity: 52,500 lbs
Maximum allowable fuel imbalance between left and right wing fuel tanks: 1,000 lbs
FLIGHT CONTROLS
Maximum operating altitude with slats, or flaps and slats extended: 20,000 feet
POWERPLANT
Minimum oil quantity for dispatch: 12.5 quarts
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
7. Exterior Intermediate Inspection – at each intermediate stop where a crew change does not occur,
one flight crew member must ensure the aircraft condition is acceptable for flight (free of damage and
fluid leaks). In addition, a flight crew member must check: PHB 3.1.3
8. What would be required if the battery voltage is less than 25.5 volts, during preflight? PHB 3.3
Check on ECAM ELEC page, battery contactor closed and batteries charging.
After 20 minutes:
9. During the preflight inspection, the flight crewmember notes one of the gear collars is missing,
he/she should: PHB 3.4.1
The flight may proceed if the crew ensures that all 3 gear collars/pins are removed from the landing gear.
10. Can APU BLEED air be selected if ground air is connected? PHB 3.4.1
11. How should the ADF/VOR sel on the GLARESHIELD be positioned for all phases of flight? PHB 3.4.1
12. During the FLIGHT CONTROLS check, ensure full sidestick displacement is held for sufficient time
for full control surface travel to be reached. Accomplish this check in a slow and deliberate manner (T
or F) PHB 3.8
True. When full sidestick (or rudder deflection greater than 22 degrees) is applied, the F/CTL page is automatically
shown for 20 seconds.
OFF – To be used for bare and dry runways where landing distance is not a factor
LO – To be used when moderate deceleration is required
MED – to be used for contaminated runways or when landing distance is a factor
MAX – Not to be used for landing
14. Before switching the batteries to OFF during the Securing Checklist, the crew should wait until the
APU flap is fully closed. This will take approximately ___ minutes after the APU AVAIL light
extinguishes. PHB 3.16
15. Is it permissible to have frost adhering to the underside of the wings? PHB 3a.1.2
Frost on underside of wings is permitted if frost layer does not extend outside of the fuel tank area, and thickness
does not exceed 3mm (approximately 1/8 inch).
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
16. If icing conditions are anticipated, or if airframe icing is occurring when should WING ANTI-ICE be
selected ON? OFF? PHB 3a.1.3
17. When a digital computer behaves abnormally, the flight crew may be able to stop the abnormal
behavior by interrupting the power supply to the processor for a short time (approx 10 seconds). Most
computers can be reset with a pb; however, for some systems the only way to interrupt the electrical
power is to pull the associated circuit breaker. Where would the pilot find this procedure? PHB 3b.2.1
18. What flight deck lighting is available if normal electrical power is lost? PHB 5.15.1
19. Opening a cabin entry/service door from the outside with the escape slides armed will ___ ? PHB
5.21.1
Each door is equipped with a single lane escape slide or slide-raft. A slide arming lever connects the slide to the
floor brackets when in the ARMED position. If the door is opened from the inside while the slide is armed, the door
is pneumatically assisted and the slide will inflate and deploy automatically. The slide may be inflated manually if
auto mode fails. Opening the door from outside disarms the door and slide.
20. Engine continuous ignition is automatically provided when ENG 1 or 2 anti-ice is selected ON (T or
F) PHB 6.2.1
True. Continuous ignition is selected when the valve is opened and the ANTI ICE ENG pb is selected on.
21. The RAIN RPLNT pb is inhibited on the ground with the engines stopped (T or F) PHB 6.2.2
True
22. If WINDOW HEAT is required prior to engine start, how would the pilot select the system ON? PHB
6.1.5
23. In flight, if only one generator is supplying the entire electrical system, the entire galley load is
shed (T or F). PHB 7.1.2
The main galley (A319/320), all galleys (A321), and in-seat power supply are shed.
24. What is the significance of the green collared circuit breakers on the flight deck? PHB 7.1.10
25. When are the aircraft’s batteries connected to the DC BAT BUS? PHB 7.1.7, 7.2.2
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
26. Can the aircraft’s batteries be fully depleted in flight? ___ On the ground? ___ PHB 7.1.4
The battery chargers are powered any time the BAT bus is powered and provide charging when the battery voltage
drops below a set value. Battery automatic cut-off logic prevents complete discharge of the battery when the
aircraft is on the ground and unpowered.
Note: If, when the aircraft is on the ground, at least one ADIRU is supplied by aircraft batteries:
An external horn sounds
The ADIRU and AVNCS light illuminates blue on the EXTERNAL POWER panel
27. If external electrical power is connected and being used by the aircraft, will the EXT PWR pb
remain on after engine start? PHB 7.2.2
The ON light remains illuminated even when the engine generators are supplying the aircraft.
External power has priority over the APU generator. The engine generators have priority over external power.
28. Describe the function of the Ram Air Turbine (RAT), and when does it automatically deploy? PHB
7.1.7
If both main AC buses lose electrical power and the airspeed is above 100 kts, the RAT automatically deploys and
pressurizes the Blue hydraulic system, which drives the hydraulically-driven emergency generator. A generator
control unit controls generator output which is considerably lower than that of the main generators.
Once the emergency generator is up to speed it will supply power to the AS ESS BUS and DC ESS BUS (via the ESS
TR). During RAT deployment and emergency generator coupling (approximately 8 seconds), the batteries supply
power to these buses.
After landing, the DC BAT bus is automatically connected to the batteries when airspeed drops below 100 knots.
When the speed decreases below 50 knots, the AC ESS bus is automatically shed, and power is lost to the CRTs.
The RAT can also be deployed manually by pressing the EMER ELEC PWR MAN ON pb on the overhead panel. The
RAT can only be stowed on the ground.
The RAT can also be extended by depressing the RAT MAN ON pb, on the hydraulic panel. This pb will cause only
the pressurization of the Blue hydraulic system and will not provide emergency electrical power.
29. If EMERG ELEC PWR MAN ON is selected ON with normal A/C electrical power available, what
occurs? PHB 7.1.7
If the pilot activates the RAT, during flight under normal electrical supply, it will assume electrical supply of the AC
and DC ESS and ESS SHED buses. All other buses continue to be powered by their normal channels.
30. An ECAM action calls for the flight crew to disconnect an IDG. Can this IDG be reconnected in
flight? PHB 7.1.2
Each engine drives an Integrate Drive Generator. The IDG converts variable engine speed to constant speed for
optimum generator operation. The IDG oil is cooled by a fuel/oil heat exchanger. The IDG can be disconnected
from its associated engine by the IDG disconnect switch. It can only be reconnected on the ground.
CAUTION:
Holding this pb in for more than approximately 3 seconds may damage the disconnection mechanism
Do not disconnect the IDG when the engine is not operating (or not windmilling) because starting the
engine after having done so will damage the IDG.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
31. What conditions must be met for an engine fire warning to be issued? PHB 8.1.2
Each engine is equipped with two identical detection loops (A & B) each of which contain three heat sensing
elements and a computer (Fire Detection Unit). The sensing elements are located in the pylon nacelle, engine core,
and fan section. The FDU issues a fire warning when both loops detect an overheat in a particular area. If one loop
fails, the fire warning system remains operational with the other loop. A fire warning is also issued if both loops fail
within 5 seconds of each other.
The ECAM will issue appropriate messages if any component of the detection system fails. An engine fire is
indicated by an aural CRC, the illumination of the ENG FIRE pb, and MASTER WARN lights.
Each engine is equipped with two fire extinguishers which are discharged by pressing the associated AGENT DISCH
pb on the respective engine FIRE panel.
32. Can an APU FIRE test be performed with the APU running? PHB 8.2.2
The automatic shutdown of the APU will not occur while the flight crew is performing this test.
The APU is equipped with two identical detection loops (A & B) each of which contain one heat sensing element and
a computer (Fire Detection Unit). The sensing element is located in the APU compartment. The FDU issues a fire
warning when both loops detect an overheat. If one loop fails, the fire warning system remains operational with the
other loop. A fire warning is also issued if both loops fail within 5 seconds of each other.
The APU is equipped with one fire extinguisher which is discharged by pressing the AGENT DISCH pb on the APU
FIRE panel.
On the ground, detection of an APU fire causes automatic APU shutdown and extinguisher discharge. In flight,
there is no automatic APU shutdown, and the extinguisher must be manually discharged.
An APU fire is indicated by an aural CRC and illumination of the APU FIRE pb and MASTER WARN lights.
33. Do both cargo smoke detectors (in one loop) normally have to detect smoke before an alarm
sounds? PHB 8.1.4
Both cargo compartments are equipped with smoke detector loops. The forward compartment contains two smoke
detectors. In the A319/320, the aft compartment contains two loops with two detectors each. In the A321, the aft
compartment contains three loops with two smoke detectors in each. A Smoke Detection Control Unit issues a
smoke warning when two smoke detectors of one loop detect smoke. If one smoke detector fails, the system
remains operational with the other detector.
Cargo smoke is indicated by an aural CRC, the illumination of the MASTER WARN and CARGO SMOKE light on the
CARGO SMOKE panel.
One extinguisher bottle supplies one nozzle in the forward compartment and two nozzles in the aft compartment.
The agent is discharged by pressing either the FWD or AFT DISCH pb.
If the cargo smoke warning is activated in either compartment, the associated isolation valves close and the
extraction fan stops.
34. What is the total usable fuel tank quantity (density at 6.676 lb/gal)? PHB 2.8.1
A319/320 A321
Wing Tanks 27,500 lb 27,500 lb
Center 14,500 lb 14,500 lb
Tank
ACT - 10,500 lb
TOTAL 42,000 52,500 lb
lb
35. When do the wing tank transfer valves automatically latch open? PHB 9.1.7
A319/320 Only: The wing tank transfer valves automatically latch open when the wing inner cell quantity drops
to 1,650 lbs thus allowing the outer cell fuel to drain into the inner cell. The transfer valves open simultaneously in
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
both wings and remain open until the next refueling operation. During steep descents and
acceleration/deceleration, the transfer valves may open prematurely and trigger a LO LVL warning.
36. What electrical power source(s) are required to refuel the aircraft? PHB 9.1.6
A fueling/defueling point and refueling control panel is located under the right wing. The wing tanks can also be
refueled through overwing refueling points. Fueling is normally accomplished automatically by pre-selecting the
required fuel load on the fueling panel. External power, the APU, or battery power can be used for refueling.
37. When do the A319/320 center tank fuel pumps operate in AUTO? PHB 9.1.7
A319/320: Normal fuel feed sequencing is automatic. When there is fuel in all tanks, the center tank feeds the
engines first (even though the wing tank pumps operate continuously).
With the fuel MODE SEL pb in AUTO, the center tank pumps operated for two minutes after both engines are
started to confirm center tank pump operation prior to takeoff. After takeoff, the center tank pumps restart when
the slats are retracted and continue to operate for five minutes after the center tank is empty or until the slats are
extended.
With the MODE SEL pb in MAN, the center tank pumps operate continuously. The crew must select the CTR TK
PUMP pbs OFF when the center tank is empty.
A321: The fuel transfer system controls the flow of fuel from the center tank to the wing tanks, which feed the
engines. The tanks empty in the following sequence:
1. ACT transfers fuel into the center tank
2. Center tank transfers fuel into the wing tanks
3. Wing tanks
With the MODE SEL pb in AUTO, the Fuel Level Sensing Control Unit (FLSCU) has automatic control of the transfer
valve. When the transfer valve is open, fuel from the wing tank pumps flows through the jet pump and creates
suction. This suction moves the fuel from the center tank to the related wing tank. The FLSCU automatically closes
the associated center tank transfer valve when the wing tank is full. The transfer valve reopens the center tank
transfer valve when the engines have used 550 lbs of wing tank fuel.
Automatic control of the transfer occurs after takeoff at slats retraction. It is initiated if the center tank high level
sensor has been dry for 10 minutes and fuel remains in either ACT. Fuel transfer from the ACTs to the center tank
is made by pressurizing the ACT, closing the ACT vent valves, and opening the air shut-off and inlet valves. ACT2
transfers first.
With the MODE SEL in MAN, the center tank transfer valves open. Wing tank overflow must be prevented by
selecting the CTR TK XFR pbs OFF when the wing tanks are full. They must also be selected OFF when the center
tank is empty.
During transfer, if the center tank high level sensor gets wet, transfer from the ACT stops. The transfer valve opens
when the center tank high sensor is dry for ten minutes.
IDG cooling is accomplished by fuel. Some fuel from the high pressure pump passes through the IDG heat
exchanger and returns to the respective wing outer cell (A319/320) or wing tank (A321) through a fuel return
valve. The fuel return valve is controlled by the FADEC which regulates IDG temperature.
A319/320: If the outer cell is full, the recirculated fuel overflows to the inner cell. To prevent wing tank overflow
when the center tank is supplying fuel, the center tank pumps automatically stop when the wing inner cell is full.
This allows the wing tanks to feed the engines until approximately 1,100 lbs of fuel has been used; at which time,
the center tank pumps resume operation.
MODE SEL FAULT (A319/A320/A321): Amber light illuminates, and ECAM caution appears when center tank has
more than 550 lbs of fuel and the left or right wing tank has less than 11,000 lbs.
ACT FAULT (A321): Amber light illuminates and ECAM caution appears when the center tank has less than 6,614
lbs of fuel and one ACT has more than 550 lbs of fuel.
38. Is it permissible for external air to be introduced into the air conditioning system with another
source already supplying air to facilitate increased air flow during hot weather operations? PHB 10.1.4
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
CAUTION: It is possible for external air to be introduced in the system with another source already supplying air.
Crews should exercise caution not to allow simultaneous introduction of external air with another source supplying
the system.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
39. When the PACK FLOW sel (A319/320) or ECON pb (A321) is selected LO (A319/320) or ECON
(A321), the pack flow will go automatically to 100% if the cooling demand cannot be satisfied (T or F)
PHB 10.4
A319/320: Flow reverts to HI regardless of selector position during single pack operation, or if the APU is the
bleed source. The zone controller may override pilot selected pack flow (HI/NORM/LOW) or, it may increase APU
speed or engine idle to meet temperature demands.
A321: The system delivers high flow (40% more than ECON flow) regardless of selector position during single pack
operation, or if the APU is the bleed air source. If the crew selects ECON flow, and the temperature demand cannot
be satisfied, the system delivers normal flow (20% more than ECON flow). The zone controller may override pilot
selected pack flow (NORM/ECON) or, it may increase APU speed or engine idle to meet temperature demands.
40. If available, external electrical power and air should be connected whenever the anticipated time
at the gate exceeds 35 minutes (T or F) FOM 5.12.6
If the anticipated gate time is greater than 35 minutes, do not start the APU during arrival. After parking at the
gate, establish external power followed by external air. Not less than 15 minutes prior to departure, start APU to
allow the disconnect of external electrical power/air.
The DITCHING pb on the pressurization panel, when selected ON, allows the pilot to close all exterior openings
below the flotation line. This will enhance flotation of the aircraft in case of ditching.
42. What is the caution about activating the DITCHING pb on the ground with external (low pressure)
air hooked up and all doors closed? PHB 10.6
If on the ground, with low pressure condition air connected, all doors closed, and the DITCHING pb is switched ON,
a differential pressure will build up.
43. A319/320: When would the crew select the LO position on the PACK FLOW selector? When would
HI be selected? PHB 3.4.1
Note: If the APU is supplying bleed air for air conditioning, pack controllers select high flow (A319/320) or normal
flow (A321) automatically, regardless of selector position.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
44. Name the three hydraulic systems and describe how they are powered. PHB 11.1.2
GREEN
Engine 1 pump
PTU
YELLOW
Engine 2 pump
PTU
Yellow electric pump
Hand pump for cargo door operation
BLUE
Blue electric pump
Ram Air Turbine (RAT)
45. What is the purpose of the Power Transfer Unit (PTU)? PHB 11.1.5
The PTU is a reversible motor-pump located between the Green and Yellow hydraulic systems. It enables the green
system to pressurize the yellow system, and vice versa, without fluid transfer. The PTU is automatically activated
when the differential pump pressure output between the green and yellow systems exceeds a predetermined value
(500 PSI). On the ground, when the engines are not running, the PTU enables the yellow system electric pump to
pressurize the green system.
46. What is the hydraulic source for normal brakes, and when are they available? PHB 11.3.2
Braking is activated either manually by pilot pressure on the brake pedals or automatically through the autobrake
system. Antiskid is available with normal brakes. There is no normal brake pressure indication in the flight deck.
47. When is the alternate brake system automatically selected? PHB 11.3.5
If green hydraulic pressure is insufficient, the yellow hydraulic system is automatically selected to provide alternate
brakes. Braking capability is the same as normal brakes, except for autobraking. A triple brake and accumulator
pressure indicator displays yellow system left and right brake pressure, as well as accumulator pressure.
Alternate brakes can also be provided without antiskid. During alternate braking, the antiskid becomes inoperative:
with electrical power failure
with BSCU failure
if the A/SKID & N?W STRG switch is selected OFF, or
if the brakes are supplied by the yellow accumulator only
If the antiskid is not available, braking is achieved by the pedals, and brake pressure must be limited by
monitoring the yellow system brake and accumulator pressure indicator to prevent wheel locking. If neither normal
nor alternate braking is available, the brake accumulator can provide at least seven full brake applications.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
48. During taxi, if the brakes grab or you experience braking/steering difficulty, what action must be
accomplished? PHB 11.5.5, 3.7
49. After touchdown, where will the Trimmable Horizontal Stabilizer (THS) be positioned? PHB 12.1.2
After touchdown, the system automatically sets pitch trim to zero as the pitch attitude becomes less than 2.5
degrees.
50. If a fault is detected by the SEC or electrical power to a spoiler is lost, the spoiler(s) will: PHB
12.1.3
If a fault is detected by the SEC or if electrical power is lost, the affected spoiler(s) automatically retracts. If
hydraulic pressure is lost, the spoiler(s) either remains at the existing deflection, or at a lesser deflection if forced
down by aerodynamic forces. If a spoiler fails on one wing, the symmetrical panel on the other wing is deactivated.
A green SPD BRK memo appears on ECAM when the speedbrakes are extended. The memo flashes amber if the
speedbrakes are extended when the thrust is above idle.
If an inhibition condition occurs, the speedbrakes retract automatically. To regain control of the speedbrakes, the
inhibition condition must be corrected and the SPEED BRAKE lever must be moved to the RET position for ten
seconds.
53. Full ground spoiler extension occurs during landing when: PHB 12.1.3
The ground spoilers are ARMED by raising the SPEED BRAKE lever. Ground spoiler retraction occurs when the
thrust levers are at idle and the speed brake lever is down, or when at least one thrust lever is advanced above
idle.
Partial Ground Spoiler Extension - During landing, partial spoiler extension occurs when:
Reverse thrust is selected on at least one engine with the other at or near idle, and
One main landing gear strut is compressed
This partial spoiler extension (by decreasing lift), eases compression of the second main landing gear strut, and
consequently leads to full ground spoiler extension.
Full Ground Spoiler Extension – The spoilers extend automatically at touchdown of both main gear or in case of a
rejected takeoff (speed above 72 knots) when:
Both thrust levers are at idle (if the ground spoilers are ARMED), or
Reverse thrust is selected on at least one engine with the other thrust lever at idle (if the ground spoilers
are not ARMED)
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
54. What protections are provided during flight in Normal Law? PHB 12.1.5
55. The low energy warning “SPEED SPEED SPEED” protection system is only available in which flap
configuration? PHB 12.1.5
Low energy warning available in CONF 2, 3, or FULL, between 100’ and 2,000’ AGL when TOGA not selected.
Produces aural “SPEED SPEED SPEED” when change in flight path alone is insufficient to regain a positive flight
path (Thrust must be increased).
56. If the pilot does not select configuration 0 after takeoff, what action will automatically occur? PHB
12.2.4
57. The E/WD has priority over the SD. If the upper ECAM DU fails (or is selected off), E/WD data is
automatically transferred to the lower DU (T or F). PHB 13.1.1
E/WD (Upper Display) Unit Failure – E/WD has priority over the SD. If the upper ECAM screen fails (or is switched
off), E/WD data is automatically transferred to the lower screen.
SD (Lower Display) Unit Failure or One Display Unit Operative – If the lower ECAM screen fails (or is turned off), or
when only one ECAM screen is operative, SD information can be temporarily displayed by:
Pressing and holding the applicable system key on the ECAM control panel
Pressing the ALL button on the ECAM control panel repeatedly until the desired page is displayed.
ECAM/ND Transfer – The ECAM/ND XFR switch on the SWITCHING panel allows the transfer of E/WD or SD data to
the captain’s or F/O’s ND.
Both ECAM Display Units Failed – If both ECAM screens fail or are switched off, the E/WD information can be
transferred to the captain’s or F/O’s ND by the ECAM/ND XFR switch. SD data can be displayed temporarily on the
applicable ND by pressing and holding the applicable system key on the ECAM control panel.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
58. What configuration discrepancies will not trigger an ECAM warning or caution until takeoff thrust is
applied? PHB 13.1.1
If the airplane is not properly configured for takeoff, the following warnings (red) and cautions (amber) are
triggered when the T.O. CONFIG pb is pressed or when takeoff power is applied:
PARK BRAKE ON
FLEX TEMP NOT SET (not displayed if thrust levers are set in the TOGA detent)
59. When configuring for approach and landing, how is the max speed for the next flap lever position
depicted? PHB 13.2.4
An amber = shows the VFE corresponding to the next flap lever position.
60. The weather radar has predictive windshear capability. The system operates when the aircraft is
below ____ feet AGL. PHB 13.3.8
The Predictive Windshear system operates when the aircraft is below 1,500’ AGL. It scans the airspace within 5 nm
forward of the aircraft for windshears. When a windshear is detected, a warning, caution, or advisory message
appears on the PFD and (depending on the range selected on the ND) an icon appears on the ND. Predictive
windshear warning and caution are associated with an aural warning. During takeoff, both warnings and cautions
are available within 3 nm. Alerts are inhibited above 100 knots and up to 50’. During landing, alerts are inhibited
below 50’.
When the WINDSHEAR switch is in AUTO, the Predictive Windshear function is activated. Windshear areas are
detected by the antenna scanning below 2,300’ RA, even if the transceiver selector is set to OFF, and displayed on
the ND if below 1,500’.
Reactive Windshear system: When a FAC detects windshear conditions, it triggers a warning:
“WINDSHEAR” in red on both PFD’s (for at least 15 seconds)
An aural warning, “WINDSHEAR, WINDSHEAR, WINDSHEAR”
When the aircraft configuration is 1 or more, the windshear detection function is operative during:
Takeoff – from lift-off up to 1,300’
Approach – from 1,300’ to 50’
Predictive windshear aural alerts have priority over TCAS, EGPWS, and other FWC aural warnings. They are
inhibited by windshear detection by FAC and stall warning aural messages.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
On ground:
As above, plus pressing the pb either continually or during the, “PULL UP” sequence, makes all aural
warnings sound.
Note: If the flight crew presses this button briefly when a glideslope warning is on, the G/S light extinguishes and
the “GLIDE SLOPE” aural warning (soft or loud) stops.
62. If the pilot fails to follow the flight director command bars during manual flight what will occur?
PHB 14.1.5
63. When ALT CRZ is displayed on the FMA, the autopilot allows altitude to vary by ____ to minimize
thrust variations. PHB 14.1.7
When the autopilot is maintaining the MCDU entered cruise altitude (“ALT CRZ” displayed on the FMA), the A/THR
holds the target Mach, and the altitude varies +/- 50’ to minimize thrust variations.
64. An amber THR LK flashes on the FMA. What does this indicate? PHB 14.1.12
The thrust lock function prevents thrust variations when the autothrust system fails and disengages. The thrust
lock function is activated when the thrust levers are in the CL detent (MCT detent with one engine out) and:
The pilot disengages A/THR by pushing the A/THR pushbutton on the FCU, or
The A/THR disconnects due to a failure.
The thrust is locked or frozen at its level prior to disconnection. Moving the thrust levers out of the CL or MCT
detent suppresses the thrust lock and allows manual control by means of the thrust levers.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
ALPHA FLOOR is a protection that commands TOGA thrust regardless of the positions of the thrust levers. This
protection is available from lift-off to 100 feet RA on approach.
66. After a crew oxygen mask has been used, pressing the RESET control slide cuts off the oxygen
mask microphone (T or F). PHB 15.2.1
RESET/TEST control slide – The crew member presses the slide and pushes it in the direction of the arrow to test
the operation of the blinker, the regulator supply, system sealing downstream of the valve, regulator sealing, and
system operation. Pressing the RESET control slide after the oxygen mask has been used cuts off the oxygen mask
microphone.
67. The Full Authority Digital Engine Control (FADEC) is powered by _____. PHB 16.1.3
The FADEC controls the engine in all operating regimes for optimum fuel efficiency; maintains operating limits both
in forward and reverse thrust; and provides start sequencing.
The system has its own alternator rendering it independent of the aircraft electrical system when the N 2 rpm is
above a set value. If this alternator fails, the FADEC automatically switches over to aircraft electrical power.
Each FADEC is a dual channel (A and B) computer providing full engine management. One channel is always active
while the other is a backup designed to takeover automatically in case of primary channel failure. Each FADEC has
an Engine Interface Unit (EIU) which receives signals from various systems and sources and transmits appropriate
thrust demands to the FADEC.
The FADEC maintains a reference N1 computed as a function of throttle position, ambient conditions, and bleed
configuration. It increases idle speed for bleed demands, high engine or IDG temperatures, and approach
configuration. It also limits engine acceleration/deceleration thus preventing engine stalls or flameouts.
Except during engine start, the FADEC does not provide warning for exceeding an EGT limit.
68. There are five thrust lever positions defined by stops or detents. Each of these detents represents
an upper thrust limit. If a thrust lever is set between two detents, the FADEC selects ____. PHB
16.1.4
The thrust levers are used to set any thrust in manual mode or the maximum thrust limit in automatic mode. There
is no mechanical connection between the levers and the engines. The position of each lever (Thrust Lever Angle –
TLA) is electronically measured and transmitted to the FADEC, which computes the thrust rating limit.
Each of these positions represents an upper thrust limit. If a lever is set in a detent, the FADEC selects the rating
limit corresponding to that detent. If the thrust lever is set between two detents, the FADEC selects the rating limit
corresponding to the higher detent. This limit is displayed on the upper ECAM.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
69. The IDG is cooled by fuel after it passes through the Hydomechanical Fuel Unit (HMU). Excess fuel
is then returned to ____. PHB 16.1.5
A Fuel Return Valve (FRV) is controlled by the FADEC and ensures that there is adequate fuel flow through the IDG
to satisfy cooling requirements. Excess fuel is then returned to the respective outer wing cell.
70. During automatic start interruption, the FADEC will: PHB 16.1.6
During an automatic start, the pilot initiates the process by placing the ENG MASTER switch to ON. The FADEC
controls all sequencing (pack valves, start valve, ignition, fuel valves). If an abnormal start ensues, the FADEC will
interrupt the start process. This will prevent exceeding the start limit(s) and will initiate a new start sequence.
The start sequence is aborted in case of hot start, stalled start, or no ignition.
An automatic start sequence can be interrupted manually by the pilot; however, such action terminates the FADEC
control and sequencing.
During an automatic in-flight start, the FADEC provides ECAM cautions; however, it does not automatically
interrupt the start sequence.
71. Continuous ignition is provided automatically (with the MODE selector in NORM) when: PHB
16.1.7
The ignition system, for each engine, consists of two, identical, independent circuits (A & B). Each circuit is
controlled by the respective FADEC.
During automatic start on the ground, one igniter is activated and the other serves as a backup unless ignition is
insufficient. The FADEC automatically alternates the use of igniters at each start. Ignition to each engine is
provided and terminated automatically. During manual or in-flight automatic start, both igniters are activated.
Continuous ignition is provided automatically (with the MODE selector in NORM) when:
ENG ANTI ICE is selected ON
Engine flameout is detected in flight
The EIU fails
Continuous ignition may be selected manually by positioning the ENG MODE selector to IGN/START. If continuous
ignition is required after an engine is started, it is necessary to cycle the ENG MODE selector to NORM then back to
IGN/START.
72. What are the altitude limits for the APU generator and the APU bleed air? PHB 16.3.1
The APU generator can supply 100% of load up to 25,000’. Above this altitude, there is a slight reduction in
capacity. On the ground, the generator can supply the entire electrical system while it provides bleed air for air
conditioning or engine start. Electrical output has priority over bleed air. Bleed air may be provided up to 20,000’.
In order to improve engine thrust output, the APU can be used to pressurize the aircraft during takeoff.
Limitation: APU air bleed extraction for wing anti-icing is not permitted.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
73. In order to standardize communication during manual flight, standard phraseology is required. If
the pilot flying wanted to use managed speed, he/she would announce: PHB 18.1.3
74. To reduce workload and improve safety, use the full capability of the autoflight, ATS, and FMS
whenever possible (T or F) PHB 18.1.2
True. FMS programming should be accomplished well in advance of high workload flight phases. Both pilots will
monitor the FMA during flight to verify FCU selections. During normal operation, the PF should select the onside
autopilot. Do not allow set up and operation of automated systems to interfere with the primary duties of basic
aircraft control, complying with ATC clearances, and maintaining outside vigilance.
75. In order to expedite taxi, it is permissible for the F/O to taxi the aircraft when the captain is busy
(T or F). PHB 18.2.3
Do not exceed 30 knots on straight tracks and limit speed to approximately 10 knots in turns.
40% N1 maximum break-away thrust.
77. In addition to CRZ altitude, the PROG page displays optimum (OPT) and recommended maximum
(REC MAX) altitudes. Under what circumstances will the use of REC MAX be prohibited? PHB 18.4.3
REC MAX altitude provides 1.3 g protection. Under no circumstances will REC MAX altitude be used when
turbulence is present.
78. The FMGS will reduce the aircraft speed _3_ minutes prior to entering holding, provided speed is
engaged. PHB 18.5.3
The FMS will reduce aircraft speed 3 minutes prior to holding entry. It may be advantageous to request a clearance
to reduce to holding speed (green dot) immediately. This will reduce the required holding time and fuel burn at the
holding fix.
79. The flight crew may only modify VAPP through the MCDU if required under what circumstances? PHB
18.6.5
Non-normal procedure
Ice accretion
Anticipated windshear
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
80. When cleared for an ILS approach, while still a considerable distance from the runway, you desire
to delay configuration of the gear and flaps. The ONLY acceptable technique is the ___. When utilizing
this technique, the altitude above the published glideslope altitude that corresponds to 1 ½ dots and ½
dot respectively is ___ / ___. PHB 18.6.6
LDA approaches must have a usable glideslope to a DA. If the glideslope is inoperative, the approach is not
authorized.
In order to enable the aircraft logic, the LDA with glideslope approaches have been coded in the NAV database as a
LOC.
Note: An autoland from an LDA is not authorized. Only the LDA/DME with glideslope is available at KDCA, the
Rosslyn LDA is not authorized.
82. If the published MDA on an ASR approach is not a multiple of 100, the pilot should round the
minimums up to the next 100’ (T or F) PHB 18.6.14
When the published MDA is not a multiple of 100, round it up to the next 100’ (e.g., 810’ is rounded up to 900’).
Set this “adjusted” MDA in the FCU and use this “adjusted” MDA for the minimum descent altitude. When an
intermediate step-down altitude(s) is designated, set the FCU to the step-down altitude(s), then to the “adjusted”
MDA.
83. Upon landing, the recommended procedure to deactivate the autobrakes system is to ___. PHB
18.7.2
If conditions permit, disengage autobrakes before 20 knots for smoother braking. The recommended deactivation
of autobrake system is accomplished by depressing the brake pedals.
84. If the ECAM message NAV FM/GPS POS DISAGREE is annunciated on takeoff or during ILS
approach, the flight crew should: PHB 21-171
85. The company requires all crewmembers to maintain and carry a valid passport on all flights (T or F)
FOM 4.4.13
86. During flight, when the flight deck crewmember turns the FASTEN SEAT BELT sign off, a flight deck
crewmember will: FOM 4.8.12
When the seat belt sign is turned off, a flight deck crew member will make an announcement advising passengers
company policy requires passengers keep their seat belts fastened at all times when seated.
When the fasten seat belt sign is illuminated in flight, a flight deck crew member will make an announcement
instructing passengers to return to their seats and remain seated with their seat belts fastened.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
87. The captain will brief the entire crew prior to each trip, as well as any new crewmember(s) added
during the trip (T or F) FOM 5.3.3
True. The briefing sets the tone for a positive working environment and as a minimum consists of introducing the
crew and ensuring open communications regarding the operation.
88. Pilots will fly all approaches with the rate of descent and flight parameter defined in the FOM,
unless non-normal conditions require deviation and are briefed. The rate of descent and flight
parameters include: FOM 5.10.9
Rate of Descent - By 1,000 feet AFE, the descent rate is transitioning to no greater than 1,000 fpm.
Flight Parameters - Below 1,000 feet AFE (IMC) or 500 feet (VMC), the aircraft is:
On a proper flightpath (visual or electronic) with only small changes in pitch and heading required to
maintain that path,
At a speed no less than VREF and not greater than VREF + 20 (except when generated by Airbus FMGC)
allowing for transitory conditions, with engines spooled up,
In trim, and
In an approved landing configuration
Execute a go-around when the rate of descent is excessive or the flight parameters can not be maintained.
89. The flight crew will make a pre-arrival announcement after leaving cruise altitude (approximately
20 minutes prior to landing). This alerts the flight attendants the sterile flight deck (NO PED sign) will
occur shortly (T or F) FOM 4.8.13
True. This announcement notifies flight attendants and passengers of ETA and other appropriate information (e.g.,
turbulence, seat belt sign, weather, etc.).
90. Is it permissible for an emergency caregiver to enter the flight deck to communicate directly with a
MedLink physician? FOM 7.16.3
The emergency caregiver may enter the flight deck to communicate directly with a MedLink physician except during
critical phase of flight.
91. In order to notify the flight attendants of an emergency, the flight deck crew would: FOM 7.5.4,
4.8.14
Use the flightdeck-to-cabin signals to communicate an emergency condition. On the Airbus, you would depress the
Emergency Call pb. The “A” flight attendant will proceed to the flight deck immediately, while the remaining flight
attendants will prepare the cabin for an emergency.
92. If an emergency is declared, the flight attendants will expect a flight deck crewmember to provide
them with the TEST information. What does the TEST include? FOM 7.5.4
93. After an emergency landing when an evacuation is not warranted, an announcement should be
made as soon as possible to inform passengers and flight attendants. The recommended wording is:
FOM 7.20
“This is the captain/first officer. Please remain seated with your seat belts fastened”
94. With regard to a Microburst Alert issued by a tower or other ATC facility, you should know that this
alert is nearly 100% accurate (T or F). FOM 10.6.3
True. If not issued specifically for your runway, consider how it may affect your flight path.
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
95. In dealing with windshear or potential windshear, you should know that the average windshear
lasts only ___ minutes. FOM 10.6.3
Do not takeoff or land until conditions improve. Average windshear lasts only 10 – 15 minutes.
96. A Predictive Windshear System (PWS) icon is considered a ___ risk of hazardous convective
weather. QRH OD-4
HIGH
97. During flight, the number 2 autopilot failed. What is your ILS approach capability? QRH OD-5
CAT 3 Single.
98. Using the Takeoff Performance System (TPS) Departure Plan, how can you determine the value to
insert in TO SHIFT field for an intersection departure (e.g., PIT 28LX) FOM 9.4.6
Subtract the runway length corresponding to the depicted runway intersection (28LX) from the total length of the
runway (28L).
Initiate the evacuation by using the passenger address system. “This is the captain, EVACUATE, EVACUATE”, and
press EVAC COMMAND.
100. If your flight package includes a TPS Departure Plan you do not need a final weight and balance (T
or F). FOM 9.1.2, TPS Line Training Guide
False. A final weight and balance message (ACARS/hard copy/ radio relay) is required to provide data not
obtainable from the TPS Departure Plan (e.g., actual weight of aircraft, actual passenger load, actual stab trim).
The TPS should be used for departure only when the final weight and balance message does not cover the actual
takeoff condition (different runway, anti-ice, wind, etc.).
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads
Red Triangle Productions LLC –redtriangle.com
Airbus & Boeing Aircraft Training Downloads
Red Triangle Productions LLC – redtriangle.com Airbus and Boeing Aircraft Training Downloads