GREEK ALPHABET (Capitals in brackets)
a   : alpha (A)                      i   : iota (I)                   r   : rho (R)
b   : beta (B)                       k   : kappa (K)                  s   : sigma (also V) (S)
g   : gamma (G)                      l   : lambda (L)                 t   : tau (T)
d   : delta (D)                      µ   : mu (M)                     u   : upsilon (U)
e   : epsilon (E)                    n   : nu (N)                     j   : phi (F)
z   : zeta (Z)                       x   : xi (X)                     c   : chi (C)
h   : eta (H)                        o   : omicron (O)                y   : psi (Y)
q   : theta (Q)                      p   : pi (P)                     w   : omega (W)
                                                SET THEORY
Î     : “is an element of”          ℤ : Integers                       ½ ½ : cardinality (size)
Ï     : “not an element of”         ℤ+ : Positive Integers             ½ : “such that” (*)
Ç     : Intersection                ℤ -
                                         : Negative  Integers          “:” : “such that” (*)
È     : Union                       ℝ : Reals                          ´ : Cartesian (Cross) Product
Í     : Subset                      ℝ  +
                                         : Positive Reals              \     : Set Exclusion
Ì     : Strict/Proper Subset        ℝ  -
                                         : Negative  Reals             r     : Symmetric Difference
Ê     : Superset                    ℚ    : Rational  Numbers           Ä : Tensor Product
É     : Strict Superset             ℚ  +
                                         : Positive Rationals          (x, y) : open interval (*)
                                    ℚ- : Negative Rationals            [x, y] : closed interval
Æ     : Empty Set (*)
{ }   : Empty Set (*)               ℕ    : Natural  Numbers            (x, y] : open-closed interval
                                    ℕ : Positive Naturals (*)
                                       *
                                                                       [x, y) : closed-open interval
ÃX    : Power Set of X (*)
2X    : Power Set of X (*)          ℕ : Positive Naturals (*)
                                       +
          Set Notation : { xÎX | “condition on x”} – The subset of X that satisfies the condition.
       Cartesian Product : A ´ B = { (x, y) | xÎA, yÎB } – The set of ordered pairs from A and B.
                 Power set of X : ÃX = { S | S Í X } = 2X – The set of subsets of X.
                                          Note : {{}} ¹ Æ ¹ {Æ}
                                         BINARY OPERATORS
< : less than                        ³ : greater than or equal to     ½ : Divides (*)
> : greater than                     ¹ : Not Equal                    » : Approximately Equal to
£ : less than or equal to            º : Equivalence
                               LOGICAL OPERATORS & QUANTIFIERS
"   : ”for all”                      ® : Logical Implication (*)      ¬ : Negation
$   : “there exists”                 « : 2 way Logical Imp’n (*)      Å : Exclusive Or
Ù   : “and”                          Û : “if and only if” (*)
Ú   : “or”                           Þ : implication (*)
                                              MISCELLANEOUS
∴   : “therefore”                             : floor function        [ xR ] : Equivalence class of x
∵   : “because”                               : ceiling function               with respect to R
                                                                          +
¥   : infinity                                : angled brackets           ,-. 𝑓(𝑖)   : summation from
ƒ   : function                       ( )      : round brackets                         i=1 to n of f(i)
°   : composite function             [ ]      : square bracket            0∈2 𝑓(𝑥)   : summation   over X
±   : plus or minus                  { }      : curly brackets                         of f(x)
!   : factorial                      (x, y)   : ordered pair (*)
                                            𝑓: 𝐴 → 𝐵, 𝑥 ↦ 𝑓(𝑥)
                    The function f maps from the set A (Domain) to the set B (Codomain),
                                       such that xÎA maps to f(x)ÎB.
*Note the similarities between Æ & {}, ℕ+ & ℕ*, ‘½’ & ‘:’, ÃX & 2X, ® & Þ, « & Û, divides &
such that (‘|’), and also between the open interval and the ordered pair (“(x, y)”). All symbols must be
taken in context and may be interchanged between different sources and texts.