20/07/1441
Seismic Loads
ECP (201)
Forces Resulting From Earthquake
Z Fb (z)
X
Fb (x)
Y
Fb (y)
Characteristics of Earthquake Resistant Buildings (ECP 201):
•Cases of Neglecting earthquake effect
1-Wall bearing buildings مباني الخوائط الحاملة
2-For residential buildings satisfying the following conditions: المباني السكنية التي
تحقق الشروط التالية
- Height from foundation level < 10 m (zone 1)
< 8 m (zone 2)
- Columns and shear walls extend from foundation to top storey level
- Columns with adequate rigidity in both directions
- Perimeter columns and staircase columns are connected to beams with
width ≥ 25 cm
- Structural detailing presented in ECP 203 should be fulfilled to ensure
adequate Ductility.
م03:54 14/03/2020
1 A.EL.
20/07/1441
Structural Systems Resisting Lateral Loads*
2-D Frames,
Space Frames,
Shear Walls,
Coupled Shear Walls,
Wall-Frame,
Framed Tube
*After Smith.S & Coull A , Jhon willy sons
(1991) م03:54 14/03/2020
Essential Factors for Conceptual design:
•Simplicity of structural system )(البساطة االنشائية
•Uniformity and symmetry )(االنتظام و التماثل
•Resistance and rigidity in both directions )(مقاومة و جسائة في االتجاهين
•Resistance and rigidity against Torsion )( مقاومة و جساءة عزوم اللي
•Rigid Diaphragm effect in all storeys )(تأئير لوحي في منسوب االدوار
•Suitable foundation system )(اساسات مناسبة
م03:54 14/03/2020
2 A.EL.
20/07/1441
Structural regularity االنتظام االنشائي:
Structures are classified to Regular or Irregular
1-Conditions for Regularity in Plan شروط انتظام المسقط االفقي
•Masses and Rigidity are almost symmetrical in 2 perpendicular directions
•Plan is regular (setback area ≤ 5% regular floor )
•Slab is rigid enough to distribute loads on vertical elements (columns & shear walls)
•Plan dimensions ratio Lx/Ly ˃ 4 ) Lx ˃ Ly (
•Center of mass and center of rigidity should fulfill:
eox / Lx ˃ 0.15
eox
Ly
eoy / Ly ˃ 0.15 eoy
Lx
Center of Mass
Center of Rigidity م03:54 14/03/2020
2 -Conditions for Regularity in Elevation شروط انتظام المسقط الرأسي
•All vertical structural elements should continue from foundation level to top of structure
(or setback level)
•Horizontal Rigidity should be kept constant or regularly decreased not less than 75% of
the above floor
•Mass of each floor not differ +- 50% of next floor
•Uniform setback not more than 20% previous floor area (refer to figure 8-3)
م03:54 14/03/2020
3 A.EL.
20/07/1441
Basic Representation of Earthquake Action (2-4-8)
• Earthquake motion at a given point on the earth surface is represented by an
elastic ground acceleration response spectrum, called
“Elastic Response Spectrum". طيف التجاوب المرن
• The shape and forces resulting form the elastic response spectrum is taken to
ensure:
i- No-collapse requirement ()عدم االنهيار
ii- Damage limitation requirement. )(الحد من التصدعات
iii- Increase earthquake safety. )(زيادة االمان الزلزالي طبقا الهمية المبني
• The horizontal seismic action is described by two perpendicular components
assumed as being independent and represented by the same response
spectrum.
• All structures in A.R.E. should be designed to resist seismic forces calculated
according to response spectrum curve
TYPE1 ((لجميع مناطق الجمهورية
TYPE2 ( كم بمحاذاة الساحل40 (للماطق الساحلية علي البحر المتوسط لمسافة
م03:54 14/03/2020
WHAT IS RESPONSE SPECTRUM ?
Response spectrum is a plot of the maximum response ( maximum displacement,
velocity, acceleration or any other quantity of interest) to a specified load function
( earth quake load function) for all possible Single degree of freedom systems
mass
d (deformation),
v (velocity),
a ( acceleration)
F(t)
Earthquake
م03:54 14/03/2020
4 A.EL.
20/07/1441
Single Degree Un-damped Harmonic Excitation (READ ONLY)
δ δ δ δ
δ٫ δ᾽٫ δ’’
K W
m
E,I H
δ
Kδ mδ’’
1st Mode Shape
(Dynamically one degree of freedom system)
Un-damped Free Oscillator , Free Body diagram
Summing up forces
mδ’’ + k δ = 0
m = W/g mass of body δ= displacement
K = Spring stiffness δ’’= acceleration
Solution of above equation is:
δ(t) = A cos ωt + B sin ωt ( A, B are constants refer to Dynamic Analysis course )
ω = Fundamental Frequency cycles/sec ( in case of one degree of freedom)
Mode Shape =( shape of deflection corresponding to each frequency)
T = ω / 2π Fundamental cyclic period ( for single degree of freedom system)
م03:54 14/03/2020
RESPONSE SPECTRUM Chart ?
Acceleration mass x acc. = Force
mass a
Structure Single Degree of T
freedom Natural (Fundamental)Frequency (T1)
The X-axis is the Fundamental Period of the structure (T),
The Y-axis is the maximum response required ( acceleration).
To determine the response from any available spectral chart for a specified earth
quake , it is required to know only the Natural frequency (FUNDAMENTAL PERIOD)of
the system.
م03:54 14/03/2020
5 A.EL.
20/07/1441
Elastic Response Spectrum
طيف التجاوب المرن
R =1
Horizontal Elastic Table ( 8 - )أ Vertical Elastic Response
Response Spectrum Spectrum
طيف التجاوب االفقي المرن طيف التجاوب الرأسي المرن
Design Response Spectrum
طيف التجاوب التصميمي المرن
R˃1
Horizontal Design Elastic For all structures Vertical Design Elastic
Response Spectrum except Water Tanks
Response Spectrum
Table ( 10 - 1 )
طيف التجاوب االفقي المرن طيف التجاوب الرأسي المرن
م03:54 14/03/2020
TYPE1
لجميع مناطق الجمهورية
م03:54 14/03/2020
6 A.EL.
20/07/1441
TYPE2
كم40 للمناطق الساحلية علي البحر المتوسط لمسافة
بمحاذاة الساحل
م03:54 14/03/2020
Factors affecting Seismic forces:
• Soil Classification: Table (8-1)
• Earthquake Zones: Table (8-2)
• Soil Factor S: Table (8-3)
• Damping Factor : Table (8-4)
• Building Importance Factor :Table(8-9)
• Force Reduction factor R: Appendix (8—) أ
(R is used in Design Spectrum for elastic analysis)
م03:54 14/03/2020
7 A.EL.
20/07/1441
Factor Symbol Code ref.
Soil Classification A (Rock), Table (8-1)
(Nspt, Cu, Vs,30) B (Sand, Gravel) ,…
C, D, and E
Earthquake Zone Zone 1 ag = 0.10 g Table (8-2A)
Zone 2 ag = 0.125 g Table (8-2B)
Zone 3 ag = 0.15 g
Zone 4 ag = 0.20 g
Zone 5A ag = 0.25 g
Zone 5B ag = 0.30 g
Soil Factor S S=1 to 1.8 Table (8-3A)
(according to soil classification Table (8-3B)
A,B,…)
م03:54 14/03/2020
Factor Symbol Code ref.
Damping Factor =0.95 to 1.20 Table(8-4)
(Type of building) v =0.65 to 1.0
معامل االضمحالل Reinforced concrete (=1.0 , v=0.70)
Pre stressed conc. (=1.05, v=0.75)
Building Importance I ( Hospitals, Power stations …..) I =1.4 Table(8-9)
Factor : I II (Schools, Halls, Mosques,.. ) I =1.2
III (Ordinary buildings…) I =1.0
IV (low importance building, Agricultural) I
=0.8
Force Reduction Bearing walls carry vertical loads , shear Appendix
walls carry horizontal load
Factor : R (8-A)
R=4.5
3-D frame system and Shear Walls R=5
Frames with limited Ductility R=5
Frames with enough Ductility R=7, م03:54 14/03/2020
……..
8 A.EL.
20/07/1441
Methods of Analysis
1- Simplified Modal Response Spectrum
)طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ
(will be considered in this course)
2- Multi –Modal Response Spectrum Method
)طريقة طيف التجاوب المركب ( متعدد االنماط
3- Time History Method طريقةالتحليل الديناميكى الزمنى
NOTE:
All seismic forces calculated are ULTIMATE loads.
For using these forces in working cases divide by (1.4)
م03:54 14/03/2020
Simplified Modal Response Spectrum
)طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ
م03:54 14/03/2020
9 A.EL.
20/07/1441
Seismic Loads ECP (201)
*Simplified Modal Response Spectrum
)طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ
Dynamic Forces. Static Forces
Horizontal Seismic forces can be calculated by either:
a. Elastic Horizontal Response spectrum. طيف التجاوب االفقي المرن
b. Elastic Vertical Response spectrum. طيف التجاوب الرأسي المرن
c. Horizontal Design Spectrum for Elastic analysis. طيف التجاوب التصميمي االفقي
d. Vertical Design Spectrum for Elastic analysis. طيف التجاوب التصميمي الرأسي
Stress
Strain
Elastic region Plastic region
Note:
Forces from Design Spectrum < Forces from Elastic Spectrum due to the capability
of structure to resist seismic forces in plastic region
م03:54 14/03/2020
*Simplified Modal Response Spectrum
)طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ
Conditions for application of method:
1. The structure can be modeled by 2 planer perpendicular models (مستويين
)متعامدين
2. The structure fulfills conditions of uniformity in
HL. Plans (8-6-3-2)& in VL. Plans (8-6-3-3)
)(يحقق شروط انتظام المسقط االفقي و المسقط الرأسي
3. The Fundamental Period T1 of the structure in each direction
:(ان يكون الزمن الدوري االساسي في كل من االتجاهين أقل من او يساوي التالي
T1 ≤ 2 seconds T1≤4 Tc (Table 8-3)
م03:54 14/03/2020
10 A.EL.
20/07/1441
Simplified Modal Response Spectrum
)طريقة طيف التجاوب المبسطة (طريقة الحمل االستاتيكي المكافئ
Z
X
Ultimate Base Shear Force Fb : Fb (x)
Y
Fb = Sd (T1) λ W / g Fb (y)
Sd(T1) = calculate according to item (8-4-2-5) OR item (8-2-4-6) for fundamental
period T1
W = Total Design Load of structure above foundation level
λ = correction factor معامل تصحيح
λ=0.85 for T1 ≤ 2 Tc
or وعدد االدوار اكثر من دورين
λ=1.0 for T1 ˃ 2 Tc
Fundamental Period of Buildings: T1 Appendix(8-B)
T1 Ct H 3/ 4 الطول الموجي االساسي
Ct =0.085 Steel Space Frames
0.075 Concrete Space Frames
0.05 other types
H = Height of building from top of foundation in METERS
م03:56 14/03/2020
*Horizontal Design Spectrum (8-4-2-5)
)طريقة طيف التجاوب النصميمي االفقي ( للتحليل االنشائي المرن
م03:56 14/03/2020
11 A.EL.
20/07/1441
Simplified Modal Response Spectrum
A- Determine the following parameters:
1- Type & profile of Soil Table(8-1) (A,B,C and D)
2- Building Location Table (8-2 – ( & )أ8-2- (بDesign ground acceleration (ag)
3- Soil parameter Table (8-3) ( )أor ()ب S, TB , TC , & TD
4- Damping Factor Table (8-4)
5- Importance Factor I Table (8-9)
6- Fundamental Period of building T Calculate T1 Ct H 3 / 4
7- Reduction Factor R Table (8- )أ
B- Calculate Sd ( choose equation according to T1 Value )
م03:56 14/03/2020
C- Calculate Base Shear (Fb)
W
Calculate for each X- Direction & Y-Direction
W
Fb S d (T )
g
=0.85 if T1 ≤ 2 Tc
=1.0 if T1 > 2 Tc
W=Total Load of Building item[8-7-1 (4)]
Fb
TABLE (8-7) ( % of Live Load)
W =Total Dead Load + Ψ x L.L
Ψ = 1.0 Water tanks , Storage areas, ,…
= 0.5 Schools, Hospitals,…..
= 0.25 Residential
م03:56 14/03/2020
12 A.EL.
20/07/1441
D- Distribution of Base Shear (Fb) along stories
If w is equal for all storys:
W W
Wi Wi
Fi
zi Fi zi
Fbx Fby
م03:56 14/03/2020
Accidental Torsion effects
Li
Mti = ei x Fi
ei = ± 0.05 x L i
ei = Minimum additional
Li
eccentricity Fi x eyi
exi
Fiy
Combination of Components of Earthquake actions
Fy
ET = [ E2(Fx) + E2(Fy) ]½
0.3Fy
OR
Fx 0.3Fx
ET = E(Fx) + 0.30 E(Fy)
E.Q. in X E.Q. in Y
ET = 0.30 E(Fx) + E(Fy) Direction Direction
م03:56 14/03/2020
13 A.EL.
20/07/1441
Seismic Loads ECP (201)
Displacement Analysis
dS = 0.70 R de ds = Storey Displacement
Note: 0.70 to consider working load instead of Ultimate load
Requirements for Earthquake Separation
de = (dx2 + dy2)1/2 de ≤ ΔS Δs
ΔS = 0.7 (0.70 R de) تساوي مناسيب االدوار
ΔS = 0.70 R de عدم تساوي مناسيب االدوار
ΔS ≥4 cm Δs
حائط قص علي االقل2 في حالة وجود حوائط قص علي محيط المباني منهم
متعامدين علي اتجاة الفاصل بكامل ارتفاع المبني
م03:56 14/03/2020
Seismic Loads ECP (201)
Limitations of Inter-storey Drift (dr)
).... منشات بها عناصر غير انشائية قاصفة ( مباني الطوب
drv = dr* v ≤ 0.005 * h
drv = dr* v ≤ 0.0075*h
drv = dr * v ≤ 0.01 * h
ds3
dr = ex. (dr= ds3 - ds2)
h
ds2
V = factor depending on building importance
= 0.4, 0.5 (Table 8-10)
م03:56 14/03/2020
14 A.EL.
20/07/1441
EXAMPLE
Data:
Office Building; Plan(30m 40m) , Height 45m (15 story)
Soil C , Location Cairo
Average partitions load =2.0 kN/m2
F.Cover= 2.5 kN/m2 40m
L.L=2.5 kN/m2
Required:
Base Shear
Shear per floor
Check Stability 30m
Simplified Modal Response Spectrum:
Soil C ,
Cairo ---- Type 1 ------- Zone 3
Table (8-3) ---- S=1.5, TB= 0.1, TC=0.25, TD= 1.2
Building Importance -----1=1
Force Reduction Factor R (Shear walls) (Table8-A) -------R=5
T1=ct H3/4 , Ct=0.05
T1=0.05 (45) ¾ = 0.868 ( T1< 2.0 sec) , ( T1 ≤ 4 *Tc) O.K.
Select Equation Tc < T1 < TD (8-13)
م03:56 14/03/2020
Sd (T1) = 0.15 * g * 1.0 * 1.5 * 2.5/5 * (0.25/0.868)
=0.0324 g
Check
Sd(T1) = 0.0324 g ˃ (0.2 * 0.15 * 1.0 = 0.3 g) (O.K.)
Calculate Base Shear
L.L % =0.5
w = D.L + α * L.L + F. cover + Partitions Load
=(0.25*25) 1.10 + 0.5 * 2.5 + 2.5 + 2.0
= 13.125 kN/m2
W (Total) = 13.125 * 30 * 40 * 15
=236250 kN
Fb = Sd(T1) * λ * W/g
=0.0324g * 1.0 * 236250 /g (T1 ≤ 2Tc . . . λ=1)
=7654.5 kN
م03:56 14/03/2020
15 A.EL.
20/07/1441
Floor Height Lateral S.F B.M.
No m Load kN. kN.m
kN
Lateral Load on each Story:
15 45 956.81 956.81 0
Q (Story Height) =Fb* Hi(story) / Σ Hi 14 42 893.03 1849.84 2870.4
13 39 829.24 2679.08 8420
Σ Hi = (3+6+9+…..+45) 12 36 765.45 3444.53 16457
=360 11 33 701.66 4146.19 26791
10 30 637.88 4784.06 39229
Q(3) = 7654.5 * 3 / 360 9 27 574.09 5358.15 53582
=63.79kN 8 24 510.30 5868.45 69656
7 21 446.51 6314.96 87261
Q(6) = 7654.5 * 6 / 360 6 18 382.73 6697.69 106206
=127.58 kN 5 15 318.94 7016.63 126299
….. 4 12 255.15 7271.78 147349
Q(24) =7654.5 * 24 / 360 3 9 191.36 7463.14 169164
=510.3 kN 2 6 127.58 7590.71 191554
1 3 63.79 7654.50 214326
Q(45) =7654.5 * 45 / 360 base 0 63.79 7654.5 237290
=956.81 kN
م03:56 14/03/2020
SFD:
From top of structure
F15 = 956.82 kN
Q15 =956.82 kN
Q14 =Q15+P14
= 956.81 + 893.02
=1849.83 kN
Q13 = Q14+P13
=1849.83 + 829.24
=2679.07 kN
….
BMD:
From Top of structure
Mi = M(i-1) + Q(i-1)*h
M15=0 + 956.82*3.0 =2870.46 kNm
M14=M15 + Q14*h
=2870.46 + 1849.83 * 3.0
= 8420 kN m
م03:56 14/03/2020
16 A.EL.
20/07/1441
956.81
956.81 15
2870.4375
893.03
1849.84 14
8419.95
2679.08 13 829.24
16457.175
26790.75 3444.53 12 765.45
39229.312 4146.19 11 701.66
5
53581.5 4784.06 10 637.88
69655.95 5358.15 9 574.09
87261.3 5868.45 8 510.30
106206.18
75 6314.96 7 446.51
126299.25 6697.69 6 382.73
147349.12
5 7016.63 5 318.94
169164.45
7271.78 4 255.15
191553.86
25 7463.14 3 191.36
214326
7590.71 2 127.58
237289.5
7654.50 1 63.79
BMD Load
SFD
م03:56 14/03/2020
Thanks
م03:56 14/03/2020
17 A.EL.