0% found this document useful (0 votes)
383 views17 pages

Seismic Loads ECP (201) : Forces Resulting From Earthquake

The document discusses seismic loads and earthquake-resistant building design. It describes how earthquakes cause lateral forces on structures and lists common structural systems that resist these forces, such as shear walls and braced frames. It also outlines factors for conceptual structural design, including simplicity, uniformity, and resistance in all directions. Finally, it explains how earthquake action is represented using response spectra, which relate the natural frequency of a structure to the maximum acceleration it will experience.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
383 views17 pages

Seismic Loads ECP (201) : Forces Resulting From Earthquake

The document discusses seismic loads and earthquake-resistant building design. It describes how earthquakes cause lateral forces on structures and lists common structural systems that resist these forces, such as shear walls and braced frames. It also outlines factors for conceptual structural design, including simplicity, uniformity, and resistance in all directions. Finally, it explains how earthquake action is represented using response spectra, which relate the natural frequency of a structure to the maximum acceleration it will experience.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

20/07/1441

Seismic Loads
ECP (201)

Forces Resulting From Earthquake


Z Fb (z)
X
Fb (x)
Y

Fb (y)

Characteristics of Earthquake Resistant Buildings (ECP 201):

•Cases of Neglecting earthquake effect


1-Wall bearing buildings ‫مباني الخوائط الحاملة‬
2-For residential buildings satisfying the following conditions: ‫المباني السكنية التي‬
‫تحقق الشروط التالية‬
- Height from foundation level < 10 m (zone 1)
< 8 m (zone 2)
- Columns and shear walls extend from foundation to top storey level
- Columns with adequate rigidity in both directions
- Perimeter columns and staircase columns are connected to beams with
width ≥ 25 cm
- Structural detailing presented in ECP 203 should be fulfilled to ensure
adequate Ductility.
‫ م‬03:54 14/03/2020

1 A.EL.
20/07/1441

Structural Systems Resisting Lateral Loads*

2-D Frames,
Space Frames,
Shear Walls,
Coupled Shear Walls,
Wall-Frame,
Framed Tube

*After Smith.S & Coull A , Jhon willy sons


(1991) ‫ م‬03:54 14/03/2020

Essential Factors for Conceptual design:

•Simplicity of structural system )‫(البساطة االنشائية‬

•Uniformity and symmetry )‫(االنتظام و التماثل‬

•Resistance and rigidity in both directions )‫(مقاومة و جسائة في االتجاهين‬

•Resistance and rigidity against Torsion )‫( مقاومة و جساءة عزوم اللي‬

•Rigid Diaphragm effect in all storeys )‫(تأئير لوحي في منسوب االدوار‬

•Suitable foundation system )‫(اساسات مناسبة‬

‫ م‬03:54 14/03/2020

2 A.EL.
20/07/1441

Structural regularity ‫ االنتظام االنشائي‬:

Structures are classified to Regular or Irregular

1-Conditions for Regularity in Plan ‫شروط انتظام المسقط االفقي‬

•Masses and Rigidity are almost symmetrical in 2 perpendicular directions


•Plan is regular (setback area ≤ 5% regular floor )
•Slab is rigid enough to distribute loads on vertical elements (columns & shear walls)
•Plan dimensions ratio Lx/Ly ˃ 4 ) Lx ˃ Ly (
•Center of mass and center of rigidity should fulfill:

eox / Lx ˃ 0.15
eox
Ly
eoy / Ly ˃ 0.15 eoy

Lx

Center of Mass
Center of Rigidity ‫ م‬03:54 14/03/2020

2 -Conditions for Regularity in Elevation ‫شروط انتظام المسقط الرأسي‬


•All vertical structural elements should continue from foundation level to top of structure
(or setback level)
•Horizontal Rigidity should be kept constant or regularly decreased not less than 75% of
the above floor
•Mass of each floor not differ +- 50% of next floor
•Uniform setback not more than 20% previous floor area (refer to figure 8-3)

‫ م‬03:54 14/03/2020

3 A.EL.
20/07/1441

Basic Representation of Earthquake Action (2-4-8)

• Earthquake motion at a given point on the earth surface is represented by an


elastic ground acceleration response spectrum, called
“Elastic Response Spectrum". ‫طيف التجاوب المرن‬

• The shape and forces resulting form the elastic response spectrum is taken to
ensure:
i- No-collapse requirement (‫)عدم االنهيار‬
ii- Damage limitation requirement. )‫(الحد من التصدعات‬
iii- Increase earthquake safety. )‫(زيادة االمان الزلزالي طبقا الهمية المبني‬

• The horizontal seismic action is described by two perpendicular components


assumed as being independent and represented by the same response
spectrum.

• All structures in A.R.E. should be designed to resist seismic forces calculated


according to response spectrum curve
TYPE1 (‫(لجميع مناطق الجمهورية‬
TYPE2 (‫ كم بمحاذاة الساحل‬40 ‫(للماطق الساحلية علي البحر المتوسط لمسافة‬
‫ م‬03:54 14/03/2020

WHAT IS RESPONSE SPECTRUM ?


Response spectrum is a plot of the maximum response ( maximum displacement,
velocity, acceleration or any other quantity of interest) to a specified load function
( earth quake load function) for all possible Single degree of freedom systems

mass
d (deformation),
v (velocity),
a ( acceleration)

F(t)

Earthquake

‫ م‬03:54 14/03/2020

4 A.EL.
20/07/1441

Single Degree Un-damped Harmonic Excitation (READ ONLY)


δ δ δ δ
δ٫ δ᾽٫ δ’’
K W
m
E,I H
δ
Kδ mδ’’
1st Mode Shape
(Dynamically one degree of freedom system)
Un-damped Free Oscillator , Free Body diagram
Summing up forces

mδ’’ + k δ = 0

m = W/g mass of body δ= displacement


K = Spring stiffness δ’’= acceleration
Solution of above equation is:
δ(t) = A cos ωt + B sin ωt ( A, B are constants refer to Dynamic Analysis course )

ω = Fundamental Frequency cycles/sec ( in case of one degree of freedom)

Mode Shape =( shape of deflection corresponding to each frequency)


T = ω / 2π Fundamental cyclic period ( for single degree of freedom system)
‫ م‬03:54 14/03/2020

RESPONSE SPECTRUM Chart ?

Acceleration mass x acc. = Force


mass a

Structure Single Degree of T


freedom Natural (Fundamental)Frequency (T1)

The X-axis is the Fundamental Period of the structure (T),


The Y-axis is the maximum response required ( acceleration).
To determine the response from any available spectral chart for a specified earth
quake , it is required to know only the Natural frequency (FUNDAMENTAL PERIOD)of
the system.

‫ م‬03:54 14/03/2020

5 A.EL.
20/07/1441

Elastic Response Spectrum


‫طيف التجاوب المرن‬

R =1
Horizontal Elastic Table ( 8 - ‫)أ‬ Vertical Elastic Response
Response Spectrum Spectrum
‫طيف التجاوب االفقي المرن‬ ‫طيف التجاوب الرأسي المرن‬

Design Response Spectrum


‫طيف التجاوب التصميمي المرن‬

R˃1
Horizontal Design Elastic For all structures Vertical Design Elastic
Response Spectrum except Water Tanks
Response Spectrum
Table ( 10 - 1 )
‫طيف التجاوب االفقي المرن‬ ‫طيف التجاوب الرأسي المرن‬

‫ م‬03:54 14/03/2020

TYPE1
‫لجميع مناطق الجمهورية‬

‫ م‬03:54 14/03/2020

6 A.EL.
20/07/1441

TYPE2
‫ كم‬40 ‫للمناطق الساحلية علي البحر المتوسط لمسافة‬
‫بمحاذاة الساحل‬

‫ م‬03:54 14/03/2020

Factors affecting Seismic forces:

• Soil Classification: Table (8-1)

• Earthquake Zones: Table (8-2)

• Soil Factor S: Table (8-3)

• Damping Factor : Table (8-4)

• Building Importance Factor :Table(8-9)

• Force Reduction factor R: Appendix (8—‫) أ‬


(R is used in Design Spectrum for elastic analysis)

‫ م‬03:54 14/03/2020

7 A.EL.
20/07/1441

Factor Symbol Code ref.

Soil Classification A (Rock), Table (8-1)


(Nspt, Cu, Vs,30) B (Sand, Gravel) ,…
C, D, and E
Earthquake Zone Zone 1 ag = 0.10 g Table (8-2A)
Zone 2 ag = 0.125 g Table (8-2B)
Zone 3 ag = 0.15 g
Zone 4 ag = 0.20 g
Zone 5A ag = 0.25 g
Zone 5B ag = 0.30 g

Soil Factor S S=1 to 1.8 Table (8-3A)


(according to soil classification Table (8-3B)
A,B,…)

‫ م‬03:54 14/03/2020

Factor Symbol Code ref.

Damping Factor  =0.95 to 1.20 Table(8-4)


(Type of building) v =0.65 to 1.0
‫معامل االضمحالل‬ Reinforced concrete (=1.0 , v=0.70)
Pre stressed conc. (=1.05, v=0.75)
Building Importance I ( Hospitals, Power stations …..) I =1.4 Table(8-9)
Factor : I II (Schools, Halls, Mosques,.. ) I =1.2
III (Ordinary buildings…) I =1.0
IV (low importance building, Agricultural) I
=0.8
Force Reduction Bearing walls carry vertical loads , shear Appendix
walls carry horizontal load
Factor : R (8-A)
R=4.5
3-D frame system and Shear Walls R=5
Frames with limited Ductility R=5
Frames with enough Ductility R=7, ‫ م‬03:54 14/03/2020

……..

8 A.EL.
20/07/1441

Methods of Analysis

1- Simplified Modal Response Spectrum


)‫طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ‬
(will be considered in this course)

2- Multi –Modal Response Spectrum Method


)‫طريقة طيف التجاوب المركب ( متعدد االنماط‬

3- Time History Method ‫طريقةالتحليل الديناميكى الزمنى‬

NOTE:
All seismic forces calculated are ULTIMATE loads.
For using these forces in working cases divide by (1.4)

‫ م‬03:54 14/03/2020

Simplified Modal Response Spectrum

)‫طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ‬

‫ م‬03:54 14/03/2020

9 A.EL.
20/07/1441

Seismic Loads ECP (201)


*Simplified Modal Response Spectrum
)‫طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ‬
Dynamic Forces. Static Forces
Horizontal Seismic forces can be calculated by either:

a. Elastic Horizontal Response spectrum. ‫طيف التجاوب االفقي المرن‬


b. Elastic Vertical Response spectrum. ‫طيف التجاوب الرأسي المرن‬
c. Horizontal Design Spectrum for Elastic analysis. ‫طيف التجاوب التصميمي االفقي‬
d. Vertical Design Spectrum for Elastic analysis. ‫طيف التجاوب التصميمي الرأسي‬
Stress

Strain
Elastic region Plastic region
Note:
Forces from Design Spectrum < Forces from Elastic Spectrum due to the capability
of structure to resist seismic forces in plastic region

‫ م‬03:54 14/03/2020

*Simplified Modal Response Spectrum


)‫طريقة طيف التجاوب المبسطة ( طريقة الحمل االستاتيكي المكافئ‬
Conditions for application of method:

1. The structure can be modeled by 2 planer perpendicular models ‫(مستويين‬


)‫متعامدين‬

2. The structure fulfills conditions of uniformity in


HL. Plans (8-6-3-2)& in VL. Plans (8-6-3-3)
)‫(يحقق شروط انتظام المسقط االفقي و المسقط الرأسي‬

3. The Fundamental Period T1 of the structure in each direction


:‫(ان يكون الزمن الدوري االساسي في كل من االتجاهين أقل من او يساوي التالي‬

T1 ≤ 2 seconds T1≤4 Tc (Table 8-3)

‫ م‬03:54 14/03/2020

10 A.EL.
20/07/1441

Simplified Modal Response Spectrum


)‫طريقة طيف التجاوب المبسطة (طريقة الحمل االستاتيكي المكافئ‬
Z

X
Ultimate Base Shear Force Fb : Fb (x)
Y

Fb = Sd (T1) λ W / g Fb (y)

Sd(T1) = calculate according to item (8-4-2-5) OR item (8-2-4-6) for fundamental


period T1
W = Total Design Load of structure above foundation level
λ = correction factor ‫معامل تصحيح‬
λ=0.85 for T1 ≤ 2 Tc
or ‫وعدد االدوار اكثر من دورين‬
λ=1.0 for T1 ˃ 2 Tc
Fundamental Period of Buildings: T1 Appendix(8-B)

T1  Ct  H 3/ 4 ‫الطول الموجي االساسي‬

Ct =0.085 Steel Space Frames


0.075 Concrete Space Frames
0.05 other types
H = Height of building from top of foundation in METERS
‫ م‬03:56 14/03/2020

*Horizontal Design Spectrum (8-4-2-5)


)‫طريقة طيف التجاوب النصميمي االفقي ( للتحليل االنشائي المرن‬

‫ م‬03:56 14/03/2020

11 A.EL.
20/07/1441

Simplified Modal Response Spectrum

A- Determine the following parameters:

1- Type & profile of Soil Table(8-1) (A,B,C and D)

2- Building Location Table (8-2 – ‫( & )أ‬8-2- ‫ (ب‬Design ground acceleration (ag)

3- Soil parameter Table (8-3) (‫ )أ‬or (‫)ب‬ S, TB , TC , & TD

4- Damping Factor  Table (8-4)


5- Importance Factor I Table (8-9)

6- Fundamental Period of building T Calculate T1  Ct  H 3 / 4


7- Reduction Factor R Table (8- ‫)أ‬

B- Calculate Sd ( choose equation according to T1 Value )

‫ م‬03:56 14/03/2020

C- Calculate Base Shear (Fb)


W
Calculate for each X- Direction & Y-Direction
W
Fb  S d (T )   
g
=0.85 if T1 ≤ 2 Tc
 =1.0 if T1 > 2 Tc

W=Total Load of Building item[8-7-1 (4)]


Fb
TABLE (8-7) ( % of Live Load)

W =Total Dead Load + Ψ x L.L

Ψ = 1.0 Water tanks , Storage areas, ,…


= 0.5 Schools, Hospitals,…..
= 0.25 Residential
‫ م‬03:56 14/03/2020

12 A.EL.
20/07/1441

D- Distribution of Base Shear (Fb) along stories

If w is equal for all storys:

W W
Wi Wi
Fi
zi Fi zi

Fbx Fby
‫ م‬03:56 14/03/2020

Accidental Torsion effects


Li
Mti = ei x Fi
ei = ± 0.05 x L i

ei = Minimum additional
Li
eccentricity Fi x eyi
exi
Fiy

Combination of Components of Earthquake actions


Fy
ET = [ E2(Fx) + E2(Fy) ]½
0.3Fy
OR
Fx 0.3Fx
ET = E(Fx) + 0.30 E(Fy)
E.Q. in X E.Q. in Y
ET = 0.30 E(Fx) + E(Fy) Direction Direction

‫ م‬03:56 14/03/2020

13 A.EL.
20/07/1441

Seismic Loads ECP (201)

Displacement Analysis

dS = 0.70 R de ds = Storey Displacement

Note: 0.70 to consider working load instead of Ultimate load

Requirements for Earthquake Separation


de = (dx2 + dy2)1/2 de ≤ ΔS Δs

ΔS = 0.7 (0.70 R de) ‫تساوي مناسيب االدوار‬

ΔS = 0.70 R de ‫عدم تساوي مناسيب االدوار‬


ΔS ≥4 cm Δs
‫ حائط قص علي االقل‬2 ‫في حالة وجود حوائط قص علي محيط المباني منهم‬
‫متعامدين علي اتجاة الفاصل بكامل ارتفاع المبني‬

‫ م‬03:56 14/03/2020

Seismic Loads ECP (201)

Limitations of Inter-storey Drift (dr)


).... ‫منشات بها عناصر غير انشائية قاصفة ( مباني الطوب‬

drv = dr* v ≤ 0.005 * h


drv = dr* v ≤ 0.0075*h
drv = dr * v ≤ 0.01 * h
ds3
dr = ex. (dr= ds3 - ds2)
h
ds2

V = factor depending on building importance


= 0.4, 0.5 (Table 8-10)

‫ م‬03:56 14/03/2020

14 A.EL.
20/07/1441

EXAMPLE
Data:
Office Building; Plan(30m 40m) , Height 45m (15 story)
Soil C , Location Cairo
Average partitions load =2.0 kN/m2
F.Cover= 2.5 kN/m2 40m
L.L=2.5 kN/m2
Required:
Base Shear
Shear per floor
Check Stability 30m

Simplified Modal Response Spectrum:


Soil C ,
Cairo ---- Type 1 ------- Zone 3
Table (8-3) ---- S=1.5, TB= 0.1, TC=0.25, TD= 1.2
Building Importance -----1=1
Force Reduction Factor R (Shear walls) (Table8-A) -------R=5
T1=ct H3/4 , Ct=0.05
T1=0.05 (45) ¾ = 0.868 ( T1< 2.0 sec) , ( T1 ≤ 4 *Tc) O.K.
Select Equation Tc < T1 < TD (8-13)

‫ م‬03:56 14/03/2020

Sd (T1) = 0.15 * g * 1.0 * 1.5 * 2.5/5 * (0.25/0.868)


=0.0324 g
Check
Sd(T1) = 0.0324 g ˃ (0.2 * 0.15 * 1.0 = 0.3 g) (O.K.)

Calculate Base Shear


L.L % =0.5
w = D.L + α * L.L + F. cover + Partitions Load
=(0.25*25) 1.10 + 0.5 * 2.5 + 2.5 + 2.0
= 13.125 kN/m2

W (Total) = 13.125 * 30 * 40 * 15
=236250 kN

Fb = Sd(T1) * λ * W/g
=0.0324g * 1.0 * 236250 /g (T1 ≤ 2Tc . . . λ=1)
=7654.5 kN

‫ م‬03:56 14/03/2020

15 A.EL.
20/07/1441

Floor Height Lateral S.F B.M.


No m Load kN. kN.m
kN
Lateral Load on each Story:
15 45 956.81 956.81 0
Q (Story Height) =Fb* Hi(story) / Σ Hi 14 42 893.03 1849.84 2870.4
13 39 829.24 2679.08 8420
Σ Hi = (3+6+9+…..+45) 12 36 765.45 3444.53 16457
=360 11 33 701.66 4146.19 26791
10 30 637.88 4784.06 39229
Q(3) = 7654.5 * 3 / 360 9 27 574.09 5358.15 53582
=63.79kN 8 24 510.30 5868.45 69656
7 21 446.51 6314.96 87261
Q(6) = 7654.5 * 6 / 360 6 18 382.73 6697.69 106206
=127.58 kN 5 15 318.94 7016.63 126299
….. 4 12 255.15 7271.78 147349
Q(24) =7654.5 * 24 / 360 3 9 191.36 7463.14 169164
=510.3 kN 2 6 127.58 7590.71 191554
1 3 63.79 7654.50 214326
Q(45) =7654.5 * 45 / 360 base 0 63.79 7654.5 237290
=956.81 kN

‫ م‬03:56 14/03/2020

SFD:
From top of structure
F15 = 956.82 kN
Q15 =956.82 kN
Q14 =Q15+P14
= 956.81 + 893.02
=1849.83 kN
Q13 = Q14+P13
=1849.83 + 829.24
=2679.07 kN
….
BMD:
From Top of structure
Mi = M(i-1) + Q(i-1)*h

M15=0 + 956.82*3.0 =2870.46 kNm


M14=M15 + Q14*h
=2870.46 + 1849.83 * 3.0
= 8420 kN m

‫ م‬03:56 14/03/2020

16 A.EL.
20/07/1441

956.81
956.81 15
2870.4375
893.03
1849.84 14
8419.95
2679.08 13 829.24
16457.175

26790.75 3444.53 12 765.45

39229.312 4146.19 11 701.66


5
53581.5 4784.06 10 637.88

69655.95 5358.15 9 574.09

87261.3 5868.45 8 510.30


106206.18
75 6314.96 7 446.51

126299.25 6697.69 6 382.73


147349.12
5 7016.63 5 318.94
169164.45
7271.78 4 255.15
191553.86
25 7463.14 3 191.36
214326
7590.71 2 127.58
237289.5
7654.50 1 63.79

BMD Load
SFD

‫ م‬03:56 14/03/2020

Thanks

‫ م‬03:56 14/03/2020

17 A.EL.

You might also like