Note: I have no responsibility, if these Answers are wrong, so copy this
Share sensex/ (Rm) (Ri) ∑x
x² y² xy
(Y) nifty(X) x y 1.848336
81 4128 n==> 11
83 4169 0.993217 2.469136 0.98648 6.09663 2.45239 Rf 7
87 4210 0.983449 4.819277 0.96717 23.22543 4.73951
88 4272 1.472684 1.149425 2.16880 1.32118 1.69274
92 4210 -1.451311 4.545455 2.10630 20.66116 -6.59687
107 4315 2.494062 16.30435 6.22034 265.83176 40.66405
Step 1st
110 4335 0.463499 2.803738 0.21483 7.86095 1.29953
99 4324 -0.253749 -10 0.06439 100.00000 2.53749 Find out ᾀ,ẞ
95 4189 -3.122109 -4.040404 9.74757 16.32486 12.61458
94 4231 1.002626 -1.052632 1.00526 1.10803 -1.05540
92 4215 -0.378161 -2.12766 0.14301 4.52694 0.80460
90 4200 -0.355872 -2.173913 0.12664 4.72590 0.77363
Step 2
Find out (σ²)
Step 3
Find out % of systematic Ris
Step 4
Step 4
Find out of systematic Risk
Step 5
Find out CAPM and e
Step 6
Find out wether the s
Unde
wrong, so copy this question at your own risk…… :-)
∑y ∑x² ∑y² ∑xy x̅ y̅
12.69677 23.75 451.6828 59.92626 0.168031 1.154252
Find out ᾀ,ẞ
Beta [Σxy-n{(x̅)*(y̅)}]/ where n=11
Σx²-n(x̅)²
Alpha ᾀ=y̅-(ẞ*x̅)
Beta 2.465541
Alpha 0.739966
.===> Regrission Line y=(0.73997+2.46554x)
total risk(σ²) = systematic risk + unsystematic risk
Find out (σ²)
Standard Deviation(σ)
square root of[(Σy²/n -(y̅)²)]
SD(σ) 6.303156
Total risk or Variance (σ²) 39.72978
Find out % of systematic Risk & unsystematic Risk
coeff. Of corelation (r.) Σxy -n(x̅)*(y̅)) /
Sqrt([Σx² - n( x̅)²][Σy² - n(y̅)²])
coeff. Of corelation (r.) 0.571003
P²(i,m)= coeff. Of determination (r²) 0.326045
%of systematic Risk 32.60448 % Because total risk(σ²) = systematic risk + unsystematic risk
%of unsystematic Risk 67.39552 %
100 %
Find out of systematic Risk & unsystematic Risk
So that: total risk = systematic risk + unsystematic risk
systematic risk 12.95369
unsystematic risk 26.77609
Total risk 39.72978
Find out CAPM and expected return
CAPM=Rf+β(Rm-Rf)
CAPM/RR 138.8842
ER 415.5307
Find out wether the security is overvalued or undervalued
đ=ER-RR
đ 276.6464
Undervalued
ematic risk + unsystematic risk
Note: I have no responsibility, if these Answers are wrong, so cop
sensex/ Share (Rm) (Ri) x² y² xy
nifty(X) (Y) x y
4128 81 n==> 11
4169 83 0.993217 2.469136 0.98648 6.0966 2.4524 Rf 7
4210 87 0.983449 4.819277 0.96717 23.2254 4.7395
4272 88 1.472684 1.149425 2.16880 1.3212 1.6927
4210 92 -1.451311 4.545455 2.10630 20.6612 -6.5969
4315 107 2.494062 16.30435 6.22034 265.8318 40.6641
Step 1st
4335 110 0.463499 2.803738 0.21483 7.8609 1.2995
4324 99 -0.253749 -10 0.06439 100.0000 2.5375
4189 95 -3.122109 -4.040404 9.74757 16.3249 12.6146
4231 94 1.002626 -1.052632 1.00526 1.1080 -1.0554
4215 92 -0.378161 -2.12766 0.14301 4.5269 0.8046
4200 90 -0.355872 -2.173913 0.12664 4.7259 0.7736
Step 2
Step 3
Step 4
Step 4
Step 5
Step 6
s are wrong, so copy this question at your own risk…… :-)
∑x ∑y ∑x² ∑y² ∑xy x̅ y̅
1.848336 12.69677 23.751 451.6828 59.92626 0.168031 1.154252
Step 1st
Find out ᾀ,ẞ
Beta [Σxy-n{(x̅)*(y̅)}]/ where n=11
Σx²-n(x̅)²
Alpha ᾀ=y̅-(ẞ*x̅)
Beta 2.465541
Alpha 0.739966
.===> Regrission Line y=(0.73997+2.46554x)
Step 2 total risk(σ²) = systematic risk + unsystematic risk
Find out (σ²)
Standard Deviation(σ)
square root of[(Σy²/n -(y̅)²)]
SD(σ) 6.303156
Total risk or Variance (σ²) 39.72978
Step 3
Find out % of systematic Risk & unsystematic Risk
coeff. Of corelation (r.) Σxy -n(x̅)*(y̅)) /
Sqrt([Σx² - n( x̅)²][Σy² - n(y̅)²])
coeff. Of corelation (r.) 0.571003
P²(i,m)= coeff. Of determination (r²) 0.326045
%of systematic Risk 32.60448 % Because total risk(σ²) = systematic risk + unsyst
%of unsystematic Risk 67.39552 %
100
Step 4
Step 4
Find out of systematic Risk & unsystematic Risk
So that: total risk = systematic risk + unsystematic risk
systematic risk 12.95369
unsystematic risk 26.77609
Total risk 39.72978
Step 5
Find out CAPM and expected return
CAPM=Rf+β(Rm-Rf)
CAPM/RR 138.8842
ER 415.5307
Step 6
Find out wether the security is overvalued or undervalued
đ=ER-RR
đ 276.6464
Undervalued
(σ²) = systematic risk + unsystematic risk