0% found this document useful (0 votes)
960 views8 pages

Statistics for Data Analysis

The document discusses methods for calculating the standard error of estimate and standard deviation. It provides the formulas to calculate standard error of estimate for a regression line as the square root of the sum of squared residuals divided by the number of data points. It also gives several formulas to calculate standard deviation depending on if the data is raw, grouped, or ungrouped data. Standard deviation is a measure of how dispersed the data is from the mean.

Uploaded by

sonu chippa
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
960 views8 pages

Statistics for Data Analysis

The document discusses methods for calculating the standard error of estimate and standard deviation. It provides the formulas to calculate standard error of estimate for a regression line as the square root of the sum of squared residuals divided by the number of data points. It also gives several formulas to calculate standard deviation depending on if the data is raw, grouped, or ungrouped data. Standard deviation is a measure of how dispersed the data is from the mean.

Uploaded by

sonu chippa
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

Standard Error of estimate

Standard error of prediction


Y on X X on Y

  y  yp    x  xp 
2 2

E yx  Exy 
n n

y p  predict valueof y x p  predict value of x

Example : Find the standard error of estimate of y on x by following data

X 1 2 3 4 5
Y 2 5 3 8 7
Solution :

Line of regression of y on x is given by

y = a + bx …(1)

a and b find by formula

Σy = na + b Σx …(2)

Σxy = aΣx + bΣx2 …(3)

xy y p  1.1  1.3x y y 


2
x y x2 p

1 2 1 2 2.4 0.16
2 5 4 10 3.7 1.69
3 3 9 9 5 4
4 8 16 32 6.3 2.89
5 7 25 35 7.6 0.36
 x  15  y  25  x 2
 55  xy  88  y  y  p
2
 9.10

n=5
Putting all value from the table in equation (2) and (3) we get
25 = 5a + 15b
88 = 15a + 55b
On solving a = 1.1 and b = 1.3
Put in equation (1) the line of regression y on x is
y = 1.1 + 1.3x …(4)
 y  y 
2
Now find yp by equation (4) and calculate p

the standard error of estimate of y on x

  y  yp 
2
9.10
E yx    1.349
n 5
Standard Deviation
If  2 is the variance, then , is called the standard deviation, is given by

 X  X   x     x 
2 2

(1) raw data     


n n  n 
(2) when the ungrouped data is given

  f  X  X  
  fx     fx 
2
2 2

  
 
N N  N 

  fd     fd 
2 2

  
N  N 
(3) when the grouped data is given in class interval

  fu     fu 
2 2
X A
 2
   i u
N  N  h

Find standard deviation for following data

Example 1: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59 Mean

57  64  43  67  49  59  44  47  61  59 550
Solution : Mean X    55
10 10

X X  X  X  55 X  X 
2

57 2 4
64 9 81
43 -12 144
67 12 144
49 -6 36
59 4 16
44 -11 121
47 -8 64
61 6 36
59 4 16
Total 662

 X  X 
2
662
standard deviation     8.13
n 10
Example 2 : 8, 9, 15, 23, 5, 11, 19, 8, 10, 12
Solution :

X X2
8 64
9 81
15 225
23 529
5 25
11 121

19 361

8 64

10 100

12 144

120 1714
Total


 x     x 
2

standard deviation  
n  n 

1714  120 
    27.4  5.23
10  10 
Example 3:

Solution :

X f fx X  X  X 8 X  X  f X  X 
2 2

1 3 3 -7 49 147
3 3 9 -5 25 75
5 4 20 -3 9 36
7 14 98 -1 1 14
9 7 63 1 1 7
11 4 44 3 9 36

13 3 39 5 25 75

15 4 60 7 49 196

Total 42 336 585

X
 fx  336  8
N 42

  f  X  X  
2

   585  3.732
N 42
Example 4:

X 10 11 12 13 14
f 3 12 18 12 3
Solution :

X f fx fx 2
10 3 30 300
11 12 132 1452
12 18 216 2592
13 12 156 2028
14 3 42 588
Total 48 576 6960

  fx     fx 
2 2

standard deviation    
N  N 

2
6960  576 
    1 1
48  48 
Example 5:

Class 4-8 8-12 12-16 16-20


Interval
f 3 6 4 7
Solution :

Class f Mid-Value fx X  X  X  13 X  X  f X  X 
2 2

Interval X
4-8 3 6 18 -7 49 147
8-12 6 10 60 -3 9 54
12-16 4 14 56 1 1 4
16-20 7 18 126 5 25 175
Total 20 260 380

X
 fx  260  13
N 20

  f  X  X  
2

   380  4.36
N 20
Example 6 :

Class Interval 0-30 30-60 60-90 90-120 120-150 150-180 180-210


f 9 17 43 82 81 44 24

Solution :

Class f Mid-value X  105 fu f u2


Interval u
X 30
0-30 9 15 -3 -27 81
30-60 17 45 -2 -34 68
60-90 43 75 -1 -43 43
90-120 82 105 0 0 0
120-150 81 135 1 81 81
150-180 44 165 2 88 176

180-210 24 195 3 72 216

Total 300 137 665

  fu     fu 
2 2

standard deviation      i
N  N 
665  137 
    30
300  300 
 42.5
Exercise Find standard deviation for following data

Q.1

Q.2

You might also like