Standard Error of estimate
Standard error of prediction
Y on X X on Y
y yp x xp
2 2
E yx Exy
n n
y p predict valueof y x p predict value of x
Example : Find the standard error of estimate of y on x by following data
X 1 2 3 4 5
Y 2 5 3 8 7
Solution :
Line of regression of y on x is given by
y = a + bx …(1)
a and b find by formula
Σy = na + b Σx …(2)
Σxy = aΣx + bΣx2 …(3)
xy y p 1.1 1.3x y y
2
x y x2 p
1 2 1 2 2.4 0.16
2 5 4 10 3.7 1.69
3 3 9 9 5 4
4 8 16 32 6.3 2.89
5 7 25 35 7.6 0.36
x 15 y 25 x 2
55 xy 88 y y p
2
9.10
n=5
Putting all value from the table in equation (2) and (3) we get
25 = 5a + 15b
88 = 15a + 55b
On solving a = 1.1 and b = 1.3
Put in equation (1) the line of regression y on x is
y = 1.1 + 1.3x …(4)
y y
2
Now find yp by equation (4) and calculate p
the standard error of estimate of y on x
y yp
2
9.10
E yx 1.349
n 5
Standard Deviation
If 2 is the variance, then , is called the standard deviation, is given by
X X x x
2 2
(1) raw data
n n n
(2) when the ungrouped data is given
f X X
fx fx
2
2 2
N N N
fd fd
2 2
N N
(3) when the grouped data is given in class interval
fu fu
2 2
X A
2
i u
N N h
Find standard deviation for following data
Example 1: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59 Mean
57 64 43 67 49 59 44 47 61 59 550
Solution : Mean X 55
10 10
X X X X 55 X X
2
57 2 4
64 9 81
43 -12 144
67 12 144
49 -6 36
59 4 16
44 -11 121
47 -8 64
61 6 36
59 4 16
Total 662
X X
2
662
standard deviation 8.13
n 10
Example 2 : 8, 9, 15, 23, 5, 11, 19, 8, 10, 12
Solution :
X X2
8 64
9 81
15 225
23 529
5 25
11 121
19 361
8 64
10 100
12 144
120 1714
Total
x x
2
standard deviation
n n
1714 120
27.4 5.23
10 10
Example 3:
Solution :
X f fx X X X 8 X X f X X
2 2
1 3 3 -7 49 147
3 3 9 -5 25 75
5 4 20 -3 9 36
7 14 98 -1 1 14
9 7 63 1 1 7
11 4 44 3 9 36
13 3 39 5 25 75
15 4 60 7 49 196
Total 42 336 585
X
fx 336 8
N 42
f X X
2
585 3.732
N 42
Example 4:
X 10 11 12 13 14
f 3 12 18 12 3
Solution :
X f fx fx 2
10 3 30 300
11 12 132 1452
12 18 216 2592
13 12 156 2028
14 3 42 588
Total 48 576 6960
fx fx
2 2
standard deviation
N N
2
6960 576
1 1
48 48
Example 5:
Class 4-8 8-12 12-16 16-20
Interval
f 3 6 4 7
Solution :
Class f Mid-Value fx X X X 13 X X f X X
2 2
Interval X
4-8 3 6 18 -7 49 147
8-12 6 10 60 -3 9 54
12-16 4 14 56 1 1 4
16-20 7 18 126 5 25 175
Total 20 260 380
X
fx 260 13
N 20
f X X
2
380 4.36
N 20
Example 6 :
Class Interval 0-30 30-60 60-90 90-120 120-150 150-180 180-210
f 9 17 43 82 81 44 24
Solution :
Class f Mid-value X 105 fu f u2
Interval u
X 30
0-30 9 15 -3 -27 81
30-60 17 45 -2 -34 68
60-90 43 75 -1 -43 43
90-120 82 105 0 0 0
120-150 81 135 1 81 81
150-180 44 165 2 88 176
180-210 24 195 3 72 216
Total 300 137 665
fu fu
2 2
standard deviation i
N N
665 137
30
300 300
42.5
Exercise Find standard deviation for following data
Q.1
Q.2