n
L u( x1 ,..., xn )                   m          pi xi
                                           i 1                             diagram for n=2
  L                                                             x2
            ui        pi          0       for each i 1,..., n
  xi
                                                                m p2
                     n
   L
            m             pi xi       0
                    i 1
                                                                     x̂2
 n 1 equations, solve for x1 ,..., xn and
       xi        xˆi (p1 ,.., pn , m)
(Marshallian) demand functions                                       0     x̂1           m p1
                                                                                                    x1
                 ˆ (p1 ,.., pn , m)
                                                                                                1
       xˆi (p1 ,.., pn , m)       uˆ u(xˆ1 ,.., xˆn )
                                  uˆ v(p1 ,.., pn , m)               the indirect utility function
                                                   û            xˆ1        xˆ
                                       vm                   u1       ... un n
                                                   m             m           m
but at the optimum:
                    ui    ˆ pi                vm        ˆ p1 xˆ1 ... pn xˆn
                                                             m           m
                                                                 xˆ1        xˆ               dm
   p1 xˆ1 ... pn xˆn          m                             p1       ... pn n     1
                                                                 m           m               dm
differentiate totally w.r.t. m
                                              vm        ˆ
                                                                                                     2
           xˆi (p1 ,.., pn , m)       uˆ u(xˆ1 ,.., xˆn )
                                      uˆ v(p1 ,.., pn , m)                 the indirect utility function
                                                           xˆ1        xˆn
    Partial derivative w.r.t pj:           vj           u1     ... un
                                                           pj         pj
                        ui    ˆ pi         vj      ˆ p1 xˆ1 ... pn xˆn
                                                        pj         pj
                                                                  xˆ1        xˆ
         p1 xˆ1 ... pn xˆn        m             xˆ j    p1            ... pn n     0          dm 0
                                                                  pj         pj
differentiate totally w.r.t. pj
                                                                  xˆ1        xˆ
                                                         p1           ... pn n         xˆ j
                                                                  pj         pj
                                           vj          ˆ xˆ
                                                              j
                                                                                                           3
 xˆi (p1 ,.., pn , m)      uˆ u(xˆ1 ,.., xˆn )
                           uˆ v(p1 ,.., pn , m)         the indirect utility function
                                vm      ˆ
                                 vj         ˆ xˆ
                                                   j
                                            vj
                                 xˆ j                  Roy’s Identity
                                            vm
René François Joseph Roy
       (1894-1977)
                                                                                        4
                 vm   ˆ                                          v1   ˆ xˆ1
x2                                              x2
m p2                                            m p2
     x̂2                                             x̂2
                             u v(p1 , p2 , m)                                    u v(p1 , p2 , m)
     0     x̂1            m p1                       0     x̂1                m p1
                                  x1                                                  x1
                                                                                            5
               minimise expenditure subject to u(x1 ,..., xn ) u
                                               n
                                  L                pi xi        u u(x1 ,..., xn )
                                           i 1
x2
                                   L
                                               pi          ui    0        for each i 1,..., n
                                   xi
                                      L
     x2                                        u u(x1 ,..., xn )           0
                                  n 1 equations, solve for x1 ,..., xn and
               u u
                                          xi        xi (p1 ,.., pn ,u )
     0    x1                       Hicksian demand functions
                  x1
                                                     (p1 ,.., pn ,u )
                                                                                          6
      xi (p1 ,.., pn ,u )              p1 x1 ... pn xn         e(p1 ,.., pn ,u )   the expenditure function
                                                          x1        x
    Partial derivative w.r.t pj:           ej   xj   p1      ... pn n
                                                          pj        pj
                                                             x1        xn
                        pi        ui            xj        u1    ... un
                                                             pj        pj
                                                                 x1        x
          u(x1 ,..., xn ) u                               u1        ... un n       0       du   0
                                                                 pj        pj
differentiate totally w.r.t. pj
                                           ej   xj             Shephard’s Lemma
                                                                                                          7
For any given utility function u(x1 ,..., xn )
      the indirect utility function                    the expenditure function
                    v(p1 ,.., pn , m)                          e(p1 ,.., pn ,u)
are inverses of each other.
Given p1 ,...pn :         u v(p1 ,.., pn , m)      if and only if   m e(p1 ,.., pn ,u)
                                              vj
in which case:             xˆ j x j     ej
                                              vm
             Shephard’s Lemma
                                             Roy’s Identity
                                                                                         8