2k Factorial Lesson 2
2k Factorial Lesson 2
                                                                          Fall , 2005
                                                                              Page 1
Statistics 514:   2k Factorial Design
                                                2k Factorial Design
            • Involving k factors
            • Each factor has two levels (often labeled + and −)
            • Factor screening experiment (preliminary study)
            • Identify important factors and their interactions
            • Interaction (of any order) has ONE degree of freedom
            • Factors need not be on numeric scale
            • Ordinary regression model can be employed
y = β0 + β1 x1 + β2 x2 + β12 x1 x2 +
                  Where β1 , β2 and β12 are related to main effects, interaction effects defined
                  later.
                                                                                                   Fall , 2005
                                                                                                       Page 2
Statistics 514:   2k Factorial Design
                                                   22 Factorial Design
          Example:
factor replicate
A B treatment 1 2 3 mean
− − (1) 28 25 27 80/3
+ − a 36 32 32 100/3
− + b 18 19 23 60/3
+ + ab 31 30 29 90/3
            • Let ȳ(A+ ), ȳ(A− ), ȳ(B+ ) and ȳ(B− ) be the level means of A and B.
            • Let ȳ(A− B− ), ȳ(A+ B− ), ȳ(A− B+ ) and ȳ(A+ B+ ) be the treatment
                  means
                                                                                           Fall , 2005
                                                                                               Page 3
Statistics 514:   2k Factorial Design
• Notice that
                  Main effect is defined in a different way than Chapter 5. But they are
                  connected and equivalent.
                                                                                            Fall , 2005
                                                                                                Page 4
Statistics 514:   2k Factorial Design
• Similarly
                           1                                1
                       =     (ȳ(A+ | B+ ) − ȳ(A− | B+ )) − (ȳ(A+ | B− ) − ȳ(A− | B− ))
                           2                                2
                  = 12 (ȳ(A− B− ) − ȳ(A+ B− ) − ȳ(A− B+ ) + ȳ(A+ B+ )) =1.67
                  Let CAB     = (1, −1, −1, 1), a contrast on treatment means, then
                                                  AB =Int(AB )= 12 ĈAB
                                                                                                      Fall , 2005
                                                                                                          Page 5
Statistics 514:   2k Factorial Design
A B total mean I A B AB
− − 80 80/3 1 -1 -1 1
+ − 100 100/3 1 1 -1 -1
− + 60 60/3 1 -1 1 -1
+ + 90 90/3 1 1 1 1
where i is an index for treatments and the summation is over all treatments.
                                                                                                 Fall , 2005
                                                                                                     Page 6
Statistics 514:   2k Factorial Design
            • Because effects are defined using contrasts, their sum of squares can also be
                  calculated through contrasts.
                                                                                               Fall , 2005
                                                                                                   Page 7
Statistics 514:   2k Factorial Design
                                                     P          2
                                                                           2
                                                                          y...
            • Total sum of squares: SST =                i,j,k yijk   −    N
            • ANOVA Table
                                        Source of   Sum of      Degrees of       Mean
                                                                                               Fall , 2005
                                                                                                   Page 8
                    k
Statistics 514: 2       Factorial Design
                                           Fall , 2005
                                               Page 9
Statistics 514:   2k Factorial Design
          model resp=A|B;
          run;
          ---------------------------------------------------
                                Sum of
          Source     DF         Squares     Mean Square    F Value          Pr > F
          Model       3     291.6666667      97.2222222       24.82         0.0002
          Error       8      31.3333333       3.9166667
          Cor Total 11      323.0000000
                                                                              Fall , 2005
                                                                                Page 10
Statistics 514:   2k Factorial Design
          A       x1                      B    x2
          -       -1                      -    -1
          +        1                      +     1
y = β0 + β1 x1 + β2 x2 + β12 x1 x2 +
                                                      A     B     AB
                                         y = ȳ.. +     x1 + x2 +    x1 x2
                                                      2     2      2
          i.e. the estimated coefficients are half of the effects, respectively.
                                                                                                     Fall , 2005
                                                                                                       Page 11
                    k
Statistics 514: 2       Factorial Design
                                           Fall , 2005
                                             Page 12
Statistics 514:   2k Factorial Design
                                                      Analysis of Variance
                                                      Sum of           Mean
          Source                            DF        Squares         Square      F Value      Pr > F
Parameter Estimates
                                                 Parameter       Standard
          Variable                 DF             Estimate          Error      t Value      Pr > |t|
                                                                                              Fall , 2005
                                                                                                Page 13
Statistics 514:   2k Factorial Design
                                                     23 Factorial Design
          Bottling Experiment:
factor response
A B C treatment 1 2 total
− − − (1) -3 -1 -4
+ − − a 0 1 1
− + − b -1 0 -1
+ + − ab 2 3 5
− − + c -1 0 -1
+ − + ac 2 1 3
− + + bc 1 1 2
+ + + abc 6 5 11
                                                                                        Fall , 2005
                                                                                          Page 14
Statistics 514:   2k Factorial Design
Main effects:
          2-factor interactions:
          AB : A × B componentwise, AB=.75
          AC : A × C componentwise, AC=.25
          BC : B × C componentwise, BC=.50
                                                                            Fall , 2005
                                                                              Page 15
Statistics 514:   2k Factorial Design
3-factor interaction:
                                           1
                      ABC = int(ABC) =       (int(AB | C+) − int(AB | C−))
                                           2
          = 14 (−ȳ(− − −) + ȳ(+ − −) + ȳ(− + −) − ȳ(+ + −)
          +ȳ(− − +) − ȳ(+ − +) − ȳ(− + +) + ȳ(+ + +))
          =.50
                                                                             Fall , 2005
                                                                               Page 16
Statistics 514:   2k Factorial Design
factorial effects
             A         B      C         treatment   I   A    B    AB    C     AC      BC    ABC
            −         −      −             (1)      1   -1   -1    1    -1       1     1      -1
+ − − a 1 1 -1 -1 -1 -1 1 1
− + − b 1 -1 1 -1 -1 1 -1 -1
+ + − ab 1 1 1 1 -1 -1 -1 1
− − + c 1 -1 -1 1 1 -1 -1 1
+ − + ac 1 1 -1 -1 1 1 -1 -1
− + + bc 1 -1 1 -1 1 -1 1 -1
+ + + abc 1 1 1 1 1 1 1 1
                                                                                               Fall , 2005
                                                                                                 Page 17
Statistics 514:   2k Factorial Design
          Estimates:
                                                                    P
                                                                         ȳi.
                                                  grand mean:
                                                                      23
                                                                P
                                                                    ci ȳi.
                                                   effect   :
                                                                23−1
          Contrast Sum of Squares:
                                                    P
                                                   ( ci ȳi. )2             2
                                        SSeffect =              = 2n(effect)
                                                     23 /n
          Variance of Estimate
                                                               σ2
                                                Var(effect) =
                                                              n23−2
          t-test for effects (confidence interval approach)
                                                                                 Fall , 2005
                                                                                   Page 18
Statistics 514:   2k Factorial Design
          Regresson Model
          Code the levels of factor A and B as follows
          A        x1                   B   x2           C    x3
          -        -1                   -   -1           -    -1
          +         1                   +    1           +     1
                           A     B    C     AB         AC         BC         ABC
          y = ȳ.. +         x1 + x2 + x3 +    x1 x2 +    x1 x3 +    x2 x3 +     x1 x2 x3
                           2     2    2      2          2          2          2
          i.e.    β̂ = effect
                          2
                              , and
                                                           σ2    σ2
                                                 Var(β̂) =     =
                                                           n2k   n23
                                                                                         Fall , 2005
                                                                                           Page 19
                    k
Statistics 514: 2       Factorial Design
                                                                           Fall , 2005
                                                                             Page 20
Statistics 514:   2k Factorial Design
          ;
          proc glm;
          class A B C; model devi=A|B|C;
          output out=botone r=res p=pred;
          run;
          proc univariate data=botone pctldef=4;
          var res; qqplot res / normal (L=1 mu=est sigma=est);
          histogram res / normal; run;
          proc gplot; plot res*pred/frame; run;
          data bottlenew;
          set bottle;
          x1=A; x2=B; x3=C; x1x2=x1*x2; x1x3=x1*x3; x2x3=x2*x3;
          x1x2x3=x1*x2*x3; drop A B C;
                                                                  Fall , 2005
                                                                    Page 21
Statistics 514:   2k Factorial Design
ANOVA Model:
                                                                                           Fall , 2005
                                                                                             Page 22
Statistics 514:   2k Factorial Design
Regression Model:
                                            Parameter   Standard
          Variable                 DF       Estimate      Error    t Value   Pr > |t|
                                                                                   Fall , 2005
                                                                                     Page 23
Statistics 514:   2k Factorial Design
General 2k Design
                                                                                                       Fall , 2005
                                                                                                         Page 24
Statistics 514:   2k Factorial Design
                                                                                                    Fall , 2005
                                                                                                      Page 25
Statistics 514:   2k Factorial Design
            • Estimates:
                                                                        P
                                                                            ȳi
                                                     grand mean     :
                                                                        2k
                  For effect with constrast C   = (c1 , c2 , . . . , c2k ), its estimate is
                                                                   P
                                                                       ci ȳi
                                                      effect = (k−1)
                                                                    2
            • Variance
                                                                   σ2
                                                    Var(effect) =
                                                                  n2k−2
                  what is the standard error of the effect?
                                                                                              Fall , 2005
                                                                                                Page 26
Statistics 514:   2k Factorial Design
            • SST and SSE can be calculated as before and a ANOVA table including SS due to
              the effests and SSE can be constructed and the effects can be tested by F -tests.
Using regression:
            • Introducing variables x1 , . . . , xk for main effects, their products are used for
                  interactsions, the following regression model can be fitted
y = β0 + β1 x1 + . . . + βk xk + . . . + β12···k x1 x2 · · · xk +
The coefficients are estimated by half of effects they represent, that is,
                                                                effect
                                                         β̂ =
                                                                  2
                                                                                                    Fall , 2005
                                                                                                      Page 27
Statistics 514:   2k Factorial Design
                                        Unreplicated 2k Design
                                        Filtration Rate Experiment
                                                                     Fall , 2005
                                                                       Page 28
Statistics 514:   2k Factorial Design
                                            factor
                                        A   B    C   D   filtration
                                        −   −    −   −      45
                                        +   −    −   −      71
                                        −   +    −   −      48
                                        +   +    −   −      65
                                        −   −    +   −      68
                                        +   −    +   −      60
                                        −   +    +   −      80
                                        +   +    +   −      65
                                        −   −    −   +      43
                                        +   −    −   +     100
                                        −   +    −   +      45
                                        +   +    −   +     104
                                        −   −    +   +      75
                                        +   −    +   +      86
                                        −   +    +   +      70
                                        +   +    +   +      96
                                                                      Fall , 2005
                                                                        Page 29
Statistics 514:   2k Factorial Design
Unreplicated 2k Design
            • No error sum of squares available, cannot estimate σ 2 and test effects in both
                  the ANOVA and Regression approaches.
                                                                                            Fall , 2005
                                                                                              Page 30
Statistics 514:   2k Factorial Design
Unreplicated 2k Design
            • Approach 2: Using the normal probability plot (QQ plot) to identify significant
                  effects.
– Recall
                                                                     σ2
                                                  Var(effect)   =
                                                                    2(k−2)
                      If the effect is not significant (=0), then the effect estimate follows
                                  σ2
                      N (0, 2(k−2) )
                   – Assume all effects not significant, their estimates can be considered as a
                                                      σ2
                      random sample from N (0, 2(k−2) )
                                                                                                  Fall , 2005
                                                                                                    Page 31
                    k
Statistics 514: 2       Factorial Design
goption colors=(none);
         data filter;
          do D = -1 to 1 by 2;do C = -1 to 1 by 2;
          do B = -1 to 1 by 2;do A = -1 to 1 by 2;
          input y @@; output;
          end; end; end; end;
         datalines;
         45 71 48 65 68 60 80 65 43 100 45 104 75 86 70 96
         ;
                                                                       Fall , 2005
                                                                         Page 32
Statistics 514:   2k Factorial Design
                                                                       Fall , 2005
                                                                         Page 33
                    k
Statistics 514: 2       Factorial Design
Ranked Effects
                                                                     Fall , 2005
                                                                       Page 35
Statistics 514:   2k Factorial Design
QQ plot
                                                  Fall , 2005
                                                    Page 36
Statistics 514:   2k Factorial Design
          Fit a linear line based on small effects, identify the effects which are potentially
          significant, then use ANOVA or regression fit a sub-model with those effects.
                                                                                                 Fall , 2005
                                                                                                   Page 37
Statistics 514:   2k Factorial Design
          proc sort; by A C;
          proc means noprint;
          var y; by A C;
          output out=ymeanac mean=mn;
                                                                          Fall , 2005
                                                                            Page 38
Statistics 514:   2k Factorial Design
                                        Fall , 2005
                                          Page 39
Statistics 514:   2k Factorial Design
                                        Fall , 2005
                                          Page 40
Statistics 514:   2k Factorial Design
                                                                                                 Fall , 2005
                                                                                                   Page 41
                    k
Statistics 514: 2       Factorial Design
                                            Regression Model
         * the same date step
         ===========================
         Dependent Variable: y
                               Analysis of Variance
                                     Sum of           Mean
         Source          DF         Squares         Square               F Value    Pr > F
         Model            5      5535.81250     1107.16250                 56.74    <.0001
         Error           10       195.12500       19.51250
         Corrected Total 15      5730.93750
                                                                                   Fall , 2005
                                                                                     Page 42
Statistics 514:   2k Factorial Design
                                               Parameter Estimates
                                            Parameter       Standard
          Variable                 DF        Estimate          Error      t Value   Pr > |t|
                                                                                      Fall , 2005
                                                                                        Page 43
Statistics 514:   2k Factorial Design
Contour plot
          goption colors=(none);
          data one;
          do x1 = -1 to 1 by .1;
            do x3 = -1 to 1 by .1;
             y=77.37+19.12*x1 +4.94*x3 -9.06*x1*x3 ; output;
             end; end;
          proc gcontour data=one; plot x3*x1=y;
          run; quit;
                                                                                                     Fall , 2005
                                                                                                       Page 44
Statistics 514:   2k Factorial Design
                                                                            Fall , 2005
                                                                              Page 45
Statistics 514:   2k Factorial Design
Residual Plot
                                                        Fall , 2005
                                                          Page 46
Statistics 514:   2k Factorial Design
Half normal plot can also be used for identifying important factorial effects
                                                                                                  Fall , 2005
                                                                                                    Page 47
Statistics 514:   2k Factorial Design
measurements
                                                                                   Fall , 2005
                                                                                     Page 48