Ubc - 1984 - A7 S65
Ubc - 1984 - A7 S65
BY
SEAHO (SONG
A T H E S I S SUBMITTED IN P A R T I A L FULFILLMENT
in
May 1984
Department of M e c h a n i c a l E n g i n e e r i n g
The U n i v e r s i t y of B r i t i s h Columbia
2324 Main M a l l
Vancouver, Canada
V6T 1W5
ABSTRACT
The f e a s i b i l i t y of d u a l - f u e l o p e r a t i o n w i t h n a t u r a l gas i n
a prechamber d i e s e l engine was s t u d i e d w i t h s p e c i a l emphasis on
f u e l consumption and c y l i n d e r p r e s s u r e development. The e f f e c t s
of a i r r e s t r i c t i o n , p i l o t d i e s e l flow r a t e and i n j e c t i o n timing
were also studied. D u a l - f u e l o p e r a t i o n showed poor p a r t - l o a d
f u e l consumption; near f u l l l o a d t h e f u e l consumption was close
to that of straight diesel operation. In t h e absence of
i n j e c t i o n t i m i n g adjustment t h e maximum power output of dual-
fuel operation was severely limited by t h e maximum c y l i n d e r
pressure. Retarding the injection timing was effective in
reducing t h e maximum cylinder pressure to a safe l e v e l . The
a n a l y s i s of apparent energy r e l e a s e i n d i c a t e s t h e d i f f e r e n c e s i n
combustion mechanism between a u t o - i g n i t i o n of diesel fuel in
straight diesel operation and p r o p a g a t i o n of flame f r o n t s i n
dual-fuel operation.
iii
T a b l e of Contents
Abstract i i
L i s t of T a b l e s iv
L i s t of F i g u r e s y
Acknowledgements viii
Nomenclature ix
I . INTRODUCTION 1
1 .1 Background - 1
1.2 P r e s e n t Study 7
I I . REVIEW OF LITERATURE 10
2.1 H i s t o r y of D u a l - F u e l D i e s e l Engine 10
2.2 Review of Research 12
I I I . APPARATUS AND INSTRUMENTATION ... 26
3.1 Engine and Test Bed • 26
3.2 I n s t r u m e n t a t i o n 38
3.3 F u e l 43
3.4 Data P r o c e s s 45
IV. EXPERIMENTAL RESULTS 47
4.1 F u e l Consumption 47
4.1.1 F u e l Consumption w i t h U n m o d i f i e d Engine .. 47
4.1.2 E f f e c t of R e s t r i c t i n g I n t a k e A i r 55
4.1.3 E f f e c t of V a r y i n g I n j e c t i o n Timing 56
4.2 C y l i n d e r P r e s s u r e 63
4.2.1 C y l i n d e r P r e s s u r e i n U n m o d i f i e d Engine ... 63
4.2.2 E f f e c t of R e s t r i c t i n g I n t a k e A i r 74
• 4.2.3 E f f e c t of V a r y i n g I n j e c t i o n T i m i n g 79
V. ANALYSIS OF APPARENT ENERGY RELEASE 84
5.1 G e n e r a l 84
5.2 Method of C a l c u l a t i o n 85
5.2.1 D e f i n i t i o n s , E q u a t i o n s , and Assumptions .. 85
5.2.2 Computation Procedure 98
5.3 A n a l y s i s 107
5.3.1 O p e r a t i o n w i t h Unmodified Engine 107
5.3.2 E f f e c t of R e s t r i c t i n g I n t a k e A i r 124
5.3.3 E f f e c t of V a r y i n g I n j e c t i o n T i m i n g ....... 130
V I . CONCLUSIONS AND RECOMMENDATIONS 135
6.1 C o n c l u s i o n s 135
6.2 Recommendations 138
BIBLIOGRAPHY 139
APPENDIX A - CALIBRATION CURVES 142
APPENDIX B - COMPUTATION OF INDICATED MEAN EFFECTIVE
PRESSURE 146
APPENDIX C - COMPUTER PROGRAM FOR DATA ACQUISITION .... 148
APPENDIX D - COMPUTER PROGRAM FOR DATA PROCESS 157
APPENDIX E - COMPUTER PROGRAM FOR APPARENT ENERGY
RELEASE 162
iv
L i s t of Tables
L i s t of F i g u r e s
\
vi i i
Acknowledgement
Nomenclature
A area m 2
$ equivalence r a t i o
X inverse of equivalence r a t i o
Subscripts:
9 gas
i state
1
CH.I Introduction
1 .1 Background
from t h o s e of s t r a i g h t d i e s e l o p e r a t i o n . In d i e s e l operation
fuel i s i n j e c t e d i n t o t h e c y l i n d e r , i t i s mixed w i t h a i r t o be
diesel used in the past has consisted of less than 10% of total
Prechamber D i e s e l Engine
1.2 P r e s e n t Study
Object ives
a. flow r a t e of p i l o t diesel
b. g a s - a i r m i x t u r e s t r e n g t h
c. i n j e c t i o n t i m i n g of p i l o t diesel
Computer a n a l y s i s of apparent energy release was employed to
study the combustion characteristics, first for straight diesel
o p e r a t i o n and then w i t h r e g a r d to the above three operating
variables. Past experience w i t h d i r e c t - i n j e c t i o n engines was
considered in a n t i c i p a t i n g possible operating difficulties and
i n a n a l y z i n g the observed combustion characteristics.
E x p e r i m e n t a l Work
CH.II Review of L i t e r a t u r e
2.1 H i s t o r y of t h e D u a l - F u e l D i e s e l Engine
*CFR ( C o o p e r a t i v e F u e l Research) e n g i n e :
single-cylinder engine, with 3.25 i n . (82.5 mm) bore and
4.5 i n . (114 mm) s t r o k e , manufactured by the Waukeska Engine
Co. of Waukeska, Wis., the s t a n d a r d engine used f o r d e t o n a t i o n
measurement and g e n e r a l l y f o r d e t o n a t i o n r e s e a r c h .
AUTHOR DATE ENGINE GASEOUS FUEL MAIN FINDINGS
e f f e c t of intake a i r pre-
S i m o n s on 1954 single-cylinder me t h a n e h e a t i n g on r e a c t i o n s o f
direct-injection gaseous charge.
c r . 14.7:1
* gas c o m p o s i t i o n based on v o l u m e
o pilot diesel
LU 0.415 Ib/hr
Q
11
>- gas
< methane
_J 10
LU
Q
7
0 2 3 4 5 6 7 8 (%)
GAS IN ENGINE INTAKE BY VOLUME
(Lewis, 1954)
on Ignition Delay
18
and 6.00 i n (152 mm) s t r o k e was used a t the speed of 1000 rpm.
l i m i t of f l a m m a b i l i t y .
- 6 0 - 3 0 T D C 3 0 6 0
(Karim et al.,1966/67)
Figure 2.4 - Typical Thermal Efficiencies of Dual-Fuel and Straight Diesel Operation
26
Engine
[toothed
dynamometer wheel
CAT. 3 3 0 4 N E F F data
TT acqufeit unit
^-optical
loaa cell
PDP 11
minicomputer
gas mixer
gas flow rate^A air. . ,.
gas valve —^ restriction t exhaust printer
terminal
air
T flow rate
air
Figure 3.1 - Layout of Apparatus and I n s t r u m e n t a t i o n
exhaust
BORE 1 2 . 1 cm ( 4 . 7 5 in. )
STROKE 1 5 . 2 cm ( 6 . 0 in.)
DISPLACEMENT 6 9 7 0 c m 3
( 4 2 5 cu.in.)
COMPRESSION RATIO 1 7 . 5 : 1
NUMBER OF CYLINDERS 4
TYPE prechamber
ASPIRATION turbo-charged
T a b l e 3 . 1 - Engine Specification
30
SCALE
2.5:1
A - PRECHAMBER
B - MAIN CHAMBER
D i e s e l I n j e c t i o n System
F i g u r e 3.4 - S l e e v e M e t e r i n g F u e l System
Roller Follower
SPILL
PORT
PORT
GOVERNOR
BELLCRANK SHAFT
CONTROL SHAFT
• ELLCRANK-
GOVERNOR
CARRIER
CONTROL LEVER
SPRING SEATS
THRUST GOVERNOR
SPRING
COLLAR
GOVERNOR
DRIVE GOVERNOR COVER OF
SHAFT FLYWEIGHTS G O V E R N O R FLYWEIGHTS
Turbocharger
Dynamometer
Gas-mixer
Intake A i r R e s t r i c t i o n
3.2 I n s t r u m e n t a t i o n
Torque
Cylinder Pressure
F i g u r e 3 . 1 1 - Mounting of C y l i n d e r P r e s s u r e Transducer
40
A i r Flow Rate
D i e s e l Flow Rate
As a p r e c a u t i o n t o p r e v e n t the p o s s i b i l i t y o f t u r b o c h a r g e r
below the a t m o s p h e r i c p r e s s u r e .
Intake A i r Pressure
Engine Speed
3.3 F u e l
Diesel
lower h e a t i n g v a l u e - 45,263 k j / k g
In the analysis of energy release and computation of
stoichiometric f u e l - a i r r a t i o dodecane (CiaH^) was assumed t o be
the r e p r e s e n t i n g hydrocarbon f o r the d i e s e l fuel.
N a t u r a l Gas
at 101.3 kPa,
25 deg. C
viscosity - 108.96 m i c r o p o i s e
at 21.1 deg. C
T a b l e 3.2.
44
methane 94.00
ethane 3.30
propane 1 .00
i so-butane 0.15
n-butane 0.20
i so-pentane 0.02
n-pentane 0.02
ni trogen 1 .00
carbon d i o x i d e 0.30
hexane 0.01
of the following:
. power output
. thermal efficiency
. volumetric efficiency
based on h e a t i n g values
d i e s e l input p r o p o r t i o n 15.5 %
4.1 F u e l Consumption
8fr
49
To o b t a i n another p i c t u r e of t h e r o l e of p i l o t d i e s e l flow
r a t e i n d u a l - f u e l o p e r a t i o n , c a l c u l a t i o n s were made of i n d i c a t e d
E l l i o t t and D a v i s ( l 9 5 l ) f o r a d i r e c t - i n j e c t i o n d i e s e l engine.
4 . 1 . 2 E f f e c t of R e s t r i c t i n g I n t a k e A i r
4.1.3 E f f e c t of V a r y i n g I n j e c t i o n Timing
The i g n i t i o n d e l a y of p i l o t d i e s e l was s t u d i e d by o b s e r v i n g
the averaged cylinder pressure vs crank angle trace. In
d e t e r m i n i n g the p o i n t of the s t a r t of ignition (the point at
which combustion has proceeded f a r enough t o a f f e c t the p r e s s u r e
n o t i c e a b l y ) , the e a r l i e s t s i g n i f i c a n t d e v i a t i o n of p r e s s u r e from
the expected compression curve near t o p dead c e n t r e was sought
by close examination. In most cases this method allowed
identification of t h e p o i n t w i t h o u t d i f f i c u l t y . F i g . 4.6 shows
a t y p i c a l pressure trace and identification of the apparent
p o i n t of i g n i t i o n .
IT)
1.5 kg/h
CD -o
571 kPa
u
QJ IT)
CN
278 kPQ
UJ <=»
CM
—
' I cn
ro
QJ in
b^ep
a
ro —
CD
1/5
o
CO
i—i—i—i—r i—i—r i—r i — i — r
0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48 0.52 0.56 0.6 0.64 0.6B
Gas-Rir Mixture Strength (equivalence r a t i o based on gasJ
Apparent Point of I g n i t i o n S t a r t
Figure 4.7 - Apparent Point of Ignition Start at V a r i o u s Loads
60
CN
C3
CD . bmep 278 kPa
CM
a CM
OJ
ro
LO
143 kPa
OJ ~~
ro
J- cr, ,
T r i 1—i—r i i i r i—i—i—r
-1—1
V- 1
—I
•Is I
ro -
CZl
c£ T - 1
in.
i
~i i r~i—i—i—i—i—i—i—r
20.0 22.0 24.0 26.0
8.0 10.0 12.0 14.0 16.0 18.0
pressure.
63
4.2 C y l i n d e r P r e s s u r e
n
P V = const
or
Ln(P) = n Ln(V) + c o n s t
L o g C y l . Volume R a t i o (V/VbdcJ
co _
10
CL
O o
injection timing
X 12.3 d e g . btdc
o
o ~r T T
100 200 300 400 500 600 700 800 900
4.2.2 E f f e c t of R e s t r i c t i n g I n t a k e A i r
The e f f e c t on t h e maximum r a t e of c y l i n d e r p r e s s u r e r i s e of
intake a i r r e s t r i c t i o n i s shown i n F i g . 4.19. The r e s t r i c t i o n
of i n t a k e a i r seems t o r e s u l t i n h i g h e r maximum r a t e of c y l i n d e r
pressure r i s e . T h i s t r e n d i s b e l i e v e d t o be t h e consequence of
the increased gas-air mixture strength which favours flame
propagation.
Figure 4.19 - Effect of Intake Air Restriction
on Maximum Rate of Cylinder Pressure Rise
79
4.2.3 E f f e c t o f V a r y i n g I n j e c t i o n Timing
p r e s s u r e a s a r e s u l t of i n j e c t i o n t i m i n g retardation by 2 and
c h a n g e i n t h e r m a l e f f i c i e n c y due t o i n j e c t i o n t i m i n g retardation
was l e s s t h a n 0.5 p e r c e n t .
5.1 G e n e r a l
f i r s t law 6Q = dE + 5W
where
Q - heat t r a n s f e r t o the system
E energy of the system
W - work done by the system
E = U + CE
where
U - i n t e r n a l energy of the system
CE - c h e m i c a l energy of the system
Figure 5.1 - Control Volume f o r Apparent Energy Release Analysis
87
6Q = dU +dCE + 6W
•Q.=
1^1+1
AU + ACE + 1.W.i+1.
where
AU = U i + 1 - U.
ACE = CE.., " CE.
1+1 l
l i+1 I i+1
i•Wi.+ 1 - i• iP •
+ 1, ,i +(V.
1 . - IV. )
J 1
where - c y l i n d e r volume a t i ^ s t a t e
f c
ACE jm f j U c j
88
where
m^j - mass o f j t n
fuel burned during
i f c
^ state, (j=1 for diesel,
of j t h
fuel
f fj cj
m U
- iQ l i + " A U
" i P
i + 1 A V
(Eqn 5.1)
sections.
Assumpt i o n s
I n d e v e l o p i n g t h e method o f c o m p u t a t i o n s e v e r a l assumptions
properties.
2. The gaseous c o n s t i t u e n t s of t h e m i x t u r e a r e c o n s i d e r e d t o be
ignored.
89
3. The c o m p o s i t i o n of the combustion products corresponds to
equilibrium dissociation.
Heat T r a n s f e r
q/A = a(k/D)(R) (T - T
b
w a l l > + c(T« - T ^ ^ ) -
where
q - heat t r a n s f e r rate
A - s u r f a c e a r e a of c y l i n d e r walls
k - t h e r m a l c o n d u c t i v i t y of t h e m i x t u r e
D - bore
R - Reynolds number d e f i n e d as pVD//x
where
p - d e n s i t y of t h e m i x t u r e
90
"V - mean p i s t o n velocity
n - v i s c o s i t y of the m i x t u r e
T - m i x t u r e temperature
T
wall ~ y^^ ^
c n c e r
wall temperature
a ,b,c - c o n s t a n t s
CO
1 I I I I I I I I I I I ! I I I 1 I—
CD
X I
— I'
I X
* I x
CD x I 3
*l X
cn X
IX
X . ^
X 1
l x
X X
cn X I
i
* i X
v.
a' o
CJ
< X
~t ~I
CD x #
QJ , X ^
\
X V \
te
CO
X ) CD
m
CL
im
— ro
o
cn
in cr 10 01
CD •o 3 Q
a
TJ
T3
CL Q. "CJ <—r
ght CMc
ro
o a
i CL TJ
cn cn
~o
3
o 3
a
55 o 10 o o
5T CL
IJ
Q
3
operation
CD a
ro
cn
-to.
CD
16
92
It was assumed t h a t the temperature of t h e w a l l , a t a g i v e n
l o a d , s t a y s c o n s t a n t throughout t h e c y c l e , and varies linearly
with the a p p l i e d l o a d . The measurements of w a l l temperature made
by Kamel and Watson(l979) on an i n d i r e c t - i n j e c t i o n R i c a r d o swirl
engine showed t h a t t h e change i n w a l l temperature throughout the
cycle at full load was less than 10 percent of the mean
temperature. Their data a l s o suggested t h a t t h e w a l l temperature
of both prechamber and main chamber v a r i e d n e a r l y linearly with
applied load. In the present work t h e w a l l temperature was
calculated from
T
w a l l " 0.071(bmep) + 540
bmep i n kPa
T ,, i n K
wall
Dissociation
c o n s i d e r e d a r e as f o l l o w s :
with heat transfer model
without heat transfer model
QJ
in
ro
UJ cn
QJ o '
£"\
QJ^"
•f-»
ro
CH cn
o
v. V , v.
1 1— T
-la.o tdc I0.O 50.0 7D:0
30. D
(deg flTDC)
Crank Angle
CO 0, = K.(P'/P)
v
Y
co 2 or
(N +A)[N c o Q +1/2(A+C-D)] 2
2
(\ y ot
H
" VPVP)^
< co N
2 " A
)
YX ' 2 Y
H ? OH
i = K (P°/P)'
R
2
Y
Y
H 0 2
or
u
(N H +1/2B+C) ( N + B ) 2
QH
( tot)""
N 2
- K (P°/P)
B
:
( H 0- - ^N
2
B C
95
Y Y
H
2 °2
K (P7P)
C
1
Y
H 0 2
o r
1 :
" ^ t o t y k = K [P°/P)
C
:
( H 0" "
N
2
B C )
Y
D
NO _ V
N
2 °2 or
< NO+ )
N D
(NXI - l / 2 D ) [ N 4
N + l/2(A+C-D)] J 5
N
tot = I N
i +
1/2(A + B + C)
^CO'^NO' E T C a r e e c
l i l i
u D r
i- u m
compositions.
Nfjo'^NO' e t C a r e t
^ i e n u m
^ e r
°^ m 0
^ e s
«. i s t h e t o t a l number of moles of
tot
the m i x t u r e .
96
Thermodynamics Tables.
T
i ' P
i ' CH. i'
( n ) (
C n
1 2 H 2> i6 j h { n
C, H , N ,
2 2 6 2 0 , 2 H 0,2 C0 , 2 CO, H, 2 OH, NO.
ACE = ?An . ( u . • + Au .) 0
j 3 3 3 l
where
u°£j = i n t e r n a l energy of f o r m a t i o n
at 298 K
AUj = U j ( T i + 1 ) - Uj(298K)
AU = ? ( n . ) . ( u . ( T . , . ) - u.(T.))
j 3 3 > 3 1 1+ 1
of gas m i x t u r e
6. Compute ^Q^ +1 and i j w
+ 1
P
i + 1 i
V
+ 1 = ^ ^ j ^ - H I > R T
i
+ 1
C y l i n d e r P r e s s u r e Data
OJ
cn
ro "
OJ
—H (O
QJ o '
"1_
UJ
0 J d
ro
CC
C3 "
CD"
1
-1D.0 tdc 50.0 70.0
10.0 30.0
Crank Angle (deg.RTDC)
r a t e s of a i r and f u e l s a l o n g w i t h d a t a f o r o p e r a t i n g conditions.
The p r e s s u r e data were then smoothed-and volumes of the c y l i n d e r
f o r a l l crank a n g l e s were computed. S u b s e q u e n t l y , f o r each degree
of crank a n g l e , e q u a t i o n s f o r energy and mass c o n s e r v a t i o n were
s i m u l t a n e o u s l y and i t e r a t i v e l y s o l v e d f o r the temperature and the
fraction of f u e l burned. A m o d i f i e d Newton's method was used i n
s o l v i n g the system of n o n l i n e a r e q u a t i o n s . The program assumed
that combustion may take p l a c e at anytime a f t e r the i n j e c t i o n of
d i e s e l f u e l . B e f o r e the d i e s e l i n j e c t i o n p o i n t , the program took
an alternate route and merely computed the m i x t u r e temperature
d i r e c t l y from i d e a l gas law. F i g . 5.6 shows the f l o w c h a r t of the
procedures adopted in the computer program. A l i s t i n g of the
computer program i s p r o v i d e d i n Appendix E. Fig. 5.7 shows a
t y p i c a l output of the program.
Check of Computation
read i n
flow r a t e of d i e s e l , gas, a i r
P ( 0 ) , C.A. a t i g n i t i o n , injection
read i n
properties of d i e s e l , gas, a i r ,
combustion products
comp u t e
V(0)
smooth
P(O)
repeat f o r 0 = -89 t o 9JJ
update
number of moles of reactants
compute guess
T from amount of f u e l burnt, T
i d e a l gas law
compute
compute stoichiometric combustion
heat transfer products
set account
energy r e l e a s e = 0 for dissociation
compute
print heat transfer
P, T, h e a t transfer,
energy release
are
set
mass and
0 = 0 + 1 yes energy conserved?
5.3 Analysis
5.3.1 O p e r a t i o n s w i t h U n m o d i f i e d Engine
QJ
LO c-)
ro
QJ
CO
QJ
cr
Oi CO
LU o*
QJ —
t- a
1
ro
co
o
- < ^ ^ . ^ - ^ V - ~T C7>^p^
a
-I 1 1
1—
-IU.O tdc I0.Q 30.0 50.0
Crank Rngle fdeg flTDCJ
oo
. -=r
cn CD 13.5 V. diesel
QJ
20.6% diesel
\ rr, 32.0% diesel
100% diesel
O J D_
ir, C
R-)
•o ,1
I I I I I I I I 1
-10 0 tdc 10
-° 30.0 50
-° 7 0 0
Figure 5.16 - Rate o f Energy Release of Dual-Fuel Operation at Various Pilot D i e s e l Flow Rates
119
LO
CO
T3.5% diesel
20.6% diesel
.—. cn 32.0% diesel
^ CO
100% diesel
CD
in
(/) CM'
ro
CD
"ai
ai
CN
ai
ro
a> o
m_
cu
>
+->
rd
LP
c6
CD
LP
CD
1 1 "I
•10.0 tdc 10.0 30.0 50.0 70.0
Figure 5.17 - Cumulative Energy Release o f Dual-Fuel Operation at Various Pilot Diesel Flow Rates
Figure 5.18 - Fraction of Fuel Burnt i n Low Load Dual-Fuel Operation
ZZI
CD
LO
CO
CD
LP
-10.0 tdc 10.0 30.0 50.0 70 0
Crank Angle (deg FITDC)
5.3.2 E f f e c t of R e s t r i c t i n g I n t a k e A i r
\
bmep - 143 kPa, a i r r e s t r i c t e d (c5 = 0. 308) ,
1 0
• \ ro _
crj 20.9% d i e s e l g
QJ ^ .
LO <=>
ro
QJ
>~
CJ)
CU CD
c ;.
UJ <=>
U-
o
QJ ~. .
+-> C D
ro
cc
co
CD
CO
CD
CD
I
LO bmep - 279 k P a ,
CO
a i r u n r e s t r i c t e d (cB = 0 . 3 6 4 ) ,
13.5% d i e s e l g
bmep - 1 4 3 k P a , a i r r e s t r i c t e d (<5 = 0 . 3 0 8 ) ,
20.9% d i e s e l g
CO ^
</> CM
OJ
CO
cc CD
CM'
s-
co
c
LO
CO
>
•r-
+J
—
I CD
3 —'
E
o
LO
CD
CD
CD
CD
1 1
•10.0 tdc 10.0 30.0 50.0 70.0
Crank Angle fdeg flTDC)
Cu—|
o
CD
O
•J
ID
n
in Gj
• CD nf If tf If
ro "3
i
a
I I
cn
CO
$ 5 5
QJ QJ QJ Q)
Q) t ( QJ P> O J i — i QJ
O P- O P- Ul p-In p-
u-i
a
• 1-1 •
• f< ui
f-(
ZD CP i-( M
o
• t-l
<#> i-i o'P C
•V--- CD
Ch cn
o'P C
Oi cn ^ a
£' R"aP- fDR cn P- P- CD
ft(D cn
a ) cn
tn p- ifl rr n> o cn n-
P" P- P p- 1
:ted
CD Ho<
rb o O
ft ff
-3I
9*
-r-
el
et
il cQ
II
o II
o n
cn o .J>
O
o 00
• •
CO
-—' NJ ' CO
iD —
CD
821
o
Ln
CD
CO
LO
CM*
01
(O
* CD
cn
429 kPa, a i r unrestricted (c6 =0 . 4 3 7 ) ,
c —
15.0% diesel g
429 k P a , a i r r e s t r i c t e d (« = 0 . 4 8 3 ) ,
> 15.3% diesel g
•r-
+-> —'
CD 571 k P a , a i r u n r e s t r i c t e d (ffi = 0 . 5 2 6 ) ,
UJ 10.2% diesel g
E 571 k P a , a i r r e s t r i c t e d (I> = 0 . 6 0 6 ) ,
3
O LO 10.7% diesel g
CD
CD
in
CD 1—
•10.0 tdc 10.0 30.0 70.0
50.0
Crank Angle (deg ATDC)
Figure 5.24 - Effect of Intake A i r R e s t r i c t i o n on Cumulative Energy Release
130
5.3.3 E f f e c t of V a r y i n g I n j e c t i o n Timing
_l
-10.0
,
tdc
(
10.0
, ,
30.0
r — ,
50.0
,
70.0
r—
CD
CD
o
QJ
ID
rj .
to co
i , a
1 tr
CL 1 3
70 1
! fD
TI
a i
1 1
i
1
3D ' hj. M
i_J. -J
"'3
a g <£>
?]
rt 13
H-
0 ^
3
0) O
rt <#>
M h- 1
M a
to
• • . ro
CO CO CO cn
(D
h- 1
—1 CD 03 UJ
i-3 t-3 t-3
a
a a a
o n n
ZEI
C3
LO
CD
QJ ° ? .
LO
ro
QJ
>. CO
OO
P
cn t o
c —. -
LU <=)
CD
QJ —;
•M
ro
CO
CD
OO
CD
LD
CO
CD
LP
6.1 Conclusions
S t a b l e d u a l - f u e l o p e r a t i o n r e q u i r e s s u f f i c i e n t f l o w r a t e of
p i l o t d i e s e l f u e l r e q u i r e d i n o r d e r t o ensure a s t a b l e o p e r a t i o n
c o n s i s t s m a i n l y of a u t o - i g n i t i o n of d i e s e l f u e l , whereas i n the
s h o r t e r , s i n g l e - s t a g e d combustion.
138
6.2 Recommendations
• F u r t h e r study of t h e e f f e c t of r e s t r i c t i n g a i r i n t a k e without
the turbocharger may show some improvement i n f u e l consumption
at low l o a d s .
BIBLIOGRAPHY
Load Sensor
o
o"
o
o'
o
o
o'
00
o
o'
T3
O
•J
O
Voltage (mV)
Definition
P dV = P. „ AV
ind
J V
l
P. , - i n d i c a t e d mean effective
ind
- pressure, imep
V - cylinder volume
V^ - V at the beginning of
the cycle
- V a t t h e end o f t h e cycle
bdc tdc
(P. + P.,,)
1 + 1
( V . „ - V.)
2 i+1 r
^ ind
( V
bdc V
tdc )
volume at i ^ t 1
stage, and each
ACQUISITION
149
1 C
2 C Acquires data from D i e s e l Engine
3 C
4 EXTERNAL QTQIO
5 EXTERNAL GETADR
6 EXTERNAL ASNLUN
7 C
e9 INTEGER
INTEGER
L I S T C 3 0 0 2 ) , IDAT(3002), 1PARM(6)
YES, NO, ANS, IPARR(5), IBDC(3)
ISTAT(2)
59 c r e a d i n scan i n s t r u c t i o n s
60 DO 10 I=2,NCHAN+1
61 READ(1,103) L1STU)
62 10 CONTINUE
63 c f i l l the r e s t of scan l i s t by r e p e a t i n g
64 DO 11 I=NCHAN+2,ILAST
65 L I S T ( I ) " = LIST(I-NCHAN)
66 11 CONTINUE
67 c r e s e t s e r i e s 500 BUS
6B IPARMC2) = 2
69 CALL GETADR(IPARM(1), IDAT)
70 CALL WTQ10("1002,3,10,1,1 STAT,IPARM,IDS)
71 WRITE(5,201)
72 WRITE(5,202) I S T A T ( I ) , I S T A T ( 2 ) , IDS
73 c
74 IRSA = 1
75 c w r i t e scan l i s t to RAM, read back and c h e c k
76 IPARM(2) = (ILAST-ISTRT+1) * 2
77 IPARM(3) = IRSA
78 CALL GETADR(IPARM(1),LI ST(1 START))
79 CALL WTQIO("400,3, 10, 1 ,I STAT,IPARM,IDS)
80 c read back
81 CALL • GETADR(IPARM(1), I DAT(ISTRT))
82 CALL WTQIO("1000,3,10,1,1 STAT,IPARM,IDS)
83 c p r i n t any d i s c r e p a n c i e s
84 I ERR = 0
85 DO 20 1 = 1STRT,I LAST
86 IF (IDAT(I) .EQ. L I S T ( I ) ) GO TO 20
87 I ERR = I ERR + 1
88 WRITE(5,203) LI ST(I ),I DAT(I)
89 20 CONTINUE
90 WRITE(5,204 ) I ERR
91 WRITE(5,202) I S T A T ( l ) , I S T A T ( 2 ) , IDS
92 IF (I ERR .GT. 0) GO TO 999
93 c a c q u i r e data
94 IWCT = NDTOT + 1
95 CALL I DATE(ID 1 , ID2, ID3)
96 WR1TE(5,205) ID1, ID2, ID3
97 c
98 c calibration of P r e s s u r e Measurement
99 c
100 PCPPSI = 0.830
101 CHMUPV = 1000.0
1 02 PCPMU = 1.415
103 GAIN =1.0
104 C1P = CHMUPV * PCPMU / PCPPSI / SCALE * GAIN
1 05 c
106 DO 600 1600=1,100
107 WRITE(5,270)
108 READ(5,170) SPEED
109 FREQRQ = SPEED / 60.0 / 2.0 * FLOAD(NPCYC) * 2
11 0 DWELL = 1. / FREQRQ
11 1 HERTZ = 1. / XRATE(DWELL, I RATE, IPRSET, 1)
1 12 CALL CLOCKBCIRATE, IPRSET, 1, IND, 1)
11 3 DELT = 1. / HERTZ * 2
1 14 DTPDEG = DELT
1 15 WRITE(5,200) IND, HERTZ
1 16 NCYCLE =10
151
1 7 WRITE(5,271) NCYCLE
1 8 READ(5,171) NCYCLE
1 9 IPMAX = 0
20 FNCYC = FLOAT(NCYCLE)
21 NSET = 1
22 DO 610 1610=1,NPC1
23 PMEAN(1610) = 0.0
24 610 CONTINUE
25 PMAX0 = 0.0
26 DPDTM0 = 0.0
27 RPMIN0 = 0.0
28 RIMEP0 = 0.0
29 SUMRP = 0.0
30 SUM2RP = 0.0
31 SUMIM = 0.0
32 SUM2IM = 0.0
33 SUMPX = 0.0
34 SUM2PX = 0.0
35 SUMPN = 0.0
36 SUM2PN = 0.0
37 SUMDN = 0.0
38 SUM2DN = 0.0
39 WRITE(5,269)
40 READ(5,170) PINTAK
41 PINTAK >= PINTAK + 14.7
42 WRITE(5,210)
43 READ(5,110) CR
44 DO 650 M650=1,500
45 IF (NSET .GT. NCYCLE) GO TO 651
46 C
47 CALL GETADR(I PARK(1 ) , I DAT)
46 IPARM(2) = IWCT *2
49 IPARM(3) = IRSA
50 CALL WTQIOC3001 ,3,1 0, 1 ,I STAT,IPARM,IDS)
51 C
52 MB = 3
53 MF =751
54 DO 680 M680=1 ,2
55 DO 661 M=MB,MF,2
56 S = IDAT(M)
57 S = ABS(S/SCALE)
58 IF (S .LT. STHR) GO TO 681
59 P = IDAT(M+359)
60 P = P * C1P
61 IF (P .LT. PTHR) GO TO 68 2
62 IBDC(1) = M
63 GO TO 683
64 682 CONTINUE
65 MB = M + 680
66 MF = MB + 80
67 GO TO 680
66 681 CONTINUE
69 680 CONTINUE
70 GO TO 650
71 663 CONTINUE
72 INDXBD = 2
73 MB = IBDC(1) + 680
74 MF = MB + 80
152
1 C
2 C
3 C T h i s program p r o c e s s e s data from d i e s e l engine
4 C
5 C
6 EXTERNAL WTQIO
7 EXTERNAL GETADR
8 EXTERNAL ASNLUN
9 C
10 INTEGER LISTC200), IDATC200), IPARM(6), I STAT(2)
1 1 INTEGER YES, NO, ANS, IACTIV(2)
12 REAL LOAD
13 c
14 YES = 1
15 NO = 0
16 SCALE = 32768.0
1 7 c
18 c calibration constants f o r gas flow
19 c
20 C1GAS = 2 . 2 2
21 C2GAS = -0.0194
22 c
23 CALL PERFRM(VOLDSL,VOLGAS,VOLAIR,SPEED,LOAD,QINPPW,BM;
24 1 POWER,THRMEF,VOLEFF,PERDSL,RAF,RAD,RAG,0)
25 c
26 WRITE(5,248)
27 READ(5,150) VLOAD
28 LOAD = 5.0 * VLOAD
29 WRITE(5,249)
30 READ(5,150) SPEED
31 WRITE(5,247)
32 READ(5,150) DPQAIR
33 VOLAIR = 2.173 + 0.221 * DPQAIR
34 WRITE(5,245)
35 READ(5,150) DPQGAS
36 c c o n v e r t p a s c a l t o i n water
37 VOLGAS = DPQGAS / 248.8
38 VOLGAS = CI GAS * VOLGAS + C2GAS * VOLGAS * VOLGAS
39 WRITE(5,246)
40 READ(5,150) VOLDSL
41 VOLDSL = VOLDSL * 60.0
42 CALL PERFRM(VOLDSL,VOLGAS,VOLAIR,SPEED,LOAD,QINPPW,BMEP
43 1 POWER,THRMEF,VOLEFF,PERDSL,RAF,RAD,RAG,1)
44 WRITE(5,250)
45 WRITE(5,251) SPEED, LOAD, VOLAIR, VOLDSL
46 WRITE(5,254)
47 WRITE(5,255) QINPPW, POWER, BMEP, THRMEF, VOLEFF
48 WRITE(5,256)
49 WRITE(5,257) VOLGAS, PERDSL
50 WRITE(5,258)
51 WRITE(5,259) RAF, RAD, RAG
52 c save data i n a f i l e ?
53 WRITE(5,224)
54 READ(5,120) ANS
55 IF (ANS .EQ. NO) GO TO 70
56 IF (L .EQ. 1) CALL ASSIGN(2, 'OUT.DAT')
57 WRITE(2,250)
58 WRITE(2,251) SPEED, LOAD, VOLAIR, VOLDSL
159
59 WRITE(2,252)
60 WRITE(2,253) DPTURB, DPCOMP, T1TURB, T2TURB, T1COMP, T2COMP
61 WRITE(2,254)
62 WRITE(2,255) QINPPW, POWER, BMEP, THRMEF, VOLEFF
63 WRITE(2,256)
64 WRITE(2,257) VOLGAS, PERDSL
65 WRITE(2,258)
66 WRITE(2,259) RAF, RAD, RAG
67 C
68 70 CONTINUE
69 WRITE(5,226)
70 READ(5,120) ANS
71 IF (ANS .EQ. NO) GO TO 999
72 500 CONTINUE
73 C
74 C
75 999 CONTINUE
76 STOP
77 C
78 100 FORMAT(1X,F16.5)
79 101 FORMAT(1X, I 2)
80 1 02 FORMAT(IX, 12)
81 103 FORMAT(05)
82 110 FORMAT(A5)
83 120 FORMAT(II)
84 150 FORMAT(F12.4)
85 C
86 C
87 224 FORMAT(IX,' ???? E n t e r 1 or 0 t o save d a t a ! ' , $ )
88 225 FORMAT(1X,I 5,2X,E14.6)
89 226 FORMAT(//,'???? To r e r u n e n t e r 1-or 0',$)
90 245 FORMAT(IX,' >> > E n t e r Gas Flow i n P a s c a l :',$)
91 246 FORMAT(IX,' >> > E n t e r D i e s e l Flow i n l i t r e / m i n : ' , $ )
92 247 FORMAT(IX,' >> > E n t e r A i r Flow i n P a s c a l : ' , $ )
93 248 FORMAT(1X,' >> > E n t e r Load i n V o l t a g e : ' , $ )
94 249 FORMAT(IX,' >> > E n t e r E n g i n e Speed i n rpm:',?)
95 250 FORMAT(1X,' Speed (rpm) Load ( l b ) A i r Flow (ft3/min) ',
96 1 ' D i e s e l Flow ( l t r / h r ) ' )
97 251 FORMAT(3X,F7.2,7X,F7.3,7X,F10.3,5X,F10.4)
98 253 FORMAT(1X,6(F8.2,2X))
99 254 FORMAT(5X,'Heat cons Power out BMEP Therm e f f V o l e f f ',
100 1 5X,'(BTU/hr-hp) (hp) (psi) (%) (%)
101 255 FORMAT(1X,F15.2,2X,F8.3,2X,F8.3,2X,F8.4,2X,F8.4)
102 256 FORMAT(10X,'Gas Flow d i e s e l input p r o p o r t i o n (heat)',/,
103 1 10X,'(ft3/min) ( p e r c e n t t o t a l h e a t ) ')
104 257 FORMAT(1 OX,F12.3,5X,F8.2,' %')
105 258 FORMAT(10X,' LAMDA ( t o t ) LAMDA ( d s l ) LAMDA ( g a s ) ' )
106 259 FORMAT(1 OX, 3F16.2)
107 END
108 C
109 C
110 C
111 SUBROUTINE PERFRM(VOLDSL,VOLGAS,VOLAIR,SPEED,LOAD,QINPPW,
112 1 BMEP,POWER,THRMEF,VOLEFF,PERDSL,RAF,RAD,RAG,INDEX)
113 C
114 C computes p e r f o r m a n c e characteristics
115 C
116 REAL LOAD,LHVDSL,LHVGAS
160
1 17 C
1 IB IF (INDEX .NE. 0) GO TO 10
1 19 C
1 20 C initialize const values
121 C
1 22 V1SCAG = 1.669
123 DENDSL = 0.8697 * 6 2 . 2 7
124 DENGAS = 0.044386
125 DENAIR = 0.07541
126 STCDSL = 15.0
127 HHVDSL = 1058288.4
128 STCGAS •= 16.7
129 LHVDSL = 1002560.0
1 30 HHVGAS = 1024.7
131 LHVGAS = 926.0
132 DSPLMT = 425.04
133 ARMLEN = 17.5 / 12.0
1 34 C
135 C conv. factors
136 C
137 F3PLTR = 0.03531
138 HPPFPM = 1 . 0 / 33000.
1 39 BTUPHP = 2 5 4 4 . 4 3 3 / 1.01387 / 0.986315
140 PI = 3.1415
141 C
142 RETURN
143 C
144 10 CONTINUE
145 c
146 c process data
147 c
148 TQDYNO • LOAD * ARMLEN
149 POWER = TQDYNO * S P E E D * 2.0 * PI * HPPFPM
1 50 VSWEPT = DSPLMT * S P E E D / 2.0
151 BMEP = (POWER / HPPFPM * 12.0) / VSWEPT
152 DSLFLW = VOLDSL * F3PLTR
153 GASFLW = VOLGAS * V 1 S C A G
154 FMAIR = DENAIR * V O L A I R
155 FMDSL = DENDSL * DSLFLW / 6 0 . 0
156 FMGAS = DENGAS * GASFLW
157 RAD = FMAIR / ( S T C D S L * F M D S L )
158 RAG = 0.0
159 IF (FMGAS .GT. 0.0) RAG = FMAIR / ( S T C G A S * FMGAS)
160 RAF = FMAIR / ( S T C D S L * FMDSL + STCGAS * FMGAS)
161 VOLEFF = V O L A I R / (VSWEPT / 12.0 / 12.0 / 12.0) * 100. 0
162 PERDSL = LHVDSL*DSLFLW / (LHVDSL*DSLFLW+LHVGAS*GASFLW* 60
163 PERDSL •= P E R D S L * 1 0 0 . 0
164 G
165 C b r a n c hi o u t n o - l o a d ie. idling
166 C
167 IF (ABS(LOAD) .LT. 0.00001) G O T O 11
168 QINPPW = ( L H V D S L * D S L F L W + LHVGAS*GASFLW* 6 0 . 0 ) / POWER
169 THRMEF = BTUPHP / QINPPW * 1 0 0 . 0
170 RETURN
171 C
172 1 1 CONTINUE
173 c
174 QINPPW = 0.0
161
1 C
2 C
3 C
4 C . Rate of Heat R e l e a s e A n a l y s i s Program
5 c
6 c w r i t t e n by : Seaho Song
7 c Dec / 1983
8 c
9 c
10 c
1 1 c
12 c T h i s program r e a d s i n t h e c y l i n d e r p r e s s u r e data
13 c t o compute t h e r a t e o f heat r e l e a s e f o r e v e r y C A .
14 c
15 c
16 c
17 c
18 c
19 c
20 Cmmmnmmmmmmmmmmmnmmmnunmmmmmm
21 Cm m
22 Cm Main Routine m
23 Cm m
24 CiTunmmmmmmmrnmmmnimnunmmmmmmmmmmmmmnuninmrnrnmmmmmmmmrnmmnirnmmminrnmrn
25 C
26 C
27 IMPLICIT REAL*8(A-H,0-Z)
28 REAL*8 CYLVOL(180)
29 REAL* 8 GAS ( 1 0 ) , GASNEWOO), P(180)
30 REAL*8 HEATRT(180),ANGLE(180), GASNE0(10),DH01(10),
31 REAL*8 F ( 2 ) , D F D X ( 2 , 2 ) , X ( 2 ) , D X ( 2 ) , F E P ( 2 ) , X E P ( 2 ) ,
32 1 WORKAR(2,2)
33 REAL*8 NTOT, SAVGAS(180,10)
34 INTEGER I PERM(4)
35 COMMON / GEOM / ARM, ROD, BORE, STROKE, VCLEAR
36 COMMON / EXPMT/ SPEED, BMEP
37 COMMON / PROP 1/ DENAIR, DENDSL, DENNG, WTDSL, WTNG,
38 1 WTAIR
39 COMMON /THDYPR/ H0F(10), R0, WT(10), NGAS
40 c
41 c
42 c specify cylinder geometry i n inches, then convert
43 c into metric.
44 c
45 CONVF1 = 0.0254
46 ARM =3.0 * CONVF1
47 ROD = 9.595 * CONVF1
48 BORE =4.75 * CONVF1
49 STROKE =6.0 * CONVF1
50 VCLEAR = 6.444 * CONVF1**3
51 c
52 c To smoothen p r e s s u r e d a t a SET I SOOT = 1
53 c To use heat t r a n s f e r model SET IHTRSF = 1
54 c To consider d i s s o c i a t i o n SET IDSSOC = 1
55 c To o b t a i n output a p p r o p r i a t e
56 c f o r p l o t t i n g SET IPLOT = 1
57 c
58 c Setting ISMOOT = 0; IHTRSF = 0; IDSSOC'= 0 w i l l
164
59 C assume unsmoothed, a d i a b a t i c w i t h no d i s s o c i a t i o n .
60 C
61 ISMOOT = 1
62 IHTRSF = 1
63 IDSSOC = 1
64 I PLOT = 1
65 c
66 EPSIL = 0.1E-1
67 c
68 c compute c y l i n d e r volume a t e v e r y CA.
69 c
70 CALL GEOMTR(CYLVOL, ANGLE)
71 c
72 c a s s i g n c o e f f i c i e n t s f o r thermodynamic
73 c p r o p e r t i e s of v a r i o u s g a s e s .
74 c
75 CALL READPR
76 c
77 c read i n c y l i n d e r p r e s s u r e d a t a , i n j e c t e d d i e s e l
78 c amount, CH4 amount, and i n j e c t i o n & i g n i t i o n
79 c characteristics.
80 c
81 CALL DATAIN(GAS,P,DSLAMT,INJBEG,INJEND,IGNBEG)
82 c
83 c w r i t e out t h e mode of o p e r a t i o n and bmep i n kPa
84 c
85 BMEPKP = BMEP * 6.8 95D0
B6 IF (GAS(2) .LT. 0.1D-12)
87 1 WRITE(6,210) SPEED, BMEPKP
88 IF (GAS(2) .GE. 0.1D-12)
89 2 WRITE(6,211) SPEED, BMEPKP
90 c
91 c smooth t h e P d a t a
92 c
93 IF (ISMOOT .NE. 1) GO TO 10
94 c
95 CALL SMOOTP(P, ANGLE, IGNBEG, IPOK)
96 IF (IPOK .EQ. 0) WRITE(6,914)
97 IF (IPOK .EQ. 0) STOP
98 c
99 10 CONTINUE
100 c
101 c set up f o r i n i t i a l stage
102 c
103 c FRREM keeps t r a c k of f r a c t i o n of f u e l remaining.
1 04 c FRBURN .. .. burnt.
1 05 c
1 06 c The subscript 1 r e f e r s t o the p r e v i o u s step
107 c 2 .. present
108 c
109 FRREM = 1.0
110 FRBURN = 0.0
1 1 1 QCACCM = 0.0
112 PI . = P(1)
1 13 V1 = CYLVOL(1)
1 14 Tl = P1 * VI / R0
115 c
116 c .TOTMAS - t o t a l mass o f gases p r e s e n t
165
233 C
234 DO 651 LJ=1,2
235 DO 652 LI=1,2
236 XEP(LI) = X ( L I )
237 652 CONTINUE
238 X E P ( L J ) = X E P ( L J ) + EPSIL
239 CALL GETF(XEP,FEP,GAS,T1,P1,P2,V1,V2,NTOT,
240 1 GASNEW,QHT,QC,TOTMAS,DH01,DH0,IHTRSF,IDSSOC)
241 DO 653 LI=1,2
242 DFDX(LI,LJ) = ( F E P ( L I ) - F ( L I ) ) / E P S I L
243 653 CONTINUE
244 651 CONTINUE
245 C
246 C the iteration scheme i s as f o l l o w s :
247 C
248 C X = X + DX
249 C i+1 i
250, c
251 c DX i s o b t a i n e d by s o l v i n g
252 c
253 c (dFdX) DX = -F
254 c i i
255 c
256 c
257 F(1) = -F( 1 )
258 F(2) = -F(2)
259 c
260 c the r o u t i n e SLE i a a UBC L i b r a r y s u b r o u t i n e
261 c which s o l v e s a system of l i n e a r e q u a t i o n s .
262 c
263 CALL SLE(2,2,DFDX,1,2,F,DX,I PERM,2,WORKAR,
264 1 DET,JEXP)
265 c
266 DO 654 LI=1,2
267 X(LI) = X ( L I ) + DX(LI)
268 654 CONTINUE
269 650 CONTINUE
270 66 CONTINUE
271 C
272 C iteration failed, terminate the execution.
273 C
274 WRITE(6,913) L650, X ( 1 ) , X ( 2 )
275 GO TO 850
276 c
277 c solution found
278 c
279 59 CONTINUE
280 FRAC = X ( 1 )
281 T2 = X(2)
282 58 CONTINUE
263 C
284 C compute t h e a c c u m u l a t e d h e a t r e l e a s e ,
285 C a c c u m u l a t e d f r a c t i o n of f u e l b u r n t .
286 C
287 QCACCM = QCACCM + QC
288 IANGLE = ITH - 90
289 FRBURN = FRBURN + FRAC * FRREM
290 FRREM = 1 . 0 - FRBURN
168
291 C
292 C w r i t e out the s o l u t i o n f o r the c u r r e n t CA.
293 C
294 WRITE(6,201) IANGLE, P2, T2, QHT, QC, QCACCM,
295 1 FRAC, FRBURN, V2
296 C
297 C shift index f o r next C A . computation.
298 C
299 T1 = T2
300 P1 = P2
301 V1 = V2
302 DO 71 1=1,NGAS
303 DH01(I) = DHO(I)
304 71 CONTINUE
305 IF (ITH .LT. 80) GO TO 851
306 IF (ITH .GT. 170) GO TO 851
307 C
308 C w r i t e out the s o l u t i o n for plotting purpose.
309 C
310 IF (IPLOT .NE. 1) GO TO 851
311 WRITE(1,205) ANGLE(ITH), P2
312 WRITE(2,205) ANGLE(ITH), T2
313 WR1TE(3,205) ANGLE(ITH), QCACCM
314 WRITE(4,205) ANGLE(ITH), QC
315 851 CONTINUE
316 C
317 C save the i n s t a n t a n e o u s gas m i x t u r e c o m p o s i t i o n
318 C t o w r i t e out a t the end of the r a t e of heat r e l e a s e
319 C output.
320 C
321 IF (ITH .LT. ( I N J B E G - 1 ) ) GO TO 50
322 DO 61 J=1,NGAS
323 GAS(J) = GASNEW(J)
324 SAVGAS(ITH,J) = GAS(J)
325 61 CONTINUE
326 C
327 C t h i s i s t h e end of t h e p r o c e s s f o r one C.A..
328 C C A . i s i n c r e m e n t e d end the p r o c e s s proceeds
329 C t o the next C A . .
330 C
331 50 CONTINUE
332 850 CONTINUE
333 C
334 C end of a l l the p r o c e s s e s e .
335 C w r i t e out the gas m i x t u r e c o m p o s i t i o n f o r each C A .
336 C from the C A . j u s t p r i o r t o the d i e s e l i n j e c t i o n .
337 C
338 WRITE(6,202)
339 INJBM1 = INJBEG - 1
340 DO 72 ITH=INJBM1,180
341 IANGLE = ITH - 90
342 WRITE(6,203) IANGLE, (SAVGAS(ITH,J), J=1,NGAS)
343 72 CONTINUE
344 STOP
345 200 FORMAT('- CA P kPa T deg K, Q htr.(kJ), Q r'
346 1 'elease , Q accum Frac F r a c cum Vol')
347 201 FORMAT ( I X , 1 5 , 1 O E M . 5 )
348 202 FORMAT( IGas Comp(Kmol) D s l
1
CH4 N2 02
169
465 RETURN
466 END
467 C
468 Cssssssssssssssssssssssssssssssssssssssss5sssssssssssssssssss
469 c S
470 SUBROUTINE DATAIN(GAS, P, DSLAMT,INJBEG,INJEND,IGNBEG)
471 c s
472 CSSSSSSSSS5SSSSSSSSSSSSSSSSSSSSSSSSSSSSS5SSSSSSSSSSSSSSSSS5SS
473 c S
474 c T h i s r o u t i n e r e a d s i n t h e d a t a f o r i n j e c t i o n and s
475 c i g n i t i o n c h a r a c t e r i s t i c s , c y l i n d e r p r e s s u r e , engine s
476 c speed, BMEP, flow r a t e s of a i r , g a s , d i e s e l . s
477 c The flow r a t e s a r e c o n v e r t e d t o number of Kmoles s
478 c per c y c l e r . s
479 c s
480 CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS5SS5
481 c
482 IMPLICIT REAL*8(A-H,0-Z)
483 c
484 COMMON / EXPMT / SPEED, BMEP
485 COMMON / PROP 1 / DENAIR, DENDSL, DENNG, WTDSL,
486 1 VJTNG, WTAIR
487 REAL*8 GAS(10), P(180)
488 c
489 c Reads i n from Log U n i t 10
490 c
491 c SPEED - engine speed i n rpm
492 c BMEP - load i n p s i
493 c
494 c QAIR - a i r flow i n f t 3 / m i n
495 c QDSL - d i e s e l flow i n l t r / h r
496 c QNG - n a t gas flow i n f t 3 / m i n
497 c
498 c INJBEG - b e g i n n i n g of d i e s l i n j i n deg C A .
499 c INJEND - end of d i e s e l i n j i n deg C A .
500 c IGNBEG - b e g i n n i n g of i g n i t i o n i n deg C A .
501 c"
502 c P(1-180) - cylinder pressure in psi
503 c
504 c
505 READ(10,100) SPEED, BMEP
506 READ(10,101) QAIR, QDSL, QNG
507 READ(10,102) INJBEG,INJEND,IGNBEG
508 c
509 JA = 1
510 DO 10 L=1,36
51 1 JB = JA + 4
512 READ(10,103) ( P ( J ) , J=JA,JB)
513 JA = L * 5 + 1
514 10 CONTINUE
515 c
516 c c o n v e r t p r e s s u r e data from p s i t o kPa
517 c
518 DO 20 J=1,180
519 P ( J ) = P ( J ) * 6.895
520 20 CONTINUE
521 c
522 c compute # o f moles p e r c y c l e :
172
523 C
524 C GAS(2) - n a t gas
525 c (3) - N2
526 c (4) - 02
527 c
528 DO 30 L=1,20
529 GAS(L) = 0.0
530 30 CONTINUE
531 c
532 c making sure of # o f c y l i n d e r = 4
533 c
534 GAS(2) = QNG * DENNG / SPEED * 2.0 / WTNG / 4.0
535 AIRMOL = QAIR * DENAIR / SPEED * 2.0 / WTAIR
536 GAS(3) = 3.76 * AIRMOL / 4.0
537 GAS(4) = AIRMOL /4.0
538 c
539 c compute amount of d i e s e l injected i n kmoles
540 c
541 DSLAMT = QDSL / 60.0 * DENDSL / SPEED * 2.0 / WTDSL / 4.1
542 c
543 c
544 RETURN
545 100 FORMAT(1X, F6.1, 1X, F5.1)
546 101 FORMAT(IX, F5.1, 1X, F5.2, 1X, F5.2)
547 102 FORMAT(IX,3(13,IX))
548 103 FORMAT(IX, 5(F6.1,1X))
549 END
550 c
551 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
552 c s
553 SUBROUTINE UPROD(P1,P2,T1,T2,V1,V2,GAS,GASNEW,DHO1,FRAC,
554 1 DHO,NTOT,TOTMAS,U2RES,QC,QHT,ICOMB,IHTRSF)
555 c s
556 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
557 c s
558 c T h i s r o u t i n e c h e c k s out whether t h e f i r s t law i s met. s
559 c The d e v i a n c e from t h e f i r s t law i s d e s i g n a t e d by U2RES.S
560 c s
561 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
562 c
563 IMPLICIT REAL*8(A-H,0-Z)
564 c
565 REAL*8 GAS(10),GASNEW(10),R1(10),DH01(10),DH0(10),NTOT
566 COMMON /THDYPR/ H 0 F ( 1 0 ) , R0, WT(10), NGAS
567 c
568 WORK = 0.5D0 * (PI + P2) * <V2 - V1)
569 c
570 CALL DH0FN(T2,DH0)
571 c
572 IF (ICOMB .EQ. 0) GOTO 5
573 c
574 c compute t h e heat r e l e a s e due t o combustion during
575 c the c u r r e n t C A . i n t e r v a l .
576 c
577 QC = O.ODO
578 DO 20 1=1,NGAS
579 QC = QC + (GASNEW(I) - G A S ( I ) )
580 1 * (H0F(I) + DH0(I) - R0 * T2)
173
581 20 CONTINUE
582 C
583 QC = -QC
584 C
585 5 CONTINUE
586 IF (I COMB .EQ. 0) QC = 0.0
587 C
588 C
589 DU = 0.D0
590 R0DT = R0 * (T2 - T l )
591 DO 30 1=1,NGAS
592 DU = DU + GAS(I) * (DHO(I) - DHO1(1) - R0DT)
593 30 CONTINUE
594 C
595 C comput heat t r a s f e r .
596 C i f IHTRSF i s s e t t o 0, a d i a b a t i c processe i s
597 C assumed.
59B C
599 QHT = 0.D0
600 IF (IHTRSF .NE. 1) GO TO 10
601 QHT = QHTRSF(T2,V2,GASNEW,TOTMAS)
602 C
603 10 CONTINUE
604 U2RES = DU + WORK - QC - QHT
605 c
606 RETURN
607 END
608 c
609 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
610 c s
61 1 SUBROUTINE STCHPD(GAS,FRAC,GASNEW)
612 c s
613 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
614 c s
615 c T h i s r o u t i n e computes the number of Kmoles of s
616 c s t o i c h i o m e t r i c combustion p r o d u c t , and y i e l d the s
617 c updated c o m p o s i t i o n of t h e gas m i x t u r e i n t h e s
618 c cylinder. s
619 c s
620 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
621 c
622 IMPLICIT REAL*8(A-H,0-2)
623 c
624 COMMON /THDYPR/ H O F ( l O ) , R0, WT(10), NGAS
625 REAL*8 GAS(10), GASNEW(lO), N, M
626 c
627 c M - number o f moles o f d i e s e l burnt at current C A .
628 c N - .. CH4
629 c
630 M = GAS(1) * FRAC
631 N = GAS(2) * FRAC
632 c
633 GASNEW(1) = GAS(1) - M
634 GASNEW(2) = GAS(2) - N
635 GASNEW(3) = GAS(3)
636 GASNEW(4) = GAS(4) - 18.5*M - 2.0*N
637 GASNEW(5) = GAS(5) + 12.0*M + N
638 GASNEW(6) = GAS(6) + 13.0*M + 2.0*N
174
639 DO 10 1=7,NGAS
640 GASNEW(I) = GAS(I)
641 10 CONTINUE
642 C
64 3 RETURN
644 END
645 C
646 Cssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
647 C s
648 SUBROUTINE SMOOTP(P, ANGLE, IGNBEG, IPOK)
649 C s
650 Cssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
651 C s
652 C T h i s r o u t i n e uses C u b i c - S p l i n e - L e a s t - S q u a r e s - F i t s
653 C t o smooth the c y l i n d e r p r e s s u r e d a t a . s
654 C The r a t e of p r e s s u r e r i s e i s n u m e r i c a l l y computed s
655 C from the UNSMOOTHED d a t a , and t h i s i s used i n s
656 C weight t o c o n t r o l the degree of l o c a l smoothness. s
657 C The w e i g h t i n g i s based on s c a t t e r n e s s t h e of s l o p o f s
658 C of the p r e s s u r e d a t a . s
659 C s
660 Cssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
661 C
662 IMPLICIT REAL*8(A-H,0-Z)
663 C
664 REAL* 8 P ( 1 8 0 ) , DPDTHO80), T O L ( l B O ) , ANGLE ( 1 80)
665 REAL*8 P D l ( l B O ) , PD2(180)
666 REAL*8 W(2000)
667 C
668 C compute dp/dTheta by f i t t i n g a q u a d r a t i c through
669 C 3 points
670 C
671 DO 5 J=2,179
672 DPDTH(J) = (P(J+1) - P ( J - l ) ) / 2.DO
67 3 5 CONTINUE
674 DPDTH(1) = (4.D0*P(2) -3.D0*P(1) - P ( 3 ) ) /2.D0
675 DPDTHC180) = (3.D0*P(180)-4.D0*P(179)+P(17B))/2.DO
676 C
677 C TOL0 c o n t r o l s the l o c a l smoothness.
678 C SVAL .. the g l o b a l
679 C
680 TOL0 = 1.0
681 SVAL = 1000.0
682 IPOK = 1
683 DO 10 1=4,177
684 JS = I - 3
685 JF = I + 2
686 AV = 0.0
687 DO 11 J=JS,JF
688 AV = AV + DPDTH(J)
689 11 CONTINUE
690 AV = AV / 10.0
691 C
692 C SD i s a measure of s c a t t e r n e s s i n t h e s l o p of
693 C of t h e p r e s s u r e d a t a . T h i s i s computed by
694 C c o n s i d e r i n g 4 adjacent p o i n t s .
695 C
696 SD = 0.0
175
697 DO 12 J=JS,JF
698 SD = SD + DABS(DPDTH(J) - AV)**2
699 12 CONTINUE
700 T O L ( I ) = TOL0 * DABS(SD / AV / AV)
701 C
702 C The degree of smoothness i s l e s s f o r c e d f o r
703 C the p o i n t s b e f o r the s t a r t of i g n i t i o n .
704 C
705 IF (DABS(DFLOATCI-IGNBEG)).LT.5.0) T O L ( I ) = T O L ( I ) / 1 0
706 10 CONTINUE
707 DO 20 1=1,3
708 TOL(I) = TOL(4)
709 20 CONTINUE
710 DO 30 1=178,180
71 1 TOL(I) = TOL(177)
712 30 CONTINUE
713 C
714 C The r o u t i n e s DSPLFT and DSPLN a r e UBC L i b r a r y
715 C s u b r o u t i n e s , which p e r f o r m s Least-Squares-Fit
716 C w i t h C u b i c - S p l i n e as b a s i s f u n c t i o n s .
717 C
718 CALL DSPLFT (ANGLE, P, TOL, SVAL, 180,W,5,613)
719 CALL DSPLN (ANGLE, P,PD1 ,PD2, 180,5.61 3)
720 RETURN
721 c
722 613 CONTINUE
723 c
724 c The f i t has failed
725 c
726 IPOK = 0
727 RETURN
728 END
729 c
730 CSSSSSSSS5SSSS5SS5SSSSSSSSSSSSSSSSSSSSSSS5SSSSSSSSSSSSSSS5
731 c s
732 SUBROUTINE VISCST(T,GAS,VISC)
733 c s
734 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssss
735 c s
736 c computes mean v i s c o u s i t y of gas m i x t u r e s . s
737 c s
738 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssss
739 c
740 IMPLICIT REAL*8(A-H,0-Z)
741 c
742 REAL*8 GAS(10)
743 COMMON /THDYPR/ H0F(10),R0,WT(10),NGAS
744 c
745 TM = T**0.645
746 VISC = GASO) * WT(1) * 1.33
747 VISC = VISC + GAS(2) * WT(2) * 3.35
748 VISC = VISC + GASO) * WT(3) * 4.57
749 VISC = VISC + GAS(4) * WT(4) * 5.09
750 VISC = VISC + GAS(5) * WT(5) * 3.71
751 VISC = VISC + GAS(6) * WT(6) * 3.26
752 c
753 TOTW = GAS(1)*WT(1)+GAS(2)*WT(2)+GAS(3)*WT(3)
754 1 + GAS(4)*WT(4)+GAS(5)*WT(5)+GAS(6)*WT(6)
176
755 C
756 VISC = VISC / TOTW * 10.**(-7) * TM
757 RETURN
758 END
759 C
760 C
761 C
762 Cffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
763 c f
764 DOUBLE PRECISION FUNCTION QHTRSF(T2,V2,GASNEW,TOTMAS)
765 c f
766 Cffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
767 c f
768 c T h i s r o u t i n e computes t h e heat t r a n s f e r a t c u r r e n t f
769 c Annand's model i s used. f
770 c f
771 Cffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
772 c
773 IMPLICIT REAL*8(A-H,0-Z)
774 c
775 COMMON / GEOM / ARM,ROD,BORE,STROKE,VCLEAR
776 COMMON /EXPMT / SPEED, BMEP
777 REAL*8 GASNEW(10)
778 c
779 c T h i s r o u t i n e employees Annand's model t o
780 c compute t h e r a t e of heat t r a n s f e r .
781 c
782 A = 0.47D0
783 C = 1.6D-12
784 CP = CP0VAL(T2,GASNEW) / TOTMAS
785 30 CONTINUE
786 PISVEL = SPEED * STROKE / 30.0
787 CALL VISCST(T2,GASNEW,VISC)
788 DENTOT = TOTMAS / V2
789 RENUM = DENTOT * PISVEL * BORE / VISC
790 REKD = CP * VISC / 0.7 / BORE * RENUM**(0.7)
791 c
792 c The w a l l t e m p e r a t u r e i s assumed t o be p r o p o r t i o n a l
793 c to the a p p l i e d l o a d .
794 c
795 TW = 0.484 * BMEP + 540.0
796 c
797 c The s u f a c e a r e o f t h e c y l i n d e r
798 c
799 SURFA = (V2 - VCLEAR) * 4.DO / BORE + 0.0304D0
800 QCONVC = A * SURFA * REKD* (T2 - TW)
801 QRAD = (1.6E-12)*(10.76)*C*SURFA*(T2**4-TW**4)
802 c
803 c
804 QHTRSF = -(QCONVC + QRAD) * (60./SPEED/360.)
805 c
806 c
807 c
808 RETURN
809 END
810 c
811 Cssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
812 C S
177
929 C
930 C A g a i n , SLE i s a UBC L i b r a r y s u b r o u t i n e , which
931 C s o l v e s a system of l i n e a r e q u a t i o n s .
932 C In s o l v i n g t h e systems of e q u a t i o n s , t h e r o u t i n e
933 C r e t a i n s t h e decomposed m a t r i x .
934 C
935 CALL SLE(5,5,DFDXDB,1,5,FDBL,DXDBL,I PERM,5,WORKDB,
936 1 DETDBL,JEXB)
937 C
938 DO 54 LI=1,5
939 X ( L I ) = X ( L I ) + DXDBL(LI)
940 54 CONTINUE
94 1 NTOT = X ( 5 )
942 A = X(1) * NTOT
94 3 B = X(2) * NTOT
944 C = X(3) * NTOT
94 5 D = X ( 4 ) * NTOT
946 GAS2(3) = DABS(GAS1(3) - 0.5*D)
947 GAS2(4) = DABS(GAS1(4) + 0.5MA+C-D))
948 GAS2(5) = DABS(GAS1(5) - A)
949 GAS2(6) = DABS(GAS1(6) - B - C)
950 GAS2(7) = DABS(GAS1(7) + 0.5*B + C)
951 GAS2(8) = DABS(GAS1(8) + B)
952 GAS2(9) = DABS(GAS1(9) + A)
953 G A S 2 O 0 ) = DABS (GAS 1(10) + D)
954 C
955 C Here, once a J a c o b i a n m a t r i x i s formed f o r F,
956 C i t i s used f o r 3-4 i t e r a t i o n s , t h u s r e d u c i n g
957 C the c o s t .
958 C
959 DO 70 J70=1,3
960 CALL EVALF(X,GAS2,KP0P,SUMN,F)
961 DO 71 LI=1,5
962 FDBL(LI) = - F ( L I )
963 71 CONTINUE
964 C
965 C The r o u t i n e DBS i s a l s o a UBC L i b r a r y r o u t i n e .
966 C The r o u t i n e uses t h e decomposed m a t r i x by t h e
967 C r o u t i n e SLE t o v e r y e c o n o m i c a l l y compute new
968 C s o l u t i o n w i t h newly g i v e n FDBL
969 C
970 CALL DBS(5,1,5,FDBL,DXDBL,I PERM,5,WORKDB)
971 DO 73 LI=1,5
972 X ( L I ) = X ( L I ) + DXDBL(LI)
97 3 73 CONTINUE
974 C
975 C update t h e c o m p o s i t i o n of t h e gas m i x t u r e .
976 C
977 NTOT = X ( 5 )
978 A = X ( 1 ) * NTOT
979 B = X ( 2 ) * NTOT
980 C = X ( 3 ) * NTOT
981 D = X ( 4 ) * NTOT
982 GAS2(3) = DABS(GAS1(3) - 0.5*D)
983 GAS2(4) = DABS(GAS 1(4) + 0.5*(A+C-D))
984 GAS2(5) = DABS(GAS1(5) - A)
985 GAS2(6) = DABS(GAS1(6) - B - C)
986 GAS2(7) = DABS(GAS1(7) + 0.5*B + C)
180
1045 C
1046 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
1047 c s
1048 SUBROUTINE GETF(X,F,GAS,T1,P1,P2,V1,V2,NTOT,
1049 1 GASNEW,QHT,QC,TOTMAS,DHO1,DHO,IHTRSF,IDSSOC)
1050 c s
1051 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
1052 c s
1053 c T h i s r o u t i n e c h e c k s t h e a p p r o p r i a t e n e s s of t h e g i v e n s
1054 c p o s s i b l e s o l u t i o n s f o r t h e requrements f o r t h e f i r s t s
1055 c law and t h e i d e a l gas law. T h i s r o u t i n e i s used i n s
1056 c the main r o u t i n e f o r computing t h e f r a c t i o n of f u e l s
1057 c b u r n t and T2. s
1058 c s
1059 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
1060 c
1061 IMPLICIT REAL*8(A-H,0-Z)
1062 c
1063 REAL*8 X(2),F(2),GAS(10),GASNEW(10),DH0(10) ,DH01 (10)
1 064 REAL*8 NTOT,GASNE0(20)
1065 COMMON /THDYPR/ H0F(10),R0,WT(10),NGAS
1 066
1067
c
FRAC = X ( 1 )
1068 T2 = X(2)
1069 c
1 070 IF (IDSSOC .EQ. 0) GO TO 50
1071 CALL STCHPD(GAS,FRAC,GASNE0)
1072 CALL DSSOCN(P2,T2,GASNE0,GASNEW,NTOT)
1073 GO TO 51
1 074 50 CONTINUE
1075 CALL STCHPD(GAS,FRAC,GASNEW)
1076 51 CONTINUE
1 077 CALL UPROD(P1,P2,T1,T2,V1,V2,GAS.GASNEW,DHO1,FRAC,
1078 1 DHO,NTOT,TOTMAS,U2RES,QC,QHT,1,IHTRSF)
1 079 c
1 080 F(1) = P2 - NTOT * R0 * T2 / V2
1 081 F(2) = U2RES
1082 c
1083 c
1 084 RETURN
1085 END
1086 c
1087 Cffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1088 c f
1089 DOUBLE PRECISION FUNCTION CP0VAL(T,GAS)
1090 c f
1091 Cffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1092 c f
1093 c T h i s r o u t i n e computes t h e mean v a l u e of t h e s p e c i f i c f
1094 c heat Cp. f
1095 c f
1096 Cffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1097 c
1098 IMPLICIT REAL*8(A-H,0-Z)
1099 c
1 100 COMMON /THDYPR/ H 0 F ( 1 0 ) , R0, WT(10),NGAS
1101 REAL*8 GAS(10), C P 0 ( 1 0 ) , NTOT
1 102 c
182
103 C
104 TH = T / 100.0
105 TH2 = TH * TH
106 TQ = TH**(0.25)
107 TQ2 = TQ * TQ
108 TQ2 = TQ * TQ * TQ
109 TQ6 = TQ3*TQ3
110 C
1 1 1 CP0C1) = 104.18 + 465.5 * (T / 1000.0)
1 12 CP0(2) = -672.87 + 439.74*TQ - 24.875*TQ3 + 323.88/TQ2
1 13 CP0(3) = 39.06-512.79/TQ6+1072.7/TH2-820.4/(TH**3)
1 14 CP0(4) = 37.432 + 0.020102*TQ6-178.57/TQ6+236.88/TH2
115 CP0(5) = -3.7357+30.529*TQ2-4.1034*TH+0.024198*TH2
1 16 CP0(6) = 143.05-183.54*TQ+82.751*TQ2-3.6989*TH
1 17 CP0(7) = 56.505-702.74/TQ3+1165.O/TH-560.7/TQ6
118 CP0(8) = 81.546-59.35*TQ+17.329*TQ3-4.266*TH
1 19 CP0(9) = 69.145-0.70463*TQ3-200.77/TQ2+l76.76/TQ3
120 CP0(10)= 46.045+216.1/TQ2-363.66/TQ3+232.55/TH2
121 C
122 CPOVAL = 0.0
123 C DO 20 1=1,NGAS
124 DO 20 I=2,NGAS
125 CPOVAL = CPOVAL + C P 0 ( I ) * GAS(I)
126 20 CONTINUE
1 27 C
1 28 C
1 29 RETURN
1 30 END
131 C
132 C
133 C
134 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
135 c 5
136 SUBROUTINE DH0FN(T,DH0)
137 c s
138 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
1 39 c s
140 c T h i s r o u t i n e computes t h e change i n e n t h a l p y s
141 c between t h e g i v e n t e m p e r a t u r e and 298 deg K. s
142 c s
143 c The u n i t f o r DH0O-10) i s kJ/Kmol-K s
144 c s
145 Csssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
146 c
147 IMPLICIT REAL*8(A-H,0-Z)
148 c
149 REAL*8 DH0(10)
1 50 c
151 T2 = T*T
152 T3 = T*T*T
153 TQ2 = DSQRT(T)
154 TQ = DSQRT(TQ2)
1 155 TQ3 = TQ * TQ2
1156 TQ5 = T * TQ
1 157 TQ6 = T * TQ2
1 158 TQ7 = T * TQ3
1 159 c
1 160 DH0(1) = 104.18*T+0.23276*T2-51714.3
183
161 C
162 DHO(2) = -672.B7*T+111.25*TQ5-0.449495*TQ7+6477.6*TQ2
163 -39442.6
1 64 C
165 DH0(3) = 39.06*T+0.102558D7/TQ2-0.10727D8/T+0.4102D9/T2
166 -39672.7
167 C
1 68 37.432*T+0.0080408D-3*T2*TQ2+0.35714D6/TQ2
169 -0.23688D7/T - 23906.6
170 DH0(4) =
171 -3.7357*T+2.0353*TQ6-2.0517D-2*T2
172 +0.008066D-4*T3 - 7556.3
173 DHO(5) =
174 143.05*T-46.432*TQ5+5.51667*TQ6-0.0184 94 5*T2
175 - 11876.4
176 DHO(6) •
1 77 56.505*T-0.8889D5*TQ+0.1165D6*DLOG(T)
178 + 0.11214D7/TQ2 - 376187.0
179 DH0(7) =
180 81.546*T-15.0144*T5+0.313137*TQ7-0.0213 3*T2
181 -10509.4
182 DHO(8) -
183 69.145*T-0.0127328*TQ7-0.40154D4*TQ2
1 84 +0.223586D5*TQ - 43912.9
185 DHO(9) =
186 59.283*T-0.11397 3*T6-0.141226D4*TQ2
187 - 0.149778D6/TQ2 + 15975.8
188 C DHO(10)=
189 C
1 90 RETURN
191 END