MIT OpenCourseWare
http://ocw.mit.edu
12.003 Atmosphere, Ocean and Climate Dynamics
Fall 2008
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Contents
0.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
0.1.1 Natural fluid dynamics . . . . . . . . . . . . . . . . . . 10
0.1.2 Rotating fluid dynamics . . . . . . . . . . . . . . . . . 13
0.1.3 Holicism . . . . . . . . . . . . . . . . . . . . . . . . . . 16
I The Atmosphere 19
1 Characteristics of the atmosphere 21
1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Chemical composition of the atmosphere . . . . . . . . . . . . 22
1.3 Physical properties of air . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Moist air . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 The global energy balance 29
2.1 Effective planetary temperature (emission temperature) . . . . 29
2.2 The atmospheric absorption spectrum . . . . . . . . . . . . . . 33
2.3 The greenhouse effect . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 A simple greenhouse model . . . . . . . . . . . . . . . 36
2.3.2 A leaky greenhouse . . . . . . . . . . . . . . . . . . . . 38
2.3.3 A more opaque greenhouse . . . . . . . . . . . . . . . . 39
3 The vertical structure of the atmosphere 43
3.1 Vertical distribution of temperature and ‘Greenhouse gases’ . . 43
3.1.1 Typical temperature profile . . . . . . . . . . . . . . . 43
3.1.2 Atmospheric layers . . . . . . . . . . . . . . . . . . . . 45
3.2 The relationship between pressure and density: hydrostatic
balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Vertical structure of pressure and density . . . . . . . . . . . . 50
3
4 CONTENTS
3.3.1 Isothermal atmosphere . . . . . . . . . . . . . . . . . . 50
3.3.2 Non-isothermal atmosphere . . . . . . . . . . . . . . . 51
3.3.3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 Convection 53
4.1 The nature of convection . . . . . . . . . . . . . . . . . . . . . 53
4.1.1 Convection in a shallow fluid . . . . . . . . . . . . . . . 53
4.1.2 Instability . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Convection in water (an almost-incompressible fluid) . . . . . . . 56
4.2.1 Buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Energetics . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 GFD Lab II: convection . . . . . . . . . . . . . . . . . 59
4.3 Dry convection in a compressible atmosphere . . . . . . . . . . 63
4.3.1 The adiabatic lapse rate . . . . . . . . . . . . . . . . . 63
4.3.2 Potential temperature . . . . . . . . . . . . . . . . . . 65
4.4 The atmosphere under stable conditions . . . . . . . . . . . . 68
4.4.1 Gravity waves . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Temperature inversions . . . . . . . . . . . . . . . . . . 71
4.5 ‘Moist’ convection . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.1 Humidity . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.2 Saturated adiabatic lapse rate . . . . . . . . . . . . . . 74
4.5.3 Radiative-convective equilibrium . . . . . . . . . . . . 75
4.6 Convection in the atmosphere . . . . . . . . . . . . . . . . . . 76
4.6.1 Convective clouds . . . . . . . . . . . . . . . . . . . . . 76
4.6.2 Occurrence and depth of convection . . . . . . . . . . . 77
4.6.3 Where does convection occur? . . . . . . . . . . . . . . 78
5 The Meridional Structure of the Atmosphere 81
5.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.1 Latitudinal dependence of incoming radiation . . . . . 81
5.1.2 Latitudinal dependence of outgoing radiation . . . . . . 82
5.1.3 Meridional structure of temperature . . . . . . . . . . . 84
5.1.4 The energy balance of the atmosphere . . . . . . . . . 87
5.2 Pressure and geopotential height . . . . . . . . . . . . . . . . . 88
5.2.1 The height of pressure surfaces . . . . . . . . . . . . . 88
5.2.2 Geopotential surfaces . . . . . . . . . . . . . . . . . . . 89
5.3 Moisture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
CONTENTS 5
5.4 Winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Distribution of winds . . . . . . . . . . . . . . . . . . . 95
6 The equations of fluid motion 103
6.1 Differentiation following the motion . . . . . . . . . . . . . . . 103
6.2 Equation of motion for a nonrotating fluid . . . . . . . . . . . 106
6.2.1 Forces on a fluid parcel . . . . . . . . . . . . . . . . . . 106
6.2.2 The equation of motion . . . . . . . . . . . . . . . . . . 110
6.2.3 Hydrostatic balance . . . . . . . . . . . . . . . . . . . . 111
6.3 The continuity equation . . . . . . . . . . . . . . . . . . . . . 111
6.3.1 Incompressible flow . . . . . . . . . . . . . . . . . . . . 112
6.3.2 Compressible flow . . . . . . . . . . . . . . . . . . . . . 112
6.4 Equation of motion for a rotating fluid . . . . . . . . . . . . . 114
6.4.1 GFD Lab III: radial inflow . . . . . . . . . . . . . . . . 114
6.4.2 Transformation into rotating coordinates . . . . . . . . 119
6.4.3 The rotating equation of motion . . . . . . . . . . . . . 121
6.4.4 Experiments with Coriolis forces on a parabolic rotat-
ing table . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.5 Geostrophic motion . . . . . . . . . . . . . . . . . . . . 129
6.4.6 The Taylor-Proudman Theorem . . . . . . . . . . . . . 132
6.4.7 The thermal wind equation . . . . . . . . . . . . . . . 135
6.4.8 Subgeostrophic flow: the Ekman layer . . . . . . . . . 143
6.5 Putting things on the sphere . . . . . . . . . . . . . . . . . . . 148
6.5.1 GFD Lab X: An experiment on the Earth’s rotation . . 148
6.5.2 The centrifugal force, modified hydrostatic balance and
geopotential surfaces on the sphere . . . . . . . . . . . 150
6.5.3 Components of the Coriolis force on the sphere: the
Coriolis parameter . . . . . . . . . . . . . . . . . . . . 152
6.6 Geostrophic balance on the sphere . . . . . . . . . . . . . . . . 154
6.6.1 Small Rossby number flow . . . . . . . . . . . . . . . . 154
6.7 Thermal wind in pressure coordinates . . . . . . . . . . . . . . 163
6.7.1 Thermal wind expressed in terms of potential temper-
ature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7 The general circulation of the atmosphere 169
7.1 The tropical Hadley circulation . . . . . . . . . . . . . . . . . 169
7.2 The midlatitude circulation . . . . . . . . . . . . . . . . . . . 173
7.2.1 Energy stored in the thermal wind . . . . . . . . . . . 174
6 CONTENTS
7.2.2 Available potential energy . . . . . . . . . . . . . . . . 175
7.2.3 Baroclinic instability . . . . . . . . . . . . . . . . . . . 178
7.2.4 GFD Lab XI: baroclinic instability of the thermal wind 180
7.3 The ‘big picture’ of the atmospheric heat (and momentum)
budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3.1 Energy requirements, as deduced from observations . . 182
7.3.2 Incorporating eddy transfer in to our general circula-
tion theory . . . . . . . . . . . . . . . . . . . . . . . . 185
II The Ocean 189
8 The ocean and its circulation 191
8.1 Physical characteristics of the ocean . . . . . . . . . . . . . . . 192
8.1.1 Properties of seawater; equation of state . . . . . . . . 193
8.1.2 Temperature and salinity structure . . . . . . . . . . . 196
8.1.3 The mixed layer and thermocline . . . . . . . . . . . . 201
8.2 The observed circulation . . . . . . . . . . . . . . . . . . . . . 204
8.3 Inferences from geostrophic and hydrostatic balance . . . . . . 207
8.3.1 Ocean surface structure and geostrophic flow . . . . . . 208
8.3.2 Deep geostrophic flow . . . . . . . . . . . . . . . . . . 211
9 The wind-driven circulation 213
9.1 The wind stress and Ekman layers . . . . . . . . . . . . . . . . 213
9.1.1 Balance of forces in the Ekman layer . . . . . . . . . . 215
9.1.2 Wind-driven Ekman pumping . . . . . . . . . . . . . . 216
9.2 Response of the interior ocean to Ekman pumping . . . . . . . 220
9.2.1 Interior balances . . . . . . . . . . . . . . . . . . . . . 220
9.2.2 Taylor-Proudman on the sphere . . . . . . . . . . . . . 221
9.2.3 GFD Lab XIII: Wind-driven ocean gyres . . . . . . . . 225
9.2.4 The wind-driven gyres and western boundary currents 226
9.3 The depth-integrated circulation . . . . . . . . . . . . . . . . . 228
9.3.1 Mass transport of gyres: western boundary current
speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.4 Effects of inhomogeneity . . . . . . . . . . . . . . . . . . . . . 231
9.4.1 Taylor-Proudman in a layered ocean . . . . . . . . . . 233
9.5 Ocean eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.5.1 Observations of ocean eddies . . . . . . . . . . . . . . . 236
CONTENTS 7
9.5.2 Baroclinic instability in the ocean . . . . . . . . . . . . 238
10 The thermohaline circulation of the ocean 243
10.1 Sources of deep water . . . . . . . . . . . . . . . . . . . . . . . 243
10.2 Time scales and intensity of thermohaline circulation . . . . . 249
10.3 Abyssal circulation schematic deduced from ‘Taylor-Proudman’ 250
10.4 Observations of the abyssal circulation . . . . . . . . . . . . . 252
10.5 GFD Lab XIV: The thermohaline circulation . . . . . . . . . . 257
10.6 Why western boundary currents? . . . . . . . . . . . . . . . . 258
10.6.1 GFD Lab XV: Source sink flow in a rotating basin . . . 260
11 The ocean’s role in climate 263
11.1 Ocean Heat storage . . . . . . . . . . . . . . . . . . . . . . . . 263
11.2 Ocean heat transport . . . . . . . . . . . . . . . . . . . . . . . 264
11.2.1 Mechanisms of ocean heat transport . . . . . . . . . . 266