0% found this document useful (0 votes)
624 views1 page

Ultimate Bending Moment Capacity of Circular Column: Concrete & Reinforcement Strength

1) The document analyzes the ultimate bending moment capacity of a circular reinforced concrete column with a diameter of 600mm. 2) It calculates the strain, stress, force, and bending moment contributions of the reinforcement bars and compressed concrete to determine the total ultimate bending moment capacity. 3) The analysis finds that the column has an ultimate bending moment capacity of 702 kNm, which exceeds the target capacity of 1950 kN required by the applied working load of 1500 kN.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
624 views1 page

Ultimate Bending Moment Capacity of Circular Column: Concrete & Reinforcement Strength

1) The document analyzes the ultimate bending moment capacity of a circular reinforced concrete column with a diameter of 600mm. 2) It calculates the strain, stress, force, and bending moment contributions of the reinforcement bars and compressed concrete to determine the total ultimate bending moment capacity. 3) The analysis finds that the column has an ultimate bending moment capacity of 702 kNm, which exceeds the target capacity of 1950 kN required by the applied working load of 1500 kN.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
You are on page 1/ 1

Ultimate Bending Moment Capacity of Circular Column

Input Data:
Pile Outer Diameter, D= 600 mm
fcu= 40 N/mm²
Elastic Modulus, Ecu= 28.4 kN/mm²
Gama_mfcu= 1.5 0.0035 0.45fcu
fy= 460 N/mm²
Gama_ms= 1.15 Fsc
sc
Elastic Modulus ,Es = 200 kN/mm² sc Fsc

0.9 x
Bar Size = 32 mm

x
Working Load = 1500 kN Fsc
ULS safety factor = 1.3
Cover to reinforcement, C= 61 mm s Fs
Radius to reinforcement, r = 239 mm Fs
s
d/h= 2r/D= 0.80
Assumed Neutral Axis, x= 261.4 mm
Pile Outer Radius, R= 300 mm Section Strain Stress

Concrete & Reinforcement Strength:


compression strain = 0.00024273
maximum concrete strain = 0.0035
allowable bending strain = 0.00325727
strain
direct com- stress steel area Bending Moment
Part Nos of Bar Delta x_bar pression bending total (N/mm²) or concrete Comp. Tens. (kNm)
(Degree) (mm) area (mm²) (kN) (kN) Comp Tens.
Reinforcement: top fibre -261.4 -0.000243 -0.003257 -0.0035
1 1 0 -200.4 -0.000243 -0.0025 -0.0027 -400 805 -322 0 64 0
2 2 36 -154.7 -0.000243 -0.0019 -0.0022 -400 1609 -644 0 100 0
3 2 72 -35.1 -0.000243 -0.0004 -0.0007 -136 1609 -219 0 8 0
4 2 108 112.6 -0.000243 0.0014 0.0012 232 1609 0 374 0 42
5 2 144 232.1 -0.000243 0.0029 0.0026 400 1609 0 644 0 149
6 1 180 277.6 -0.000243 0.0035 0.0032 400 805 0 322 0 89
7 0 0 -200.4 -0.000243 -0.0025 -0.0027 -400 0 0 0 0 0
8 0 0 -200.4 -0.000243 -0.0025 -0.0027 -400 0 0 0 0 0
9 0 0 -200.4 -0.000243 -0.0025 -0.0027 -400 0 0 0 0 0
10 0 0 -200.4 -0.000243 -0.0025 -0.0027 -400 0 0 0 0 0
11 0 0 -200.4 -0.000243 -0.0025 -0.0027 -400 0 0 0 0 0
12 0 0 -200.4 -0.000243 -0.0025 -0.0027 -400 0 0 0 0 0
13 0 0 -200.4 -0.000243 -0.0025 -0.0027 -400 0 0 0 0 0
Concrete :
- - - 119 - - - 18 129907 -2104 250
Total Bars= 10 Neutral axis= 281 Subtotal = -3289 1339 421 281
Nett Force = -1950 702 kNm
Note for Reinforcement Strength: Targetted Force = -1950 ULS BM Capacity
1. x_bar = C + r(1-cos(delta)) - x, ie distance of neutral axis from compression top fibre
2. C = cover to reinforcement
3. r = radius to reinforcement
4. Sign convention in forces:
negative = compression
positive = tension

Summary & Note for Concrete Strength:


Direct compression:
y1

Ultimate Compressive Force = 1950 kN


ULS compressive stress = 6.9 N/mm²
comp. strain, stress/E = 0.00024273

Beta = 86.3 Degree


a= 0.9939128
b= 1.50701723 rad
c= 0.06360628
d= 0.06373587
Concrete centroid = 119 mm
Sector Area = 129907 mm²
= Beta
Denotion:
1. Neutral axis = R * (1-cos (Beta)) 3
2sin ( )
2. Beta = +180*7/22*Acos(1-x/R), x=actual neutral axis y1 = R - cos( )
3. a = [sin(Beta)]^3 3( -sin( )cos( ))
4. b = Beta in radian
5. c = sin(Beta) * cos(Beta)
6. d = cos(Beta) A = R ( -sin( )cos( ))
7. Centroid from neutral axis = R*[(2*a)/(3*b-c)-d]
8. Sector Area, Asec = R*R*(Beta -sin(Beta)*cos(Beta))
9. Ultimate compressive force = 0.45*fcu*(0.9*x Sector Area)

You might also like