0% found this document useful (0 votes)
116 views2 pages

Concrete Beam Design Guide

This document provides a design summary and analysis for a concrete beam with the following parameters: - Concrete strength of 4 ksi - Rebar strengths of 60 ksi for main and stirrups - Factored bending moment of 1000 ft-kips - Factored shear force of 230 kips - Factored torsional moment of 36.5 ft-kips The summary shows the beam dimensions, reinforcement details, and results of checks for flexural capacity, shear capacity, torsional capacity, and spacing of shear reinforcement which all meet the minimum requirements of ACI 318-19.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
116 views2 pages

Concrete Beam Design Guide

This document provides a design summary and analysis for a concrete beam with the following parameters: - Concrete strength of 4 ksi - Rebar strengths of 60 ksi for main and stirrups - Factored bending moment of 1000 ft-kips - Factored shear force of 230 kips - Factored torsional moment of 36.5 ft-kips The summary shows the beam dimensions, reinforcement details, and results of checks for flexural capacity, shear capacity, torsional capacity, and spacing of shear reinforcement which all meet the minimum requirements of ACI 318-19.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 2

PROJECT : PAGE :

CLIENT : DESIGN BY :
JOB NO. : DATE : REVIEW BY :
Concrete Beam Design, for New or Existing, Based on ACI 318-19

INPUT DATA & DESIGN SUMMARY


CONCRETE STRENGTH f 'c = 4 ksi, (28 MPa)
REBAR STRENGTH MAIN fy = 60 ksi, (414 MPa)
STIRRUP fy = 60 ksi, (414 MPa)
FACTORED BENDING MOMENT Mu = 1000 ft-kips, (1356 kN-m)
FACTORED SHEAR FORCE Vu = 230 kips, (1023 kN)
FACTORED TORSIONAL MOMEN Tu = 36.5 ft-kips, (49 kN-m)
SECTION DIMENSIONS bw = 24 in, (610 mm)
h= 48 in, (1219 mm)
hf = 8 in, (203 mm) THE DESIGN IS ADEQUATE.
b= 88 in, (2235 mm), (ACI 318-19 6.3.2.1 & 9.2.4.4)
COMPRESSION REINFORCEMENT 4 # 7
TENSION REINFORCEMENT 6 # 9
SHEAR REINFORCEMENT 4 legs # 4 @ 12 in, (305 mm), o.c.

ANALYSIS
CHECK FLEXURAL CAPACITY max = 0.003 0.85 f c'
A s' f s'

2 0.85 f 'C  , E c  57 f C' , E s  29000ksi
 o   max or
Ec Fc
       2
 c  c  , for 0 
0.85 f C  2 
'
   c o Parabolic
fC    o    o  
 '
0.85 f C , for  c   o

A sfy
 s E s , for  s   t

fS
 f , for  s   t
 y

Cover = 1.5 in, (ACI 318 20.6.1) rprov'd = 0.0055 < rmax = 0.0119 , (ACI 318 9.3.3.1)
d= 45.44 in > rmin = 0.0033 , (ACI 318 9.6.1)
d' = 2.44 in [Satisfactory]
f= 0.90 , (ACI 318-19 21.2) c= 5.39 in, by pure math method
e c,max = 0.0006 Fc = 334.34 kips
es,max = 0.0050 , (ACI 318-19 21.2.2) dc = 1.85 in

fMn = 1185.14 ft-k > Mu [Satisfactory]

CHECK SHEAR CAPACITY


Check section limitation (ACI 22.5.5 & 22.5.1.2) Determine concrete capacity (ACI 22.5.5.1)
V u  10 b wd f c
'
'
V C  2b wd fc  137.93 kips
230.0 < 517.3 kips [Satisfactory]
where f= 0.75
V C   1.9 A  2500  wB  b wd 
144.10 kips ,<== applicable
Check shear reinforcement (ACI 22.5)

0 , for V u 
V c
where
A  MIN  f
'
c
, 100   63.25
 2
  d 
 Av    50b w 0.75 f 'c b w  V c B  MIN  V u , 1.0  
 s    MAX  ,  , for  V u  V c  Mu  0.871
  Re qD   f f  2
 y y 
 
V u V c , for V c  V u
  df y

 Av 
 s  
= 0.716 in2 / ft <   Pr ovD 0.800 in2 / ft [Satisfactory]

Check spacing limits for shear reinforcement (ACI 22.6.9.5)


V u  V c
Vs 
 0.00 kips, (ACI 22.5.1.1)

 d '
 MIN ( , 24) for V s  4b wd f c
 2

S max, shear 
 MIN ( d , 12) for V s  4b wd f ' = 22 > S= 12 in

 4 c [Satisfactory]
(cont'd)
CHECK TORSION CAPACITY
Check section limitation (ACI 22.7.7.1)
2
 V u   T u Ph 
2
 
        V C  8 f 'c  where f= 0.75 (ACI 21.2)
b d  1.7 2   b d 
 w   Aoh   w  Ph = 258 in, (perimeter of centerline of outermost closed
transverse torsional reinforcement.)
Aoh = 1,287 in2 (area enclosed by centerline of the outermost
0.215 < 0.474 [Satisfactory] closed transverse torsional reinforcement.)

Check if torsional reinforcement required (ACI 9.5.4.1)


'  A cp 
2
be = MIN(h-hf , 4hf) =
Tu  f c  where 32 in, (one side, ACI 9.2.4.4)
 P cp  Pcp = 160 in, (outside perimeter of the concrete cross
section.)
36.5 < 36.5 ft-k Acp = 1,216 in2 (area enclosed by outside perimeter of
Torsional reinforcement NOT reqD. concrete cross section.)

Check the max factored torque causing cracking (ACI 22.7.3.2)


'  Acp 
2

T u  4 f c 
 P cp 

36.5 < 146.1


Reduction of the torsional moment can occur.

Determine the area of one leg of a closed stirrup (ACI 22.7.6.1)


At  T u  Tu 
s 2 A0 f yv 1.7 A0 h f yv
0.00 in2 / ft < actual = 0.2 [Satisfactory]

Determine the corresponding area of longitudinal reinforcement (derived from ACI 22.7.6.1 & 9.6.4.3)

  
25b w  
'
At f yv 5 Acp f c f
A L  MAX  P h ,  P h yv MAX  At ,  
s f yL f yL f yL  s f yv  
   0.00 in2

Determine minimum combined area of longitudinal reinforcement


AL, top = As' +0.5AL = 0.00 in2 < actual [Satisfactory]
AL, bot = As +0.5AL = 5.06 in2 < actual [Satisfactory]

Determine minimum diameter for longitudinal reinforcement (ACI 25.7.1.2)


dbL = MAX(0.042 S, 3/8) = 0.50 in < 0.88 in [Satisfactory]

Determine minimum combined area of stirrups (ACI 9.6.4.2 & 9.7.6.3.3)


(Av+2At) / S = 0.40 in2 / ft > MAX [ 0.75(fc')0.5bw/fyv, 50bw/fyv] = 0.24 in2 / ft
Smax, tor = MIN[(Ph/8, 12) = 12 in [Satisfactory]
SreqD = MIN(Smax,shear , Smax,tor) = 12 in > actual [Satisfactory]

You might also like