INTEGRAL CALCULUS
Caloulus
“The piniges of integration uere Frmulated by Tome Newton and Gottfred
Lelia. Ine late sevarteentn conury, rough the Ardawitha| tienen of cals,
vid Hy werent ly doyered he dheorem demersal, the celafontp Veteen
the wo Uriel operations of erlulus, diffenhati a wegetion. Igri tanned
ui dvdownhation and He define kegel af a fandion ain We easly bonpated ove
aw antidenakne is. Kou.
“Re mdean wataton fir the definite gral ums teu by Gobi bre
nS. Weald he ingasybo|,'S°) Fm an dhnya leer ¢ ; Saving fe
Summa (Latin fr "sum" vr “total
GENERAL FORM, one :
FOR) isany Aarctin, sda Hat
LMax = FEYEC | Floy > Foy) ond C is an
Jo inkegtal sign array constant,
Fix) > integrand
C= tonstant of reg
Fon) + C2 indefinite integral
FORMULA
The Power Formula”
f u™
Jutdu = “Gr +0 = nel
 
subscribe 0n youtube, Rf
@enginerdmnatn‘Logavithin Formula’ subserilbe 09 yystulve, Jo
 
 
 
 
 
 
 
 
 
 
@enginerdmath
Jae = Inu] +0
Je'du = e'+C
Tha W
Wa ulna . N — a
Soatdu Je du ra ma
 
 
 
 
 
Judy = uv- Jvdu
 
 
note: wand V ave finchons of x
a— js a anstant
© = 8.71929 (bate of natwal logarithm)
Te opty the Fiemula of integration lay paris, separate the unkgrand vio two aches
yu and dv usually as the most vamp cated ‘ocor onntaining ax.
 
 
) J sinudu = ~ cosy +0 % JseCudus tanu +
) J agudu= sou tC 8) J secutanudy > secu te
3 Mtawdy = In secu $0 = ~Inasute
4) S$ otudu = Insinu +0 4) JS esctudu=-otu + C
5) Ssecudu~ \n (ecu ttanu FC f esoucctu = ~cscu te
¥) Sescudu = In[escu - cotu) +csubsorilbe,on yputuloe, Bb
‘noes GNING INVERSE TRIGONOMETRIC PUNCTING  @enginerdmath
_ it -| U
0S par a Tg FO
jj o_ M1 gt Ub gy
=
o
 
 
3) [tu = awit + ©
a-u
INTEGRATION BY TRIGONOMETRIC SuASTITUTION
Three Cases May be enaluated:
Tf the integrand mths :
oz-u= , let U= asind
‘Cased.
T the wlegrard ymohes
Nour 5 lek w= otand
TE the vwlegrard wnthes »
uz=a* 4 tet u = asecd
INTECRATON DF HYPEREOMO FUNCTIONS
p Jsinhudy = ashutc 5) Ssechudu = sw" Canhy) +e
2) J msn du = sinh + Cy Seschudy = Wntanh’s +c
3) FS tarny dy = Inashy +e
J cbhudu = \nanhu toSubscribe, 01 yputuloe, Bf
 
DEFINITE INTEGRAL / WALLIS FORMULA Genginordinath
z
T L-i)(n-a)-.. or | [O-NUn3) x]
Se ain" uas"udy = —————-, "x
Cmanimtn-2) &
 
 
 
vitor: y= Taf mand ate both even
K= 1, otherwise
WIGHER ORDER INTEGRALS
‘Veetated Double ategral
b Ayo be A YUM)
= ( 4,
J, Veo dy drs ~ J, (Ss #en3)34) aK
 
 
 
i) wate) xdy = f [Jr Fou ax] 4
Whee. =O Kio ate constants
Foxy) iso Atoction of Rand y-
“Hemled Tipe Integr)
f eee cay addy dx
YHY A KY)
I. ere t Jona de
Ay Yt
a Jie gg) J
% LY)S
supsetibe on yputate 2.05
PLANE AREA IN RECTANGULAR COORDINATES @enginerdmath
 
* he aica
O= lower lint
 
General Formato: =f ydx b= gpa lnc
a
 
= Weight
 
 
 
xFa x=
n= ditorential width
 
 
Az So yax
 
 
3) Partly above and below the axis
 
=a Ree
AREA BERWEEN TWO CURVES
 
 
b c
A= “J yan J. ya
 
 
 
 
wg) |A=S2G.-y) ax
“J wae “y vor OK6
 
D4, =f) eo Ye
ace!2" Yaiontal ship Te wie [a= emday
=~
th) J \ frag” %ea)dy
x
Subsarilve on yputulie, Rf
Gengunerdiath
  
 
 
 
 
 
 
 
 
T= vadws
A= lower het
P= veper ln
AO= didhrential ange, OF the
nuemental oreo,
Length of 0 Plane Carve,
4 ds
ed Zh
a
‘Inteckangalae fxm: By Pyhagorean Theorem
ds = 1+)
go ) liebe ax
or s= [ay dy
 
Ine:4 subserilee-07 youtube, Rb
In Gengnerdmath
bo
S= f NV vaty + Colne gt
yo, z
so JP fies catasy ab
 
 
 
 
 
 
 
Centroid of Plane brea:
Case’: \orheal Stip
  
  
  
 
 
 
haaSp nah
Ay=JP yeah
wie. Ah = y ax
 
 
Je
 
 
 
 
 
Since the Wnt is from Xi) te, engress
¥ in dorms of:
Y= Yugger cine ~ Feuer one,
\Cose2% Hoviaontal Ship
a3
ag = fy Kea
hg = SP ya
 
   
 
 
 
 
 
px whee R= xd
Gee He lint is fron, Ah,
engss 61» Hovtns ey
KE Arne ume — Xref ome,Pavatioic, Segment and” Spardte cobain wetutechi
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Genginerdmath
For Parabola:
Xe =2b Yer zh
ita = 3-bh
| For spandrel
Z.-1 3, = 3
%e= yb] | e==bh
A soni - $ bh
 
 
 
Moment of Tnectiq of Plane Arcos
Moment of mein aint the paris y
Use ~vertical strip:
y= J)" oda
 
  
 
 
 
 
mars syd
. *
Moment of Inertiq obiowl the % ans
Use haiental strip
= S yaa
Mee UA xy4
Subsoribe, 09 yputuie, >
Genginerdinath
he:
i. In saving Br He moment of inertia using wnegraton, dhe a stip & that all
ements. OF the stvip will have Ihe same distame frum the ovis of manent Ge.
honaontal ship Air moment abolt »-oAis and vertical strip BC moment’ olaut He
 
y> anis)
Forallel =oxis Theorems : (Transfer Inertia)
[=a] hee: T, = cenboidal moment of inertia
I= Lt Ad, paralld. f dhe wae
Iy= Ty + Ady Ty = Cenboidal rome of ner
ss povalel tb te YF ans.
Noluwe of q Sdlid of Revolution
ise Method
yet Volume by Groalar
 
 
 
dv= Tyodx
Ve Tf yde
 
 
 
whee y - Dagger Yor
MINEMMONIC: One way of vemembercy His Aamula is
Tosthink” of the sold Batry seed oni i nfintes ~
wally Hh deh of vadus J and Hanes ax,
hon apf He Fala Avrplume which ts
Th: Ty"dxlo Subseries, on youtube, Rb
Cae: Nolume by tblow Cylndvica) Shel Gap
’ V= ae oy
 
 
 
whee:
XK a= age ~ Heese
 
MNEMON\G: Dre wou of veneer Ti Reema ag
* Anke alla cylindrical ae wath fe
radasye jhaight h ard the nfeitesinally wall
Anaboness dy. the femul Ae Naume of a byprerl
Shell say be Shout obas aT rhar = aryxdy
When an are of 0 Pare cunts tevehies about a lime yn te pave ot cating
the arte the swface areq gewetatd is 4he yoducr Othe teryth of {his ave ard
the aroumforene fF He dre traersed \y its cenvvoid,
3 -
 
 
 
 
= are,
A= arrg | whee & tf are
1 = diane Fon he centnid of the atc
the ams of revolution
 
)
The ~wuime of a solid of rewlution generated by a fone aiea which revels
dt 0. ine ook sing H, is Re padck of eaten under tation ord he
ciraunfaeree of te orcle, Jovared ‘by the centnid oF He slate avn,N subscribe 00 yprbube, RP
 
 
 
 
 
 
 
 
Anis oF ronan Genginerdmatin
/ oF
Ne wN
= otra SS?
where: Y= Yelume
(= shocest distance fom the confraid
tthe aiea ty We revolved ty
the axis of vevolutivn
Work by Inkegration
=F. whee: W = uork
wis F= umstant fie
a= disdace ments
~The ‘nial work ame by a \orlalle Fite is 
 axdx  _ a aL re
= \ ysu - dw an CK")
MN = aA 5 2 *
v = TSuudu
ie 4K OK
Cl-aeyt 4 is
Bier lek ue Ite S Grants? lavtén) f= ay +e
— * “
tin SUR) ft dose
oe bx » 4h Purdy gu
6 2 ot
6-98)
Of Nex dx
Yo fy
Gla: bet U= \+ Sun non
daw ox) we Od
xeury = S@-20 4)udu
= Judy -2fur%edy 4 fa i
2 we ye ye
= at + te
Zam - £0, 2 (ne Fe5 Subsorilbe on ypatulbe- Jf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
iD J SW 4 @engunerdinath
a
y, nk de Pz 2 +c
tas lek w= HON? J 1% ae =
au ages = S$ sinu @du) a
=e OA =
Baue e 2Sanudu
2 Sax Pecan A Stee (anx dx)
Solin: ek U= 9x is
A= SINAdX J ¥ =
ghee LO = = (wax) +e
We
r S Sn cos 7id%
J ud
Soll: tet UF sinx
du= wordy = a .
= sintx *
q lo
= ain't _ ant lo)
=i 4 4
= yu) - 410) “la
“5 +-du
4 \n\ul +c
2:
eau en +Osubsofilte.0n yputulte, RPE
x242
We) ; xtl ox @enginerdinath
YolN: xe = Mey
x |
ne a pee
Sy Sere Sect an) .
= 5X xt a\njmal |
= 2-24 3\no-3\n
3\n3- 30
alna = Ina” =| lng
 
won
 
 
 
 
(nx)
a) SE Seth pp te atonal ie
 
 
Solin. feb U= (nx
Ane m = fudy
 
® ¥) co
wn — = J esctndx _ Sond du ais Elnjoscu- at ul tC
= &
© ode 2 In| csc x~ atx +
du LSescudu
a .
 
My
19) J Cesc4x ~ wk 4n)dx aly
“a 4 Ji cecu~cotu au
%,
tn eacy -atul ~ Inlanul 4
&
In | 6c 4x = coke} ~ {n\n \ .
1,4
J
Som: fet us x
du> 4dx
au = ax
§ : u- otu) oY
fsc 7
‘le =|2 Ina.
 
L
4
4,
4stsribe sn ypube 6
Genginordinath
‘ $n fee oe ne aetnc
t ue x =x"
Sol: Set fet i) 19° te
dye hax
my as e"du
aA
we
a) J nto nx
a
Sduution ! A 10% = fin” ax - ot -
a
wtus 3x SB) he
d= 24x > 2S iotay 13 i co
Sou =ax 3
‘nlegrs ying In
de
) TS -
Soy: feb u= 3 J ( du = ase BAL
dux 2d% ar =
=a
& *
3 ew
5
2 AS .
: Seape = fx ~3xhbh)4is-
So\'q: 55 xXte Sseea5r5 (x Sx hist
% tet us OS
Sothae (avy ttt Aus 0% ‘
= Shape 1. fog LES)
ie yz”
3 td
 
 
ka a
sm Mom tC4
TECHNIQUES DF INTEGRATION ssbearto on yulte, Rf
@enginerdmath
Inkegrabon By Farts
2) S almadx JSudv= we ®dy
Sens let usm — thy=adx = (9) US) ~ Jon
ave as = lox - 5S xdx
* Bn ae te
7 PE lox - bone
 
 
 
 
®) J o*snxdx Sudv= we fidy
Vn —
Sota: bet we sink “ am Seamdx = compe) - J et warden
P tosxX dx N= Use gration by ps agp esx
let U= cox — dy> 70x
dui ~ ~Sinxdx ye”
Serax = eon ~ Leto — J 6% cam dx)
Seramady = eX sme = 6% OK — lo Poinx gry
Pfersindx = _C*sIK = © 5K
Sehsinxdx = a ensnx - ye ax +c
 
 
 
 
Imeagation of fouets of Sie ard Cosine,
Case Ssntudy — o¢ f cos"4dy yuhere. M1 1S an edd_inkeger
ah) p weadx = sine
Syn: Pudrdrx = J ast Ccostdn)) ~ SI six) coord ; ds osc
w
3
= J coxda- S sixunxdx - am —
= snx —~ZE4c = AM" s 4CIs ssubserite on youtube, Re
aa) f sm®xdx Gengmnerdinath
Sein. ni and x =! fan’) sinnd% = S (\- wx) snx ox
< PCy = 208% 4 cost rw dx
= Panna - 26 o&xsimcdn + f cobs simad
leh u= w5x — dus- sin«d x
— aus sinKdx
= farmed ~2Sur edu) + Fut Gav)
= famdx + afte ~ falda
= ~ 0K 4 2 we = “ te
 
 
— 005K +B wer “LaFate
 
 
Cose 2° F sins cos"x dx , Where atleast sie f the ppane
a8) Sawx ask ax
On ss xwsixdx = Sewrx cwstx sinndx -S Cr 05%) tosh sind
cactxamrdx ~ f cos'x sinxdx
—= cos’x 4 x osx +o
Is WA.
    
   
Let U> coex
dus —awndx
case S* f sin"udu and fwstudu whee Ais on een
wnkgev"
aa) Ssin*xax
Sela: Ssin *OK = —_— I= a a = fae — J} 52% dx
= oSdx — Af msrxdx
= 4x ysinex AG
V bet = 2x
du. =Ww
Case4® fsa cos" x dx , where oh m ard n ave even
wm) S s0"xoostxdx .
Solin Pants ook dA = gu anton dn = lle
= ise 4 Jussndx + tS werd
subserlbe,0n yaubuloe, Be
@enginerdmnath - 4 ~ me + 4 See dx
sf
 
 
 
 
 
ra muds wv in uly | “hae W\sq « phe whegar
We we yay = fan! y kana cok4= ook™%4 Cost)
= tan ™u (sect ut) = ok” “a(oscru 1)
al) J tan’xdx
Sole: tana = Plane sectn-Ddoe = JS tarmysecdtxdas ~ Seana
lebus ture J udu — Stanxay
dus sexdx ME |n Yor) )
: ints + Wl ox | EC
 
 
 
 
 
B) Jak! ond
Sorin: Soottardx = Sok 9x (050 AOA = J cok xecaxdx ~S oad
= ete eck? 9x) — — SEse3x -1) dx
§ wb 3x +L kK REC
 
uw|
dows Psecrudy or [b%"udy whee n 15a posite eon Inkyor
We witle
seclus sec™*u secu eschus csc U ecru
Sesct = Carta Hy secu = bot*u 4) me esc
csckad
$3) x . > Subsorilbe, 0 yoatulbe, 20>
Sovn Poses = JUttx +1 * esc xdx Geng\nerdinat
= J ot'x coctxdx + 2(cat’xcsctxdx + Ses?xdy
= wt? ~% cot — atat+e
 
 
 
 
ose! Precrudu 0 fosctudy ube nb a posthve ud inkegen>
To inkegrale odd prot of secant and coscant we we yokyation by puts
34) Ssxixdx
Qyq: bet y= Sean dv2 Sectxdx
du> secrtanndX Y= tax
Socckd x= seextanx — SJ seem KanKax
= secatany, — Ssecx (se@x- Ax
Sedade > seextanx ~ Jecx + Sseuxdx
dsccradye = seer tanx + \n) sen + tanx |
 
 
Seedxan= | (seastame + nl oe t+ tan] ) $C
 
 
cage Stan" secudy of Paty csc'udy where Vis a psite
een inte gen,
35) J fan? sec’ndx
Solin: J fan8x seetnace = S Yat x( tana 1) sein
yaus tone = Sta xs00% dm + Pravtnsecnde
dus secydx = + tan X + thntatewR
Case: SYonuseo™udu of Scot™u cso "udy jubete MIs a positive,
odd Weyer
a) Start % SEC MAK hus scx
Sova Sax sed ydor = J tanix sectx secatunndX — dx coxtancdy
=! (8 1)" seobg (seem tan dx)
Se sec’ (eextaiixdx) -z. sack (oeaMtanx an) + Psecbs (seextaneax)
=| cece - 2 segly + Ls0ec? 7% +] subscrive-on vypatuloe Po
4 7 @
engunerdinath
 
 
 
 
Case? Ptonuseo™udy of Scok"u cso "udy jubete MIs a postive.
un indegey and miso positive odd \nleger
‘the inkegrand can ve. expessed in ms of WH youre oF secant of coca
SMart seconds =P oe) se xdx
= JoecBxdx ~Psec%dx > pees In OES
Integration By Trigonomehic: Substihition,
Case the integrand contain, on expresamry wf the ym aur ,a>0
let ug asind
Ht al 4x
J a “
SYn. leh X= 3snB , dx= 3as0d0
Nox? = V9= Got = 3A GST = 2eosd
je. S228 costda) = Sett¥as
= Secs “ae
=-at) -B +c3 x Banu sm p= and “prs 0 =)
kK, B= sit? - To find cat B , refordo Ryire on lett
yuo wtp < 12Ex™ subsite 9 youtube, Rf
x Genginerdinath
AQ=-x% x there fie:
aa =
Se - aie ~ sy te
 
 
 
 
 
 
 
 
 
coger a The ankegrand wntams an) exgrecson uf the fim ATaHUF aso
let u= atand
28) | VS ax
Soym: ket A= VT tanY das AT seco
AWTS = NStarte to = VS 1500 = V5 od
Sweex = Semen (E29 dO)
= BY sec?d dd j Use the resulkin Problem 34:
=F secdtan® +S ln]sece + tané | tc
 
Fon the ques, tan8 = 9B ) 8x8 - Ab
ein = BBE Hes T Er htc
 
 
2d KTS + E In| dere tx) Bye tc
 
[Lore + F In| ere +x] +
 
 
 
vee 0, = --S ne FC24
Coss The wnleqrard Colains an expesaon of He Arm Muar ,a>0
tel u= asece ssubsoite 9 yale, LP
34) JS NA @enginerdmatn
Sy lee X= Bsec8 | AX~ Ssecotand ad
Nea = Namco a > SNe ~ Stand
a sedi d= tL Dene
: aS 34nd 3 J evs ade
-id Cit @s20) do
=tet¢bsn20) +¢
a7
7) (8 + sindcos®) +o
Fim the Rgure: sind = oe ) asd = S-
 
 
 
 
 
So¥n De vompace inho san of partial Factions
Xe! = A 4 8B 4 ¢
XOF2) OF/) x X2 nt |ao
 
 
+ Subsofilte 09 utube, Af
shy Be “i me “ 4 2 Genguyordmath
wt. 2, ey tS
KOM K X-2 xF1
PH ye Lp yd pdx — 2p
Seah 3 x pees ao
 
[2 |ni) +b Inpee} - Slob +
 
 
 
2 Bt
4) J Ka-T oe
Sol’: Devorpose nhs sam of partial Pactions :
Fl 2 AY ay c
 
 
+ +
tx Gp * Gay eT
Sohiy fy A,B, C,D, and E
x) 2. et = 3
KOPP? ar + = = +—_le
fay oF 2
 
 P wel
o ne US ere we alle apt wep aye res =
Ss _
ar ib s\n] Bep ~ Gore) Fo bbe aite
 
_ |e + Bx-4 og x
ahaa Pe Mee] te
 
 
 
 
Sy Jeb X= BY dys bFAy
Plath) _ [2
Sg dae SAP JSue Subserilve-0n youbuloe, £ fb
Dive at fist , we have: Beunerinath
Jp
xh _ a Te \
ea ax (2 Bye 1 + Sh ) de
 
2 6(52?~ da dy -2 + tee) te
[fy
bb
+ G
 
x bax ba + bran W+C)
 
 
 
J dx
9) Us 4 wx
 
 
\ 2d%
Son: bet B= tan gx ax= 422
\-2 2e
COSK= ' swxX = ——
ee 7 I+ 22
ax . 2dy
FS J [tae
|- 2 _ + ERE
re ee
= a *
(1427) ~ 24 + (-2%)
de =-| Cc
Ae = = n\bo\ +
EI n|i-tangxl tc)
 
 
u
 
 
 
APPLICATIONS OF INTEGRAL CALCULUS
D\ py es
 
4) Find the ate of He region bounded y canes Y= x" ond
y= ~-W+4y-
Sov: lek pg) = ae ba 1 9%) =x. Get Hee point (6) of
\nterge ction4
Fix) = goo s
0 44K = x Gan Jame = 48) = es
aru d subsoil on ype, RP
ian @ arnatn
axUr2) =O x eens
K=O and yo 7
day vertical) spe me
4 he J Cap Ye Vb
. f° [o-* 4x) — x* J dx
= Sy D4 KB
> - 2x4 an |* --3o° + 205) - F 305128)
= -H4y-(oto st
 
 
 
 
 
45) Find the yolume of the solid generaled by rrotngg about he natnls
‘he veqion ouvded wy the paral y=x*+1 avd the hme yout,
Vy:
SO Co the powntis) of inlersection , of tw cates tek POD = xt3
and glk) = #4) y upper = Plad= WB
Foy = 91x)
AEB = XE) quepyekt LAY e)
W-xX-2 =O
(AIM -2) <0
 
Re-| X= 2
% Re1.
sce on yb 9
Us York ship fir dick eto: asia me
7h, u L
V2) [Yom ~ Yor) a
“7 Cw Craiydda
1
oof (=x! - ¥ 46x45) ax
L