Lecture 19
Lecture 19
• Problem 4.5
            • Problem 4.5
            • Problem 4.15
            • Problem 4.5
            • Problem 4.15
            • Problem 4.18
            • Problem 4.5
            • Problem 4.15
            • Problem 4.18
            • Spin
            • Problem 4.5
            • Problem 4.15
            • Problem 4.18
            • Spin
                                                              2l
                                  1                       d
                      Pll (x)   = l (1 − x 2 )l/2                    (x 2 − 1)l
                                 2 l!                     dx
                                                               2l
                                   1                       d
                       Pll (x)   = l (1 − x 2 )l/2                    (x 2 − 1)l
                                  2 l!                     dx
                                                                 2l
                                   1                        d
                       Pll (x)   = l (1 − x 2 )l/2                      (x 2 − 1)l
                                  2 l!                      dx
                                                                2l
                                   1                        d
                       Pll (x)   = l (1 − x 2 )l/2                     (x 2 − 1)l
                                  2 l!                      dx
                                                               2l
                                   1                       d
                       Pll (x)   = l (1 − x 2 )l/2                    (x 2 − 1)l
                                  2 l!                     dx
                                                               2l
                                   1                       d
                       Pll (x)   = l (1 − x 2 )l/2                    (x 2 − 1)l
                                  2 l!                     dx
                             1 1 −r /2a       
                                                  iφ     −iφ
                                                             
           ψ211 + ψ21−1 = − √        re sin θ   e    − e
                              πa 8a2
                             1 1 −r /2a              
                                                         iφ     −iφ
                                                                    
           ψ211 + ψ21−1 = − √        re        sin θ   e    − e
                              πa 8a2
                               i
                        = −√        re −r /2a sin θ sin φ
                              πa4a2
                                1 1 −r /2a               
                                                             iφ     −iφ
                                                                        
           ψ211 + ψ21−1 = − √            re        sin θ   e    − e
                                 πa 8a2
                                   i
                           = −√         re −r /2a sin θ sin φ
                                 πa4a2
                                 i
                 Ψ(~r , t) = − √     re −r /2a sin θ sin φ e −E2 t/~
                                 2πa
Now calculate the expectation value of the potential energy for this
time-dependent state
Now calculate the expectation value of the potential energy for this
time-dependent state
                     e2 1
         Z                
   hV i = |Ψ|2 −             d 3r
                    4π0 r
Now calculate the expectation value of the potential energy for this
time-dependent state
                     e2 1
         Z                
   hV i = |Ψ|2 −             d 3r
                    4π0 r
                         e2
                             Z 
                1                   2 −r /a    2      2
                                                          1
        =−                        r  e      sin  θ sin  φ    r 2 sin θdr dθ dφ
           (2πa)(16a4 ) 4π0                               r
Now calculate the expectation value of the potential energy for this
time-dependent state
                     e2 1
         Z                
   hV i = |Ψ|2 −              d 3r
                    4π0 r
                         e2
                              Z 
                1                    2 −r /a    2      2
                                                           1
        =−                         r  e      sin  θ sin  φ      r 2 sin θdr dθ dφ
           (2πa)(16a4 ) 4π0                                 r
                      Z ∞                Z π             Z 2π
             1    ~2         3 −r /a             3
        =−                  r e       dr      sin θ dθ         sin2 φ dφ
           32πa5 ma2 0                    0               0
Now calculate the expectation value of the potential energy for this
time-dependent state
                     e2 1
         Z                
   hV i = |Ψ|2 −              d 3r
                    4π0 r
                         e2
                              Z 
                1                    2 −r /a    2      2
                                                           1
        =−                         r  e      sin  θ sin  φ      r 2 sin θdr dθ dφ
           (2πa)(16a4 ) 4π0                                 r
                      Z ∞                Z π             Z 2π
             1    ~2         3 −r /a             3
        =−                  r e       dr      sin θ dθ         sin2 φ dφ
           32πa5 ma2 0                    0               0
Now calculate the expectation value of the potential energy for this
time-dependent state
                      e2 1
         Z                   
   hV i = |Ψ|2 −                d 3r
                     4π0 r
                           e2
                                Z 
                 1                     2 −r /a    2      2
                                                             1
        =−                           r  e      sin  θ sin  φ      r 2 sin θdr dθ dφ
           (2πa)(16a4 ) 4π0                                   r
                       Z ∞                 Z π             Z 2π
             1     ~2          3 −r /a             3
        =−                    r e       dr      sin θ dθ         sin2 φ dφ
           32πa5 ma2 0                      0               0
              ~2            4
        =−          (3!a4 ) π
           32πma6           3
Now calculate the expectation value of the potential energy for this
time-dependent state
                      e2 1
         Z                   
   hV i = |Ψ|2 −                d 3r
                     4π0 r
                           e2
                                Z 
                 1                     2 −r /a    2      2
                                                             1
        =−                           r  e      sin  θ sin  φ      r 2 sin θdr dθ dφ
           (2πa)(16a4 ) 4π0                                   r
                       Z ∞                 Z π             Z 2π
             1     ~2          3 −r /a             3
        =−                    r e       dr      sin θ dθ         sin2 φ dφ
           32πa5 ma2 0                      0               0
              ~2         4 4            ~2       1
        =−          (3!a  )   π =  −         = E1 = −6.8eV
           32πma6           3         4ma2       2
Now calculate the expectation value of the potential energy for this
time-dependent state
                      e2 1
         Z                   
   hV i = |Ψ|2 −                d 3r
                     4π0 r
                           e2
                                Z 
                 1                     2 −r /a    2      2
                                                             1
        =−                           r  e      sin  θ sin  φ      r 2 sin θdr dθ dφ
           (2πa)(16a4 ) 4π0                                   r
                       Z ∞                 Z π             Z 2π
             1     ~2          3 −r /a             3
        =−                    r e       dr      sin θ dθ         sin2 φ dφ
           32πa5 ma2 0                      0               0
              ~2         4 4            ~2       1
        =−          (3!a  )   π =  −         = E1 = −6.8eV
           32πma6           3         4ma2       2
not dependent on time!
The raising and lowering operators change the value of m by one unit:
                                             m±1
                           L± fl m = (Am
                                       l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
The raising and lowering operators change the value of m by one unit:
                                              m±1
                            L± fl m = (Am
                                        l )fl
what is Am
         l if the eigenfunctions are normalized.
                              p
                        Am
                         l = ~ l(l + 1) − m(m ± 1)
                       3                                       3
               S 2 χ+ = ~2 χ+                          S 2 χ− = ~2 χ−
                       4                                       4
                         3                                                3
                 S 2 χ+ = ~2 χ+                                   S 2 χ− = ~2 χ−
                         4                                                4
                                      
      c d           1        3         1
                            = ~2
      e f           0        4         0
                         3                                       3
                 S 2 χ+ = ~2 χ+                          S 2 χ− = ~2 χ−
                         4                                       4
                      
                        
      c d           3 2 1
                    1
                   = ~
      e f           0
                    4    0
                  3 2
                 c     ~
                   = 4
                 e     0
                         3                                       3
                 S 2 χ+ = ~2 χ+                          S 2 χ− = ~2 χ−
                         4                                       4
                      
                        
      c d           3 2 1
                    1
                   = ~
      e f           0
                    4    0
                  3 2
                 c     ~
                   = 4
                 e     0
         3
      c = ~2 , e = 0
         4
                         3                                              3
                 S 2 χ+ = ~2 χ+                                 S 2 χ− = ~2 χ−
                         4                                              4
                      
                                                                                         
      c d           3 2 1
                    1                                    c d        0        3             0
                   = ~                                                      = ~2
      e f           0
                    4    0                               e f        1        4             1
                  3 2
                 c     ~
                   = 4
                 e     0
         3
      c = ~2 , e = 0
         4
                         3                                              3
                 S 2 χ+ = ~2 χ+                                 S 2 χ− = ~2 χ−
                         4                                              4
                      
                                                                    
                                                                        
      c d           3 2 1
                    1                                    c d       3 2 0
                                                                    0
                   = ~                                            = ~
      e f           0
                    4    0                               e f       41   1
                  3 2                                            
                 c     ~                                        d     0
                   = 4                                            = 3 2
                 e     0                                        f    4~
         3
      c = ~2 , e = 0
         4
                         3                                              3
                 S 2 χ+ = ~2 χ+                                 S 2 χ− = ~2 χ−
                         4                                              4
                      
                                                                     
      c d           3 2 1
                    1                                    c d        03 2 0
                   = ~                                              = ~
      e f           0
                    4    0                               e f        14    1
                  3 2                                              
                 c     ~                                        d       0
                   = 4                                              = 3 2
                 e     0                                         f     4~
         3                                                           3
      c = ~2 , e = 0                                       d = 0, f = ~2
         4                                                           4
                         3                                                  3
                 S 2 χ+ = ~2 χ+                                     S 2 χ− = ~2 χ−
                         4                                                  4
                      
                                                                           
      c d           3 2 1
                    1                                        c d        0  3 2 0
                   = ~                                                    = ~
      e f           0
                    4    0                                   e f        1  4    1
                  3 2                                                    
                 c     ~                                              d       0
                   = 4                                                    = 3 2
                 e     0                                               f     4~
         3                                                                 3
      c = ~2 , e = 0                                             d = 0, f = ~2
         4                                                                 4
                                                            
                                3                   1 0
                             S = ~2
                                  2
                                4                   0 1
                           ~                                      ~
                 Sz χ+ =     χ+                          Sz χ− = − χ−
                           2                                      2
                                 ~                                           ~
                  Sz χ+ =          χ+                               Sz χ− = − χ−
                                 2                                           2
                                        
      c d              1         ~       1
                               =
      e f              0         2       0
                               ~                                      ~
                  Sz χ+ =        χ+                          Sz χ− = − χ−
                               2                                      2
                      
      c d             ~ 1
                       1
                    =
      e f             2 0
                       0
                   ~
                  c
                    = 2
                  e    0
                               ~                                      ~
                  Sz χ+ =        χ+                          Sz χ− = − χ−
                               2                                      2
                      
      c d         ~ 1  1
                =
      e f         2 0  0
              ~
              c
                = 2
              e    0
            ~
          c= , e=0
            2
                               ~                                             ~
                  Sz χ+ =        χ+                                 Sz χ− = − χ−
                               2                                             2
                                                                                        
      c d         ~ 1  1                                     c d        0          ~           0
                =                                                               =−
      e f         2 0  0                                     e f        1          2           1
              ~
              c
                = 2
              e    0
            ~
          c= , e=0
            2
                               ~                                             ~
                  Sz χ+ =        χ+                                 Sz χ− = − χ−
                               2                                             2
                                                                  
                                                                            
      c d         ~ 1  1                                     c d        0~ 0
                =                                                     =−
      e f         2 0  0                                     e f        12 1
              ~                                                        
              c                                                     d     0
                = 2                                                   =
              e    0                                                f    − ~2
            ~
          c= , e=0
            2
                               ~                                             ~
                  Sz χ+ =        χ+                                 Sz χ− = − χ−
                               2                                             2
                                                                     
      c d         ~ 1  1                                     c d        0   ~ 0
                =                                                       =−
      e f         2 0  0                                     e f        1   2 1
              ~                                                           
              c                                                     d         0
                = 2                                                     =
              e    0                                                 f      − ~2
            ~                                                               ~
          c= , e=0                                             d = 0, f = −
            2                                                               2
                               ~                                             ~
                  Sz χ+ =        χ+                                 Sz χ− = − χ−
                               2                                             2
                                                                       
      c d         ~ 1  1                                     c d        0     ~ 0
                =                                                         =−
      e f         2 0  0                                     e f        1     2 1
              ~                                                             
              c                                                       d         0
                = 2                                                       =
              e    0                                                   f      − ~2
            ~                                                                 ~
          c= , e=0                                               d = 0, f = −
            2                                                                 2
                                                            
                                       ~        1 0
                                  Sx =
                                       2        0 −1