Arthur, J. R. (2002) - Molecular Beam Epitaxy. Surface Science, 500 (1), 189-217
Arthur, J. R. (2002) - Molecular Beam Epitaxy. Surface Science, 500 (1), 189-217
1
Cha, S. N., Seo, J. S., Kim, S. M., Kim, H. J., Park, Y. J., Kim, S. W., & Kim, J. M. (2010).
Sound‐Driven Piezoelectric Nanowire‐Based Nanogenerators.Advanced materials, 22(42), 4726-
4730.
Chee, C. Y., Nadarajah, K., Siddiqui, M. K., & Wong, Y. (2014). Optical and structural
characterization of solution processed zinc oxide nanorods via hydrothermal method. Ceramics
International, 40(7), 9997-10004.
Chen, C. Y., Huang, J. H., Song, J., Zhou, Y., Lin, L., Huang, P. C., ... & Wang, Z. L. (2011).
Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays. ACS
nano, 5(8), 6707-6713.
Chen, L. J., & Chuang, Y. J. (2012). Hydrothermal synthesis and characterization of hexagonal
zinc oxide nanorods with a hexamethylenetetramine (HMTA) template-assisted at a low
temperature.Materials Letters, 68, 460-462.
Chik, H., Liang, J., Cloutier, S. G., Kouklin, N., & Xu, J. M. (2004). Periodic array of uniform
ZnO nanorods by second-order self-assembly. Applied physics letters, 84(17), 3376-3378.
Cho, A. Y., & Arthur, J. R. (1975). Molecular beam epitaxy. Progress in solid state chemistry,
10, 157-191.
Choi, D., Choi, M. Y., Choi, W. M., Shin, H. J., Park, H. K., Seo, J. S., ... & Kim, J. M. (2010).
Fully rollable transparent nanogenerators based on graphene electrodes. Advanced
Materials, 22(19), 2187-2192.
Choi, J., Schilling, J., Nielsch, K., Hillebrand, R., Reiche, M., Wehrspohn, R. B., & Gösele, U.
(2002, January). Large-area porous alumina photonic crystals via imprint method. In MRS
Proceedings (Vol. 722, pp. L5-2). Cambridge University Press.
Choi, M. Y., Choi, D., Jin, M. J., Kim, I., Kim, S. H., Choi, J. Y., ... & Kim, S. W. (2009).
Mechanically powered transparent flexible charge‐generating nanodevices with piezoelectric
ZnO nanorods. Advanced Materials, 21(21), 2185-2189.
Choi, Y. J., Park, J. H., & Park, J. G. (2005). Synthesis of ZnO nanorods by a hot-wall high-
temperature metalorganic chemical vapor deposition process.Journal of materials
research, 20(04), 959-964.
Chowdhury, R., Adhikari, S., & Scarpa, F. (2010). Elasticity and piezoelectricity of zinc oxide
nanostructure. Physica E: Low-Dimensional Systems and Nanostructures, 42(8), 2036-2040.
Chu, F. H., Huang, C. W., Hsin, C. L., Wang, C. W., Yu, S. Y., Yeh, P. H., & Wu, W. W.
(2012). Well-aligned ZnO nanowires with excellent field emission and photocatalytic
properties. Nanoscale, 4(5), 1471-1475.
Dal Corso, A., Posternak, M., Resta, R., & Baldereschi, A. (1994). Ab initio study of
piezoelectricity and spontaneous polarization in ZnO. Physical Review B, 50(15), 10715.
2
Devaramani, B. S., Manjasetty, B. A., & Nair, T. R. (2010). The Novelty of Syntheses & Varied
Applications of ZnO nano systems. arXiv preprint arXiv:1002.0199.
Djurišić, A. B., Chen, X., Leung, Y. H., & Ng, A. M. C. (2012). ZnO nanostructures: growth,
properties and applications. Journal of Materials Chemistry, 22(14), 6526-6535.
Fan, H. J., Lee, W., Scholz, R., Dadgar, A., Krost, A., Nielsch, K., & Zacharias, M. (2005).
Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed
approach. Nanotechnology, 16(6), 913.
Foo, K. L., Hashim, U., Muhammad, K., & Voon, C. H. (2014). Sol–gel synthesized zinc oxide
nanorods and their structural and optical investigation for optoelectronic application. Nanoscale
research letters, 9(1), 1-10.
Frost, M. C., & Meyerhoff, M. E. (2002). Implantable chemical sensors for real-time clinical
monitoring: progress and challenges. Current Opinion in Chemical Biology, 6(5), 633-641.
Frühauf, J., & Krönert, S. (2005). Wet etching of silicon gratings with triangular
profiles. Microsystem Technologies, 11(12), 1287-1291.
Gaddam, V., Kumar, R. R., Parmar, M., Nayak, M. M., & Rajanna, K. (2015). Synthesis of ZnO
nanorods on a flexible Phynox alloy substrate: influence of growth temperature on their
properties. RSC Advances, 5(109), 89985-89992.
Gao, P. X., Ding, Y., & Wang, Z. L. (2003). Crystallographic orientation-aligned ZnO nanorods
grown by a tin catalyst. Nano Letters, 3(9), 1315-1320.
Gao, P. X., Lao, C. S., Ding, Y., & Wang, Z. L. (2006). Metal/semiconductor core/shell
nanodisks and nanotubes. Advanced functional materials, 16(1), 53-62.
Gao, P. X., Song, J., Liu, J., & Wang, Z. L. (2007). Nanowire piezoelectric nanogenerators on
plastic substrates as flexible power sources for nanodevices. Advanced Materials, 19(1), 67-72.
Gao, P. X., Song, J., Liu, J., & Wang, Z. L. (2007). Nanowire piezoelectric nanogenerators on
plastic substrates as flexible power sources for nanodevices. Advanced Materials, 19(1), 67-72.
Gao, Y., & Wang, Z. L. (2007). Electrostatic potential in a bent piezoelectric nanowire. The
fundamental theory of nanogenerator and nanopiezotronics.Nano letters, 7(8), 2499-2505.
Gao, Y., & Wang, Z. L. (2009). Equilibrium potential of free charge carriers in a bent
piezoelectric semiconductive nanowire. Nano letters, 9(3), 1103-1110.
Geng, C., Jiang, Y., Yao, Y., Meng, X., Zapien, J. A., Lee, C. S., ... & Lee, S. T. (2004). Well ‐
Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates.Advanced Functional
Materials, 14(6), 589-594.
Geng, C., Jiang, Y., Yao, Y., Meng, X., Zapien, J. A., Lee, C. S., ... & Lee, S. T. (2004). Well ‐
Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Advanced Functional Materials,
14(6), 589-594.
3
Ghareaghaji, A. (2015). Piezoelectric Nanowire toward Harvesting Energy from In-Vivo
Environment. Bulletin of Electrical Engineering and Informatics, 4(1), 59-66.
Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., ... & Yang, P. (2003).
Low‐temperature wafer‐scale production of ZnO nanowire arrays. Angewandte Chemie
International Edition, 42(26), 3031-3034.
Greene, L. E., Yuhas, B. D., Law, M., Zitoun, D., & Yang, P. (2006). Solution-grown zinc oxide
nanowires. Inorganic chemistry, 45(19), 7535-7543.
Greyson, E. C., Babayan, Y., & Odom, T. W. (2004). Directed Growth of Ordered Arrays of
Small‐Diameter ZnO Nanowires. Advanced Materials, 16(15), 1348-1352.
H. M. Smith and A. F. Turner, (1965) Appl. Opt. 4, 147.
H. Temkin and M. Holtz controlled growth of GaN nanowires nano tech center
Hartanto, A. B., Ning, X., Nakata, Y., & Okada, T. (2004). Growth mechanism of ZnO nanorods
from nanoparticles formed in a laser ablation plume. Applied Physics A, 78(3), 299-301.
He, G., & Wang, K. (2011). The super hydrophobicity of ZnO nanorods fabricated by
electrochemical deposition method. Applied Surface Science, 257(15), 6590-6594.
Heo, Y. W., Norton, D. P., Tien, L. C., Kwon, Y., Kang, B. S., Ren, F., ... & LaRoche, J. R.
(2004). ZnO nanowire growth and devices. Materials Science and Engineering: R:
Reports, 47(1), 1-47.
Heo, Y. W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D. P., Ren, F., & Fleming, P. H.
(2002). Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam
epitaxy. Applied physics letters, 81(16), 3046-3048.
Hinchet, R., Lee, S., Ardila, G., Montès, L., Mouis, M., & Wang, Z. L. (2014). Performance
Optimization of Vertical Nanowire‐based Piezoelectric Nanogenerators. Advanced Functional
Materials, 24(7), 971-977.
Hiralal, P., Unalan, H. E., & Amaratunga, G. A. (2012). Nanowires for energy
generation. Nanotechnology, 23(19), 194002.
Hong, Y. J., An, S. J., Jung, H. S., Lee, C. H., & Yi, G. C. (2007). Position‐Controlled Selective
Growth of ZnO Nanorods on Si Substrates Using Facet‐Controlled GaN
Micropatterns. Advanced Materials, 19(24), 4416-4419.
Hsieh, C. T., Yang, S. Y., & Lin, J. Y. (2010). Electrochemical deposition and superhydrophobic
behavior of ZnO nanorod arrays. Thin Solid Films, 518(17), 4884-4889.
Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., ... & Yang, P. (2001). Room-
temperature ultraviolet nanowire nanolasers. science, 292(5523), 1897-1899.
Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., ... & Yang, P. (2001). Room-
temperature ultraviolet nanowire nanolasers. science, 292(5523), 1897-1899.
4
Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., & Yang, P. (2001). Catalytic growth of
zinc oxide nanowires by vapor transport. Advanced Materials, 13(2), 113-116.
Hussain, M., Abbasi, M. A., Khan, A., Nur, O., & Willander, M. (2014). Comparative study of
energy harvesting from ZnO nanorods using different flexible substrates. Energy Harvesting and
Systems, 1(1-2), 19-26.
Hwa, J. (2011). Aligned Growth of ZnO Nanorods. downloaded on Aug, 26.
Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56-58.
İkizler, B., & Peker, S. M. (2014). Effect of the seed layer thickness on the stability of ZnO
nanorod arrays. Thin Solid Films, 558, 149-159.
Jagadish, C., & Pearton, S. J. (Eds.). (2011). Zinc oxide bulk, thin films and nanostructures:
processing, properties, and applications. Elsevier.
Jeong, Y. I., Shin, C. M., Heo, J. H., Ryu, H., Lee, W. J., Chang, J. H., ... & Yun, J. (2011).
Effects of growth duration on the structural and optical properties of ZnO nanorods grown on
seed-layer ZnO/polyethylene terephthalate substrates. Applied Surface Science, 257(24), 10358-
10362.
Jin, C. F., Yuan, X., Ge, W. W., Hong, J. M., & Xin, X. Q. (2003). Synthesis of ZnO nanorods
by solid state reaction at room temperature. Nanotechnology,14(6), 667.
Kawakami, M., Hartanto, A. B., Nakata, Y., & Okada, T. (2003). Synthesis of ZnO nanorods by
nanoparticle assisted pulsed-laser deposition. Japanese journal of applied physics, 42(1A), L33.
Kenanakis, G., Androulidaki, M., Koudoumas, E., Savvakis, C., & Katsarakis, N. (2007).
Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth
technique. Superlattices and Microstructures, 42(1), 473-478.
Khan, A., Abbasi, M. A., Hussain, M., Ibupoto, Z. H., Wissting, J., Nur, O., & Willander, M.
(2012). Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton
fabric. Applied Physics Letters, 101(19), 193506.
Kim, K. H., Lee, K. Y., Seo, J. S., Kumar, B., & Kim, S. W. (2011). Paper‐Based Piezoelectric
Nanogenerators with High Thermal Stability. Small, 7(18), 2577-2580.
Kim, K. S., Jeong, H., Jeong, M. S., & Jung, G. Y. (2010). Polymer‐templated hydrothermal
growth of vertically aligned single‐crystal ZnO nanorods and morphological transformations
using structural polarity. Advanced Functional Materials, 20(18), 3055-3063.
Kipshidze, G., Yavich, B., Chandolu, A., Yun, J., Kuryatkov, V., Ahmad, I., ... & Temkin, H.
(2005). Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor
deposition. Applied Physics Letters, 86(3), 033104.
5
Kitamura, K., Yatsui, T., Ohtsu, M., & Yi, G. C. (2008). Fabrication of vertically aligned
ultrafine ZnO nanorods using metal–organic vapor phase epitaxy with a two-temperature growth
method. Nanotechnology, 19(17), 175305.
Klingshirn, C. (2007). ZnO: material, physics and applications. ChemPhysChem, 8(6), 782-803.
Knodle, W. S., & Chow, R. (2001). Molecular beam epitaxy: Equipment and practice. Handbook
of Thin Film Deposition Processes and Techniques, 381.
Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide—from synthesis to
application: a review. Materials, 7(4), 2833-2881.
Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide—from synthesis to
application: a review. Materials, 7(4), 2833-2881.
Kong, X. Y., & Wang, Z. L. (2003). Spontaneous polarization-induced nanohelixes, nanosprings,
and nanorings of piezoelectric nanobelts. Nano Letters, 3(12), 1625-1631
Kong, X. Y., Ding, Y., Yang, R., & Wang, Z. L. (2004). Single-crystal nanorings formed by
epitaxial self-coiling of polar nanobelts. Science, 303(5662),
Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., & Feng, S. Q. (2001). Ultraviolet-emitting ZnO
nanowires synthesized by a physical vapor deposition approach.Applied Physics Letters, 78(4),
407-409.
Krebs, H. U., Weisheit, M., Faupel, J., Süske, E., Scharf, T., Fuhse, C., ... & Nelke, D. (2003).
Pulsed Laser Deposition (PLD)--A Versatile Thin Film Technique. In Advances in Solid State
Physics (pp. 505-518). Springer Berlin Heidelberg.
Kumar, B., & Kim, S. W. (2011). Recent advances in power generation through piezoelectric
nanogenerators. Journal of Materials Chemistry, 21(47), 18946-18958.
Kumar, B., & Kim, S. W. (2012). Energy harvesting based on semiconducting piezoelectric ZnO
nanostructures. Nano Energy, 1(3), 342-355.
Kumar, B., Lee, K. Y., Park, H. K., Chae, S. J., Lee, Y. H., & Kim, S. W. (2011). Controlled
Growth of ZnO Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric
Nanogenerators. arXiv preprint arXiv:1102.0124.
Kumar, P. S., Paik, P., Raj, A. D., Mangalaraj, D., Nataraj, D., Gedanken, A., & Ramakrishna, S.
(2012). Biodegradability study and pH influence on growth and orientation of ZnO nanorods via
aqueous solution process. Applied Surface Science, 258(18), 6765-6771.
Lee, E., Park, J., Yim, M., Kim, Y., & Yoon, G. (2015). Characteristics of piezoelectric
ZnO/AlN− stacked flexible nanogenerators for energy harvesting applications. Applied Physics
Letters, 106(2), 023901.
Lee, G. J., Lee, Y., Lim, H. H., Cha, M., Kim, S. S., Cheong, H., ... & Han, S. H. (2010).
Photoluminescence and lasing properties of ZnO nanorods. J Korean Phys Soc, 57, 1624-1629.
6
Li, C., Hong, G., Wang, P., Yu, D., & Qi, L. (2009). Wet chemical approaches to patterned
arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chemistry of
Materials, 21(5), 891-897.
Li, L., Pan, S., Dou, X., Zhu, Y., Huang, X., Yang, Y., ... & Zhang, L. (2007). Direct
electrodeposition of ZnO nanotube arrays in anodic alumina membranes.The Journal of Physical
Chemistry C, 111(20), 7288-7291.
Li, Y., Cheng, G. S., & Zhang, L. D. (2000). Fabrication of highly ordered ZnO nanowire arrays
in anodic alumina membranes. Journal of Materials Research,15(11), 2305-2308.
Li, Y., Gong, J., & Deng, Y. (2010). Hierarchical structured ZnO nanorods on ZnO nanofibers
and their photoresponse to UV and visible lights. Sensors and Actuators A: Physical, 158(2),
176-182.
Li, Y., Meng, G. W., Zhang, L. D., & Phillipp, F. (2000). Ordered semiconductor ZnO nanowire
arrays and their photoluminescence properties. Applied Physics Letters, 76(15), 2011-2013.
Li, Z., & Wang, Z. L. (2011). Air/Liquid‐Pressure and Heartbeat‐Driven Flexible Fiber
Nanogenerators as a Micro/Nano‐Power Source or Diagnostic Sensor.Advanced
Materials, 23(1), 84-89.
Li, Z., Zhu, G., Yang, R., Wang, A. C., & Wang, Z. L. (2010). Muscle‐driven in vivo
nanogenerator. Advanced Materials, 22(23), 2534-2537.
Liao, Q. L., Zhang, Z., Zhang, X. H., Mohr, M., Zhang, Y., & Fecht, H. J. (2014). Flexible
piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy
harvesting. Nano Research, 7(6), 917-928.
Lieber, C. M., & Wang, Z. L. (2007). Functional nanowires. Mrs Bulletin, 32(02), 99-108.
Lim, S. K., Hwang, S. H., Kim, S., & Park, H. (2011). Preparation of ZnO nanorods by
microemulsion synthesis and their application as a CO gas sensor. Sensors and Actuators B:
Chemical, 160(1), 94-98.
Liu, B., & Zeng, H. C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime
of 50 nm. Journal of the American Chemical Society, 125(15), 4430-4431.
Liu, C., Zapien, J. A., Yao, Y., Meng, X. M., Lee, C. S., Fan, S. S., ... & Lee, S. T. (2003). High‐
Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays. Advanced materials, 15(10),
838-841.
Liu, J., Fei, P., Song, J., Wang, X., Lao, C., Tummala, R., & Wang, Z. L. (2008). Carrier density
and Schottky barrier on the performance of DC nanogenerator.Nano letters, 8(1), 328-332.
Liu, J., Fei, P., Zhou, J., Tummala, R., & Wang, Z. L. (2008). Toward high output-power
nanogenerator. Applied Physics Letters, 92(17), 173105.
7
Liu, S. C., & Wu, J. J. (2002). Low-temperature and catalyst-free synthesis of well-aligned ZnO
nanorods on Si (100). Journal of Materials Chemistry, 12(10), 3125-3129.
Liu, X., Wu, X., Cao, H., & Chang, R. P. H. (2004). Growth mechanism and properties of ZnO
nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied
Physics, 95(6), 3141-3147.
Lyu, S. C., Zhang, Y., Lee, C. J., Ruh, H., & Lee, H. J. (2003). Low-temperature growth of ZnO
nanowire array by a simple physical vapor-deposition method.Chemistry of materials, 15(17),
3294-3299.
Manekkathodi, A., Lu, M. Y., Wang, C. W., & Chen, L. J. (2010). Direct Growth of Aligned
Zinc Oxide Nanorods on Paper Substrates for Low‐Cost Flexible Electronics. Advanced
materials, 22(36), 4059-4063.
Meen, T. H., Water, W., Chen, Y. S., Chen, W. R., Ji, L. W., & Huang, C. J. (2007, December).
Growth of ZnO nanorods by hydrothermal method under different temperatures. In IEEE
International Conference on Electron Devices and Solid-State Circuits.
Morales, A. M., & Lieber, C. M. (1998). A laser ablation method for the synthesis of crystalline
semiconductor nanowires. Science, 279(5348), 208-211.
Ni, Y. H., Wei, X. W., Hong, J. M., & Ye, Y. (2005). Hydrothermal preparation and optical
properties of ZnO nanorods. Materials Science and Engineering: B,121(1), 42-47.
Nour, E., Khan, A., Nur, O., & Willander, M. (2014). A flexible sandwich nanogenerator for
harvesting piezoelectric potential from single crystalline zinc oxide nanowires. Nanomaterials
and Nanotechnology, 4(24).
Okada, T., Kawashima, K., & Ueda, M. (2007, April). Stimulated Emission and Field Emission
Characteristics of ZnO Nano-Rods Synthesized by Laser Ablation. In Journal of Physics:
Conference Series (Vol. 59, No. 1, p. 510). IOP Publishing.
Olivo, J., Carrara, S., & De Micheli, G. (2011). Energy harvesting and remote powering for
implantable biosensors. IEEE Sensors Journal, 11(EPFL-ARTICLE-152140), 1573-1586.
Ostrikov, K. K., Seo, D. H., Mehdipour, H., Cheng, Q., & Kumar, S. (2012). Plasma effects in
semiconducting nanowire growth. Nanoscale, 4(5), 1497-1508.
Ostrikov, K. K., Seo, D. H., Mehdipour, H., Cheng, Q., & Kumar, S. (2012). Plasma effects in
semiconducting nanowire growth. Nanoscale, 4(5), 1497-1508.
Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoc, H. (2005).
A comprehensive review of ZnO materials and devices.Journal of applied physics, 98(4),
041301.
Pacholski, C., Kornowski, A., & Weller, H. (2002). Self‐assembly of ZnO: from nanodots to
nanorods. Angewandte Chemie International Edition, 41(7), 1188-1191.
8
Pan, Z. W., Dai, Z. R., & Wang, Z. L. (2001). Nanobelts of semiconducting oxides. Science,
291(5510), 1947-1949.
Panda, S. K., & Jacob, C. (2009). Catalytic synthesis of ZnO nanorods on patterned silicon wafer
—An optimum material for gas sensor. Bulletin of Materials Science, 32(5), 493-498.
Park, W. I., & Yi, G. C. (2001). Photoluminescent properties of ZnO thin films grown on
SiO2/Si (100) by metal-organic chemical vapor deposition. Journal of electronic
materials, 30(10), L32-L35.
Park, W. I., An, S. J., Yi, G. C., & Jang, H. M. (2001). Metal-organic vapor phase epitaxial
growth of high-quality ZnO films on Al 2 O 3 (00· 1). Journal of Materials Research, 16(05),
1358-1362.
Park, W. I., Kim, D. H., Jung, S. W., & Yi, G. C. (2002). Metalorganic vapor-phase epitaxial
growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 80(22), 4232-4234.
Park, W. I., Yi, G. C., & Jang, H. M. (2001). Metalorganic vapor-phase epitaxial growth and
photoluminescent properties of Zn1− xMgxO (0⩽ x⩽ 0.49) thin films. Applied Physics
Letters, 79(13), 2022-2024.
Park, W. I., Yoo, J., & Yi, G. C. (2005). Catalyst-free metalorganic chemical-vapor deposition of
ultrafine ZnO nanorods.
Pauporte, T., Lincot, D., Viana, B., & Pellé, F. (2006). Toward laser emission of epitaxial
nanorod arrays of ZnO grown by electrodeposition. Applied Physics Letters, 89(23), 233112-
233112.
Pei, L. Z., Zhao, H. S., Tan, W., Yu, H. Y., Chen, Y. W., & Zhang, Q. F. (2009). Single
crystalline ZnO nanorods grown by a simple hydrothermal process.Materials
Characterization, 60(9), 1063-1067.
Peng, L., Hu, L., & Fang, X. (2014). Energy Harvesting for Nanostructured Self‐Powered
Photodetectors. Advanced Functional Materials, 24(18), 2591-2610.
Petersen, E. W., Likovich, E. M., Russell, K. J., & Narayanamurti, V. (2009). Growth of ZnO
nanowires catalyzed by size-dependent melting of Au nanoparticles. Nanotechnology, 20(40),
405603.
Platt, S. R., Farritor, S., Garvin, K., & Haider, H. (2005). The use of piezoelectric ceramics for
electric power generation within orthopedic implants.Mechatronics, IEEE/ASME Transactions
on, 10(4), 455-461.
Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., ... & Schulte, A.
(2008). Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal
method. Physica B: Condensed Matter, 403(19), 3713-3717.
Pookmanee, P., Kidrob, W., Intarapoom, R., & Phanichphant, S. Morphology Investigation of
Zinc Oxide (ZnO) Powders Synthesized by the Low Temperature Hydrothermal Process.
9
Protasova, L. N., Rebrov, E. V., Choy, K. L., Pung, S. Y., Engels, V., Cabaj, M., ... & Schouten,
J. C. (2011). ZnO based nanowires grown by chemical vapour deposition for selective
hydrogenation of acetylene alcohols. Catalysis Science & Technology, 1(5), 768-777.
Qin, Y., Wang, X., & Wang, Z. L. (2008). Microfibre–nanowire hybrid structure for energy
scavenging. Nature, 451(7180), 809-813.
Qiu, Y., Yang, D., Lei, J., Zhang, H., Ji, J., Yin, B., ... & Hu, L. (2014). Controlled growth of
ZnO nanorods on common paper substrate and their application for flexible piezoelectric
nanogenerators. Journal of Materials Science: Materials in Electronics, 25(6), 2649-2656.
Qiu, Y., Zhang, H., Hu, L., Yang, D., Wang, L., Wang, B., ... & Han, S. (2012). Flexible
piezoelectric nanogenerators based on ZnO nanorods grown on common paper
substrates. Nanoscale, 4(20), 6568-6573.
Ranjith, K. S., Geethu, R., Vijayakumar, K. P., & Rajendrakumar, R. T. (2014). Control of
interconnected ZnO nanowires to vertically aligned ZnO nanorod arrays by tailoring the
underlying spray deposited ZnO seed layer. Materials Research Bulletin, 60, 584-588.
Riaz, M., Song, J., Nur, O., Wang, Z. L., & Willander, M. (2011). Study of the piezoelectric
power generation of ZnO nanowire arrays grown by different methods. Advanced functional
materials, 21(4), 628-633.
Ridhuan, N. S., Razak, K. A., Lockman, Z., & Aziz, A. A. (2012). Structural and morphology of
ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as
UV sensing.
Romano, G., Mantini, G., Di Carlo, A., D’Amico, A., Falconi, C., & Wang, Z. L. (2011).
Piezoelectric potential in vertically aligned nanowires for high output nanogenerators.
Nanotechnology, 22(46), 465401.
Roy, V. A. L., Djurišić, A. B., Chan, W. K., Gao, J., Lui, H. F., & Surya, C. (2003). Luminescent
and structural properties of ZnO nanorods prepared under different conditions. Applied physics
letters, 83(1), 141-143.
Savu, R., Parra, R., Joanni, E., Jančar, B., Eliziário, S. A., de Camargo, R., ... & Zaghete, M. A.
(2009). The effect of cooling rate during hydrothermal synthesis of ZnO nanorods. Journal of
Crystal Growth, 311(16), 4102-4108.
Shakti, N., Kumari, S., & Gupta, P. S. (2011). Structural, optical and electrical properties of ZnO
nanorod array prepared by hydrothermal process. J Ovonic Res, 7, 51-59.
Shao, S., Jia, P., Liu, S., & Bai, W. (2008). Stable field emission from rose-like zinc oxide
nanostructures synthesized through a hydrothermal route. Materials Letters, 62(8), 1200-1203.
Shim, J. B., Chang, H., & Kim, S. O. (2011). Rapid hydrothermal synthesis of zinc oxide
nanowires by annealing methods on seed layers. Journal of Nanomaterials, 2011, 25.
10
Shin, C. M., Heo, J. H., Jeong, Y. I., Oh, H. B., Ryu, H., Lee, W. J., ... & Choi, H. (2012).
Structural and optical properties of hydrothermally grown zinc oxide nanorods on
polyethersulfone substrates as a function of the growth temperature and duration. Thin Solid
Films, 520(7), 2449-2454.
Shinde, S. D., Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. (2012). Synthesis of
ZnO nanorods by hydrothermal method for gas sensor applications. Int. J. Smart Sens. Intell.
Syst, 5(1), 57-70.
Shinde, S. D., Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. (2012). Synthesis of
ZnO nanorods by hydrothermal method for gas sensor applications. Int. J. Smart Sens. Intell.
Syst, 5(1), 57-70.
Singh, J., Patil, S. S., More, M. A., Joag, D. S., Tiwari, R. S., & Srivastava, O. N. (2010).
Formation of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission
characteristics. Applied Surface Science, 256(21), 6157-6163. 73.
Song, J., Wang, X., Riedo, E., & Wang, Z. L. (2005). Elastic property of vertically aligned
nanowires. Nano Letters, 5(10), 1954-1958.
Song, J., Zhou, J., & Wang, Z. L. (2006). Piezoelectric and semiconducting coupled power
generating process of a single ZnO belt/wire. A technology for harvesting electricity from the
environment. Nano letters, 6(8), 1656-1662.
Sornalatha, D. J., & Murugakoothan, P. (2014). Characterization of hexagonal ZnO
nanostructures prepared by hexamethylenetetramine (HMTA) assisted wet chemical
method. Materials Letters, 124, 219-222.
Sue, K., Kimura, K., Yamamoto, M., & Arai, K. (2004). Rapid hydrothermal synthesis of ZnO
nanorods without organics. Materials Letters, 58(26), 3350-3352.
Sugunan, A., Warad, H. C., Boman, M., & Dutta, J. (2006). Zinc oxide nanowires in chemical
bath on seeded substrates: role of hexamine. Journal of Sol-Gel Science and Technology, 39(1),
49-56.
Tak, Y., & Yong, K. (2005). Controlled growth of well-aligned ZnO nanorod array using a novel
solution method. The Journal of Physical Chemistry B, 109(41), 19263-19269.
Tang, J., Chai, J., Huang, J., Deng, L., Nguyen, X. S., Sun, L., ... & Chua, S. J. (2015). ZnO
Nanorods with Low Intrinsic Defects and High Optical Performance Grown by Facile
Microwave-Assisted Solution Method. ACS applied materials & interfaces, 7(8), 4737-4743.
Tien, L. C., Norton, D. P., Pearton, S. J., Wang, H. T., & Ren, F. (2007). Nucleation control for
ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Applied surface
science, 253(10), 4620-4625.
Tien, L. C., Pearton, S. J., Norton, D. P., & Ren, F. (2008). Synthesis and microstructure of
vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser
deposition. Journal of Materials Science, 43(21), 6925-6932.
11
Umar, A., Kim, S. H., Lee, Y. S., Nahm, K. S., & Hahn, Y. B. (2005). Catalyst-free large-
quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: structural and optical
properties. Journal of Crystal Growth, 282(1), 131-136.
Unalan, H. E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W. I., & Amaratunga, G. A. (2008).
Rapid synthesis of aligned zinc oxide nanowires.Nanotechnology, 19(25), 255608.
Vasudevan, A., Jung, S., & Ji, T. (2011). Synthesis and Characterization of Hydrolysis Grown
Zinc Oxide Nanorods. ISRN Nanotechnology, 2011.
Vayssieres, L. (2003). Growth of arrayed nanorods and nanowires of ZnO from aqueous
solutions. Advanced Materials, 15(5), 464-466.
Vayssieres, L., Keis, K., Lindquist, S. E., & Hagfeldt, A. (2001). Purpose-built anisotropic metal
oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry
B, 105(17), 3350-3352.
Wagner, R. S., & Ellis, W. C. (1964). Vapor‐liquid‐solid mechanism of single crystal
growth. Applied Physics Letters, 89-90.
Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007).
Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials
Research Bulletin, 42(9), 1640-1648.
Wan, Jia Sun and Huixuan Liu (2011). Semiconducting Oxide Nanowires: Growth, Doping and
Device applications, Nanowires - Implementations and Applications, Dr. Abbass Hashim (Ed.),
InTech, DOI: 10.5772/16930. Available from: http://www.intechopen.com/books/nanowires-
implementations-and-applications/semiconducting-oxide-nanowires-growth-doping-and-device-
applications
Wang, C. H., Yang, J., Shum, K., Salagaj, T., Ren, Z. F., & Tu, Y. Synthesis of uniform ZnO
nanowire arrays over a large area.
Wang, J. S., Yang, C. S., Chen, P. I., Su, C. F., Chen, W. J., Chiu, K. C., & Chou, W. C. (2009).
Catalyst-free highly vertically aligned ZnO nanoneedle arrays grown by plasma-assisted
molecular beam epitaxy. Applied Physics A,97(3), 553-557.
Wang, J. X., Sun, X. W., Yang, Y., Huang, H., Lee, Y. C., Tan, O. K., & Vayssieres, L. (2006).
Hydrothermally grown oriented ZnO nanorod arrays for gas sensing
applications. Nanotechnology, 17(19), 4995.
Wang, L., Zhang, X., Zhao, S., Zhou, G., Zhou, Y., & Qi, J. (2005). Synthesis of well-aligned
ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without
catalysts or additives. Applied Physics Letters, 86(2), 24108.
Wang, N., Cai, Y., & Zhang, R. Q. (2008). Growth of nanowires. Materials Science and
Engineering: R: Reports, 60(1), 1-51.
12
Wang, X. (2012). Piezoelectric nanogenerators—harvesting ambient mechanical energy at the
nanometer scale. Nano Energy, 1(1), 13-24.
Wang, X., Liu, J., Song, J., & Wang, Z. L. (2007). Integrated nanogenerators in biofluid. Nano
Letters, 7(8), 2475-2479.
Wang, X., Song, J., & Wang, Z. L. (2007). Nanowire and nanobelt arrays of zinc oxide from
synthesis to properties and to novel devices. Journal of Materials Chemistry, 17(8), 711-720.
Wang, X., Song, J., Liu, J., & Wang, Z. L. (2007). Direct-current nanogenerator driven by
ultrasonic waves. Science, 316(5821), 102-105.
Wang, X., Summers, C. J., & Wang, Z. L. (2004). Large-scale hexagonal-patterned growth of
aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Letters, 4(3), 423-
426.
Wang, X., Wang, X., Song, J., Li, P., Ryou, J. H., Dupuis, R. D., ... & Wang, Z. L. (2005).
Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0. 5Ga0.
5N substrates. Journal of the American Chemical Society, 127(21), 7920-7923.
Wang, Xudong, and Jian Shi. "Piezoelectric nanogenerators for self-powered
nanodevices." Piezoelectric Nanomaterials for Biomedical Applications. Springer Berlin
Heidelberg, 2012. 135-172.
Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of
Physics: Condensed Matter, 16(25), R829.
Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of
Physics: Condensed Matter, 16(25), R829.
Wang, Z. L. (2007). Novel nanostructures of ZnO for nanoscale photonics, optoelectronics,
piezoelectricity, and sensing. Applied Physics A, 88(1), 7-15.
Wang, Z. L. (2007). The new field of nanopiezotronics. Materials Today, 10(5), 20-28.
Wang, Z. L. (2008), Towards Self-Powered Nanosystems: From Nanogenerators to
Nanopiezotronics. Adv. Funct. Mater., 18: 3553–3567. doi: 10.1002/adfm.200800541
Wang, Z. L. (2008). Energy harvesting for self-powered nanosystems. Nano Research, 1(1), 1-8.
Wang, Z. L. (2008). Self-powered nanotech. Scientific American, 298(1), 82-87.
Wang, Z. L. (2009). Ten years’ venturing in ZnO nanostructures: from discovery to scientific
understanding and to technology applications. Chinese Science Bulletin, 54(22), 4021-4034.
Wang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology.Materials Science
and Engineering: R: Reports, 64(3), 33-71.
Wang, Z. L. (2012). From nanogenerators to piezotronics—A decade-long study of ZnO
nanostructures. MRS bulletin, 37(09), 814-827.
13
Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire
arrays. Science, 312(5771), 242-246.
Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire
arrays. Science, 312(5771), 242-246.
Wang, Z. L., Zhu, G., Yang, Y., Wang, S., & Pan, C. (2012). Progress in nanogenerators for
portable electronics. Materials Today, 15(12), 532-543.
Wei, Y., Wu, W., Guo, R., Yuan, D., Das, S., & Wang, Z. L. (2010). Wafer-scale high-
throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano letters, 10(9), 3414-
3419.
Weintraub, B., Deng, Y., & Wang, Z. L. (2007). Position-controlled seedless growth of ZnO
nanorod arrays on a polymer substrate via wet chemical synthesis. The Journal of Physical
Chemistry C, 111(28), 10162-10165.
Willander, M., Zhao, Q. X., Hu, Q. H., Klason, P., Kuzmin, V., Al-Hilli, S. M., ... & Lozovik, Y.
E. (2008). Fundamentals and properties of zinc oxide nanostructures: optical and sensing
applications. Superlattices and Microstructures, 43(4), 352-361.
Willander, M., Zhao, Q., & Nur, O. (2007). Zinc oxide nanostructures at the forefront of new
white light-emitting technology.
Wilson, G. S., & Gifford, R. (2005). Biosensors for real-time in vivo measurements. Biosensors
and Bioelectronics, 20(12), 2388-2403.
Wolferen, H., & Abelmann, L. (2011). Laser interference lithography.
Wu, J. J., & Liu, S. C. (2002). Low-temperature growth of well-aligned ZnO nanorods by
chemical vapor deposition. Advanced Materials, 14(3), 215
Wu, X., Chen, H., Gong, L., Qu, F., & Zheng, Y. (2011). Low temperature growth and properties
of ZnO nanorod arrays. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(3),
035006.
Xiang, H. J., Yang, J., Hou, J. G., & Zhu, Q. (2006). Piezoelectricity in ZnO nanowires: A first-
principles study. Applied Physics Letters, 89(22), 223111-223111.
Xu, C. X., Wei, A., Sun, X. W., & Dong, Z. L. (2006). Aligned ZnO nanorods synthesized by a
simple hydrothermal reaction. Journal of Physics D: Applied Physics, 39(8), 1690.
Xu, S., & Wang, Z. L. (2011). One-dimensional ZnO nanostructures: solution growth and
functional properties. Nano Research, 4(11), 1013-1098.
Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. (2010). Self-powered nanowire
devices. Nature nanotechnology, 5(5), 366-373.
Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. (2010). Self-powered nanowire
devices. Nature nanotechnology, 5(5), 366-373.
14
Xu, S., Wei, Y., Kirkham, M., Liu, J., Mai, W., Davidovic, D., ... & Wang, Z. L. (2008).
Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low
temperature without catalyst. Journal of the American Chemical Society, 130(45), 14958-14959.
Xu, S., Wei, Y., Liu, J., Yang, R., & Wang, Z. L. (2008). Integrated multilayer nanogenerator
fabricated using paired nanotip-to-nanowire brushes. Nano letters, 8(11), 4027-4032.
Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., ... & Choi, H. J. (2002).
Controlled growth of ZnO nanowires and their optical properties.Advanced Functional
Materials, 12(5), 323.
Yang, R., Qin, Y., Dai, L., & Wang, Z. L. (2009). Power generation with laterally packaged
piezoelectric fine wires. Nature nanotechnology, 4(1), 34-39.
Yang, R., Qin, Y., Li, C., Zhu, G., & Wang, Z. L. (2009). Converting biomechanical energy into
electricity by a muscle-movement-driven nanogenerator. Nano Letters, 9(3), 1201-1205.
Yi, G. C., Wang, C., & Park, W. I. (2005). ZnO nanorods: synthesis, characterization and
applications. Semiconductor Science and Technology,20(4), S22.
Zhang, B. P., Binh, N. T., Segawa, Y., Wakatsuki, K., & Usami, N. (2003). Optical properties of
ZnO rods formed by metalorganic chemical vapor deposition. Applied Physics Letters, 83(8),
1635-1637.
Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis,
characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, 20.
Zhao, M. H., Wang, Z. L., & Mao, S. X. (2004). Piezoelectric characterization of individual zinc
oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 4(4), 587-590.
Zhao, Q. X., Klason, P., & Willander, M. (2007). Growth of ZnO nanostructures by vapor–
liquid–solid method. Applied Physics A, 88(1), 27-30.
Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., & Lieber, C. M. (2005). Multiplexed electrical
detection of cancer markers with nanowire sensor arrays.Nature biotechnology, 23(10), 1294-
1301.
Zhong Lin Wang, Nanogenerators for self-powered devices and systems, Georgia Institute of
Technology, SMARTech digital repository, 2011 (http://hdl.handle.net/1853/39262). (Book)
Zhou, J., Xu, N. S., & Wang, Z. L. (2006). Dissolving behavior and stability of ZnO wires in
biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. ADVANCED
MATERIALS-DEERFIELD BEACH THEN WEINHEIM-, 18(18), 2432.
Zhu, G., Yang, R., Wang, S., & Wang, Z. L. (2010). Flexible high-output nanogenerator based
on lateral ZnO nanowire array. Nano letters, 10(8), 3151-3155.
Dhafina WA , EA Ghapur, S Hasiah (2012) Hydrothermal Growth Route of ZnO Nanorods for
Use in Thin Film Solar Cell Devices ARPN Journal of Science and Technology 2 (3), 432-436
15
Wan Q, Sun J and Liu H Semiconducting Oxide Nanowires: Growth, Doping and Device
applications Chinese Academy of Sciences, Ningbo, Key Laboratory for Micro-Nano
Optoelectronic Devices of Ministry of Education, Hunan University, Changsha, People's
Republic of China
Masuda H and M satoh. (1996) Jpn. J.Appl.Phys.35 L126
Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., & Zuppiroli,
L. (1999). Mechanical properties of carbon nanotubes. Applied Physics A, 69(3), 255-260.
16