ANSWERS
A. ULLUSTRATIONS OF QUADRATIC QUATIONS
              ACTIVITY 1                    ACTIVITY 2                           ACTIVITY 3
        1.    Quadratic                1.  2x² - 4 – 2x = 0                 1.   x²-3x + 2 = 0
        2.    Not Quadratic            2. x² + 11x - 12 = 0                 2.   x²-9x + 6 = 0
        3.    Not Quadratic            3. −6x² +15x+36=0                    3.   x²-12x + 35 = 0
        4.    Quadratic                4. x² +4x +81 = 0                    4.   10x²+ 3x - 100 = 0
                                       5. x²+2x + 8 = 0                     5.    5t2 - 8t -21 = 0
        5.    Not Quadratic
        6.    Not Quadratic            6. 6 x² −30x−36=0
        7.    Quadratic                7. + 15x + 36 = -6x²
                                       8. x² + 1x - 6 = 0
        8.    Quadratic
                                       9. 2x2 + 2x - 24 = 0
        9.    Quadratic
                                       10. x 2−27 x +50=0
        10.   Quadratic
B.           SOLVING QUADRATIC EQUATIONS
B. I         EXTRACTING SQUARE ROOT
 Activity No 1. Solve by factoring           Activity No 2. Solve by extracting the roots.
 and then solve by extracting roots.
                                       1.  ±9                     11. (x± 2)                  21. ±7
                                       2.  ±1                     12. ± 2 √ 6                 22. ± 5 √ 37
       1.      4, - 4                  3.  ± √19                  13. ± i                     23. ± 2 √2
       2.     6, - 6                                              14. ± 10i
                                       4.  ± 2 √29                                            24. ± 3 √2
              −1 1
                 ,                     5.  ± 2 √3                          1                  25. ± 2 √2 i
       3.
       4.
               3 3
              −5 5
                 ,
                                       6.  ± 3 √2
                                             3
                                                                  15.   ±
                                                                           5
                                                                           5
                                                                            √                 26. ± 5 √5 i
                                                                                                      2
       5.
               2 2
              1,3
                                       7. ±
                                       8. ±
                                             4
                                             5
                                                                  16.   ±
                                                                           6
                                                                           √
                                                                            √2
                                                                                              27. ±
                                                                                                      √
                                                                                                      5
                                                                                                      1
       6.
       7.
              -3 ,1
              1 7
                ,
                                             2
                                               1
                                                                  17.   ±i
                                                                            4
                                                                                              28. ±
                                                                                                      √
                                                                                                      3
       8.
              2 2
              −1 5
               3
                  ,−
                     3
                                       9. ±
                                             √ 2
                                               12
                                                                  18.   ±i √
                                                                        ± 2i
                                                                             15
                                                                             6
                                                                                              29. -5, -9
                                                                                              30. -15, -15
       9.
       10.
              10, 0
              4, 0
                                       10. ±
                                             √  3
                                                                  19.
                                                                  20.   ±i
B.II      FACTORING
        Activity No. 1. SOLVE THE QUADRATIC EQUATION BELOW
        USING FACTORING METHOD
        1) 6, 3                        11) 7, 4
        2) -1, -4                    12) -7, -8
        3) ±8                            −7
                                     13)     , -3
        4) 0, -5                          3
            −1 −3                           −5
        5)       ,                   14) 6,
              5    7                         8
           2 −2                      15) -7
        6) ,
           5 3                       16) 2, 0
               −4                           −7
        7) 6,                        17) 2,
                7                            2
           7                             −7
        8) , -7                      18)     ,-7
           3                              3
        9) 7, -1                            3
                                     19) 2,
        10) 4, 3                            5
                                         −4
                                     20)     , -4
                                          3
B.III     COMPLETING THE SQUARE
          ACTIVITY 1
1) −7 ± √ 87
2) −3 ± 2 √ 17
3) 3 ,−17
4) 11, 1
5) −2 ,−4
6) 3 ,−1
7) 1 ,−15
8) 6 ± √ 13
9) 2 ± √ 102
10) 5 ± √ 7
11) 2 ± √ 2 i
12) ) −1 ± √ 19 i
B. IV     QUADRATIC FORMULA
          ACTIVITY 1
          1) 7 ,−2
          2)2
          3) 2, -3
             5
          4)    ,−1
             2
          5) −1 ,−3
             5
          6) ,−4
             2
             −1 3
          7)      ,−
              2      2
             7 ± √ 73
          8)
                 4
                −5
          9) 4,
                 2
         10) 1 ,−3
                   −7
         11) -4,
                    2
         12)± 4
C.       NATURE OF ROOTS QUADRATIC EQUATIONS
Solutions
Problem 1 :
Examine the nature of the roots of the following quadratic equation.
                                                      x2 + 5x + 6  =  0
Solution :
The given quadratic equation is in the general form
                                                     ax2 + bx + c  =  0
Then, we have a  =  1, b  =  5 and c  =  6.
Find the value of the discriminant b2 - 4ac. 
                                                  b2 - 4ac  =  52 - 4(1)(6)
                                                    b2 - 4ac  =  25 - 24
                                                        b2 - 4ac  =  1 
        2
Here, b  - 4ac > 0 and also a perfect square. 
So, the roots are real, unequal and rational.  
Problem 2 :
Examine the nature of the roots of the following quadratic equation.
                                                      2x2 - 3x - 1  =  0 
Solution :
The given quadratic equation is in the general form
                                                     ax2 + bx + c  =  0
Then, we have a  =  2, b  =  -3 and c  =  -1.
Find the value of the discriminant b2 - 4ac. 
                                                b2 - 4ac  =  (-3)2 - 4(2)(-1)
                                                      b2 - 4ac  =  9 + 8
                                                       b2 - 4ac  =  17 
        2
Here, b  - 4ac > 0, but not a perfect square. 
So, the roots are real, unequal and irrational.  
Problem 3 :
Examine the nature of the roots of the following quadratic equation.
                                                     x2 - 16x + 64  =  0
Solution :
The given quadratic equation is in the general form
                                                     ax2 + bx + c  =  0
Then, we have a  =  1, b  =  -16 and c  =  64.
Find the value of the discriminant b2 - 4ac. 
                                               b2 - 4ac  =  (-16)2 - 4(1)(64)
                                                   b2 - 4ac  =  256 - 256
                                                        b2 - 4ac  =  0 
So, the roots are real, equal and rational.  
Problem 4 :
Examine the nature of the roots of the following quadratic equation.
                                                     3x2 + 5x + 8  =  0
Solution :
The given quadratic equation is in the general form
                                                     ax2 + bx + c  =  0
Then, we have a  =  3, b  =  5 and c  =  8.
Find the value of the discriminant b2 - 4ac. 
                                                  b2 - 4ac  =  52 - 4(3)(8)
                                                    b2 - 4ac  =  25 + 96
                                                      b2 - 4ac  =  121 
        2
Here, b  - 4ac > 0 and also a perfect square. 
So, the roots are real, unequal and rational.  
Problem 5 :
If the roots of the equation 2x2 + 8x - m³ = 0 are equal, then find the value of m. 
Solution :
The given quadratic equation is in the general form
                                                     ax2 + bx + c  =  0
                                            3
Then, we have a  =  2, b  =  8 and c  =  -m .
Because the roots of the given equation are equal, 
                                                  b2 - 4ac  =  0
                                               8  - 4(2)(-m3)  =  0
                                                2
                                                 64 + 8m3  =  0
                                          Subtract 64 from each side.
                                                   8m3  =  -64
                                             Divide each side by 8.
                                                     m3  =  -8
                                                    m3  =  (-2)3
                                                     m  =  -2.
                                            So, the value of m is -2.
Problem 6 :
If the roots of the equation x2 - (p + 4)x + 2p + 5  =  0 are equal, then find the value of p. 
Solution :
The given quadratic equation is in the general form
                                                          ax2 + bx + c  =  0
Then, we have a  =  1, b  =  -(p + 4) and c  =  (2p + 5).
Because the roots of the given equation are equal, 
                                                            b2 - 4ac  =  0
                                                 [-(p + 4)]2 - 4(1)(2p + 5)  =  0
                                                              Simplify.
                                                     (p + 4)2 - 4(2p + 5)  =  0
                                                    p2 + 8p + 16 -8p -20  =  0
                                                              p2 - 4  =  0
                                                             p2 - 22  =  0
                                                         (p + 2)(p - 2)  =  0
                                                  p + 2  =  0     or     p - 2  =  0
                                                       p  =  -2     or     p  =  2
So, the value of p is ±2.
Problem 7 :
If the roots of the equation x2 + (2s - 1)x + s2  =  0 are real, then find the value of a. 
Solution :
The given quadratic equation is in the general form
                                                          ax2 + bx + c  =  0
                                                 2
Then, we have a  =  1, b  =  (2s - 1) and c  =  s .
Because the roots of the given equation are equal, 
                                                            b2 - 4ac  ≥  0
                                                      (2s - 1)2 - 4(1)(s2)  ≥  0
Simplify.
                                                       4s2 - 4s + 1 - 4s2  ≥  0
                                                             -4s + 1  ≥  0
                                                               -4s  ≥  -1
Divide each side by -4. 
                                                               s  ≤  1/4
So, the value of s is less than or equal to 1/4. 
Note : 
Whenever we multiply or divide both sides of an inequality by a negative number, we have to flip the inequality
sign. 
Problem 8 :
If the roots of the equation x2 - 16x + k  =  0 are real and equal, then find the value of k.
Solution :
The given quadratic equation is in the general form
                                                          ax2 + bx + c  =  0
Then, we have a  =  1, b  =  -16 and c  =  k.
Because the roots of the given equation are equal, 
                                                            b2 - 4ac  =  0
                                                        (-16)2 - 4(1)(k)  =  0
                                                           256 - 4k  =  0
Subtract 256 from each side. 
                                                             -4k  =  -256
Divide each side by -4.
                                                                k  =  64
So, the value of k is 64. 
Problem 9 :
Examine the nature of the roots of the following quadratic equation.
                                                        x2 - 5x  =  2(5x + 1)
Solution :
The given quadratic equation is not in the general form.
First, write the given quadratic equation in the general form. 
                                                        x2 - 5x  =  2(5x + 1)
                                                         x2 - 5x  =  10x + 2
                                                       x2 - 15x - 2  =  0
Now, the quadratic equation is the general form
                                                      ax2 + bx + c  =  0
Then, we have a  =  1, b  =  -15 and c  =  -2.
Find the value of the discriminant b2 - 4ac. 
                                                 b2 - 4ac  =  (-15)2 - 4(1)(-2)
                                                      b2 - 4ac  =  225 + 8
                                                       b2 - 4ac  =  233 
Here, b2 - 4ac > 0, but not a perfect square. 
So, the roots are real, unequal and irrational.  
Problem 10 : 
Examine the nature of the roots of the following quadratic equation.
                                                     1/(x+1)  +  2/(x-4)  =  2
Solution :
The given quadratic equation is not in the general form.
First, write the given quadratic equation in the general form. 
                                                     1/(x+1)  +  2/(x-4)  =  2
Add the two fractions on the right side of the equation using cross multiplication. 
                                              [(x-4) + 2(x+1)] / [(x+1)(x-4)]  =  2
                                               (x - 4 + 2x + 2) / (x2 - 3x - 4)  =  2
                                                    (3x - 2) / (x2 - 3x - 4)  =  2
                         2
Multiply each side by (x  - 3x - 4). 
                                                      3x - 2  =  2(x2 - 3x - 4)
                                                       3x - 2  =  2x2 - 6x - 8
                                                          2x2 - 9x - 6  =  0
Now, the quadratic equation is the general form
                                                         ax2 + bx + c  =  0
Then, we have a  =  2, b  =  -9 and c  =  -6.
Find the value of the discriminant b2 - 4ac. 
                                                    b2 - 4ac  =  (-9)2 - 4(2)(-6)
                                                        b2 - 4ac  =  81 + 48
                                                          b2 - 4ac  =  129
Here, b2 - 4ac > 0, but not a perfect square. 
So, the roots are real, unequal and irrational.  
D. SUM AND PRODUCT OF ROOTS OF QUADRATIC EQUATIONS
Problem 1 :
Find the sum and product of roots of the quadratic equation given below.
                                                  x2 - 5x + 6  =  0
Solution :
Comparing
                                                  x2 - 5x + 6  =  0
                                                        and 
                                                ax2 + bx + c  =  0
we get
                                           a  =  1, b  =  -5 and c  =  6
Therefore, 
                                   Sum of the roots  =  -b/a  =  -(-5)/1  =  5
                                    Product of the roots  =  c/a  =  6/1  =  6
Problem 2 :
Find the sum and product of roots of the quadratic equation given below.
                                                     x2 - 6  =  0
Solution :
Comparing
                                                     x2 - 6  =  0
                                                        and 
                                                ax2 + bx + c  =  0
we get
                                           a  =  1, b  =  0 and c  =  -6
Therefore, 
                                     Sum of the roots  =  -b/a  =  0/1  =  0
                                   Product of the roots  =  c/a  =  -6/1  =  -6
Problem 3 :
Find the sum and product of roots of the quadratic equation given below. 
                                                 3x2 + x + 1  =  0
Solution :
Comparing
                                                 3x2 + x + 1  =  0
                                                        and 
                                                ax2 + bx + c  =  0
we get
                                            a  =  3, b  =  1 and c  =  1
Therefore, 
                                       Sum of the roots  =  -b/a  =  -1/3
                                      Product of the roots  =  c/a  =  1/3
Problem 4 :
Find the sum and product of roots of the quadratic equation given below.
                                                3x2 + 7x  =  2x - 5
Solution :
First write the given quadratic equation in standard form.
                                                3x2 +7x  =  2x - 5
                                                3x2 + 5x + 5  =  0
Comparing
                                                3x2 + 5x + 5  =  0
                                                        and 
                                                ax2 + bx + c  =  0
we get
                                            a  =  3, b  =  5 and c  =  5
Therefore, 
                                       Sum of the roots  =  -b/a  =  -5/3
                                      Product of the roots  =  c/a  =  5/3
Problem 5 :
Find the sum and product of roots of the quadratic equation given below.
                                                 3x2 -7x + 6  =  6
Solution :
First write the given quadratic equation in standard form.
                                                  3x2 -7x + 6  =  6
                                                    3x2 - 7x  =  0
Comparing
                                                    3x2 - 7x  =  0
                                                         and 
                                                  ax2 + bx + c  =  0
we get
                                            a  =  3, b  =  -7 and c  =  0
Therefore, 
                                   Sum of the roots  =  -b/a  =  -(-7)/3  =  7/3
                                    Product of the roots  =  c/a  =  0/3  =  0
Problem 6 :
Find the sum and product of roots of the quadratic equation given below.
                                              x2 + 5x + 1  =  3x2 + 6
Solution :
First write the given quadratic equation in standard form.
                                               x2 + 5x + 1  =  3x² + 6
                                                  0  =  2x2 - 5x + 5
                                                  2x2 - 5x + 5  =  0
Comparing
                                                  2x2 - 5x + 5  =  0
                                                         and 
                                                  ax2 + bx + c  =  0
we get
                                            a  =  2, b  =  -5 and c  =  5
Therefore, 
                                   Sum of the roots  =  -b/a  =  -(-5)/3  =  5/2
                                       Product of the roots  =  c/a  =  5/2
Problem 7 :
If the product of roots of the quadratic equation given below is 4, then find the value of m.
                                                2x2 + 8x - m3  =  0 
Solution :
Comparing
                                                 2x2 + 8x - m3  =  0
                                                         and 
                                                  ax2 + bx + c  =  0
we get
                                           a  =  2, b  =  8 and c  =  -m3
Given : Product of the roots is 4.
Then,
                                                       c/a  =  4
                                                     -m3/2  =  4
Multiply each side by (-2). 
                                                       m3  =  -8
                                                     m3  =  (-2)3
                                                       m  =  -2
Problem 8 :
If the sum of roots of the quadratic equation given below is 0, then find the value of p.  
                                                x2 -(p + 4)x + 5  =  0
Solution :
Comparing
                                                x2 -(p + 4)x + 5  =  0
                                                         and 
                                                  ax2 + bx + c  =  0
we get
                                         a  =  1, b  =  -(p + 4) and c  =  5
Given : Sum of the roots is 0.
Then,
                                                      -b/a  =  0
                                                   -[-(p + 4)]  =  0
                                                     (p + 4)  =  0
                                                      p + 4  =  0
                                                        p  =  -4
Problem 9 :
If the product of roots of the quadratic equation given below is 1, then find the value of m.
                                             x2 + (2p - 1)x + p2  =  0
Solution :
Comparing
                                             x2 + (2p - 1)x + p2  =  0
                                                       and 
                                                ax2 + bx + c  =  0
we get
                                        a  =  1, b  =  (2p - 1) and c  =  p2
Given : Product of the roots is 1.
Then,
                                                     c/a  =  1
                                                    p2/1  =  1
                                                     p2  =  1
Take square root on both sides. 
                                                    √p2  =  √1
                                                      p  =  ±1
Problem 10 :
Find the sum and product of roots of the quadratic equation given below.
                                             1/(x+1)  +  2/(x-4)  =  2
Solution :
First write the given quadratic equation in standard form.
                                             1/(x+1)  +  2/(x-4)  =  2
                                      [1(x-4) + 2(x+1)] / [(x+1)(x-4)]  =  2
                                         1(x-4) + 2(x+1)  =  2(x+1)(x-4)
                                       x - 4 + 2x + 2  =  2(x2 - 4x + x - 4)
                                             3x - 2  =  2(x2 - 3x - 4)
                                              3x - 2  =  2x2 - 6x - 8
                                                 0  =  2x2 - 9x - 6
                                                 2x2 - 9x - 6  =  0
Comparing
                                                 2x2 - 9x - 6  =  0
                                                        and 
                                                 ax2 + bx + c  =  0
we get
                                           a  =  2, b  =  -9 and c  =  -6
Therefore, 
                                  Sum of the roots  =  -b/a  =  -(-9)/2  =  9/2
                                   Product of the roots  =  c/a  =  -6/2  =  -3
    A. APPLICATIONS OF QUADRATIC EQUATIONS AND RATIONAL ALGEBRAIC
       EQUATIONS
    1. 2(7.3255)−1=13.651m2(7.3255)−1=13.651m .
    2. This means that Car A (i.e. the one traveling at 40 mph) travels for
       8.871 hours while Car B (i.e. the one traveling at 60 mph) travels for
       5.871 hours (three hours less than Car A time!)
    3. This means that Person A can paint the house in 27.0357 hours while
       Person B can paint the house in 29.0357 hours (two hours more than
       Person A).