100% found this document useful (1 vote)
140 views21 pages

Heat Cycles, Heat Engines, & Real Devices: John Jechura - Jjechura@mines - Edu Updated: January 4, 2015

This document discusses heat cycles, heat engines, and real devices. It provides an overview of ideal heat cycles like the Carnot, Rankine, Otto, and Diesel cycles. These cycles define the theoretical maximum efficiency but real devices have lower efficiency due to non-ideal behavior. The document also discusses using water as a working fluid in the Rankine cycle for power generation and advanced cycles like reheat and heat recycle. Real devices like gas and steam turbines are discussed along with an example efficiency calculation for a gasoline engine.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
140 views21 pages

Heat Cycles, Heat Engines, & Real Devices: John Jechura - Jjechura@mines - Edu Updated: January 4, 2015

This document discusses heat cycles, heat engines, and real devices. It provides an overview of ideal heat cycles like the Carnot, Rankine, Otto, and Diesel cycles. These cycles define the theoretical maximum efficiency but real devices have lower efficiency due to non-ideal behavior. The document also discusses using water as a working fluid in the Rankine cycle for power generation and advanced cycles like reheat and heat recycle. Real devices like gas and steam turbines are discussed along with an example efficiency calculation for a gasoline engine.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

Heat Cycles, Heat Engines, & Real Devices

John Jechura – jjechura@mines.edu
Updated: January 4, 2015
Topics
• Heat engines / heat cycles
 Review of ideal‐gas efficiency equations 
 Efficiency upper limit – Carnot Cycle
• Water as working fluid in Rankine Cycle
 Role of rotating equipment inefficiency
• Advanced heat cycles
 Reheat & heat recycle
• Organic Rankine Cycle
• Real devices
 Gas & steam turbines

2
Heat Engines / Heat Cycles
• Carnot cycle
 Most efficient heat cycle possible Hot Reservoir @ TH

• Rankine cycle
QH

 Usually uses water (steam) as working fluid
Wnet
 Creates the majority of electric power used 
throughout the world
QC
 Can use any heat source, including solar thermal, 
coal, biomass, & nuclear Cold Sink @ TC

• Otto cycle
 Approximates the pressure & volume of the 
combustion chamber of a spark‐ignited engine
• Diesel cycle Wnet QH  QC
th  
QH QH
 Approximates the pressure & volume of the 
combustion chamber of the Diesel engine

3
Carnot Cycle
• Most efficient heat cycle possible
• Steps
 Reversible isothermal expansion of gas at TH. Combination of heat absorbed from hot 
reservoir & work done on the surroundings. 
 Reversible isentropic & adiabatic expansion of the gas to TC. No heat transferred & work 
done on the surroundings.
 Reversible isothermal compression of gas at TC. Combination of heat released to cold 
sink & work done on the gas by the surroundings.
 Reversible isentropic & adiabatic compression of the gas to TH. No heat transferred & 
work done on the gas by the surroundings.
• Thermal efficiency
QH  QC TH  TC T
th   th  1 C
QH TH TH

4
Rankine/Brayton Cycle
• Different application depending on working fluid
 Rankine cycle to describe closed steam cycle.
 Brayton cycle approximates gas turbine operation. 
• Steps
 Heat at constant PH. Heat absorbed from hot reservoir & no work done. 
 Isentropic & adiabatic expansion to PL. Work done on surroundings.
 Cool at constant PL. Heat released to cold sink & no work done.
 Isentropic & adiabatic compression to PH. Work done on fluid by surroundings.
• Ideal gas thermal efficiency – not appropriate for condensing water
 1/ 
TL  PL 
th  1   1   
TH  PH 

5
Thermal Efficiency Ideal‐Gas Brayton Cycle
0.8
Argon, =1.7
0.7

Air, =1.4
0.6
Thermal Efficiency ()

0.5

0.4

0.3
Propane, =1.1

0.2

0.1

0
0 5 10 15 20 25 30 35

Compression Ratio (P2/P1)

6
Otto Cycle
• Steps
 Reversible isentropic compression from V1 to V2. No heat transferred & work done on 
the fluid. Initial conditions are TL & PL.
 Heat at constant volume. Heat absorbed from hot reservoir & no work done. 
 Reversible isentropic & adiabatic expansion from V2 to V1. No heat transferred & work 
done by the fluid on the surroundings.
 Cool at constant volume to TL with resulting pressure PL. Heat released to cold sink & 
no work done.
• Thermal efficiency – ideal gas
1
th  1   1 
  where R  V1 /V2  is the volumetric compression ratio
R
• This cycle ignores input of new air/fuel mixture, change in composition with 
combustion, & exhaust of combustion products

7
Thermal Efficiency Ideal‐Gas Otto Cycle
60% 600
Inlet Conditions: 25°C & 1.0 bar
=1.3 (typical air+fuel)

50% 500

40% 400
Thermal Efficiency

Temperature [°C]
30% 300

20% 200

10% 100

0% 0
0 5 10 15 20 25
Volumetric Compression Ratio

8
Diesel Cycle
• Steps
 Reversible isentropic compression from V1 to V2. No heat transferred & work done on 
the fluid. Initial conditions are TL & PL.
 Heat at constant pressure. Heat absorbed from hot reservoir & no work done. Volume 
increases from V2 to V3. 
 Reversible isentropic & adiabatic expansion from V3 to V1. No heat transferred & work 
done by the fluid on the surroundings.
 Cool at constant volume to TL with resulting pressure PL. Heat released to cold sink & 
no work done.
• Thermal efficiency – ideal gas
1    1 
th  1   1  
R      1 
where R=V1/V2 (the compression ratio) & =V3/V2 (the cut‐off ratio).
• This cycle ignores input of new air, injection of fuel, change in composition with 
combustion, & exhaust of combustion products

9
Thermal Efficiency Ideal‐Gas Diesel Cycle
80% 800

Inlet Conditions: 25°C & 1.0 bar


=1.4 (air)
70% =3.0 700

60% 600

50% 500
Thermal Efficiency

Temperature [°C]
40% 400

30% 300

20% 200

10% 100

0% 0
0 5 10 15 20 25
Volumetric Compression Ratio

10
Example: Actual Gasoline Engine Thermal Efficiency
• BMW M54B30 (2,979 cc) engine stated to produce  228 hp @ 5900 rpm (with 10.2:1 
compression ratio)
• Calculation steps to determine thermal efficiency
 Unit conversion: 228 hp = 10,200 kJ/min  1.729 kJ/rev
 2 revolutions needed for full volume displacement: 1.161 kJ/L
 Air+fuel mix has LHV of 3.511 kJ/L (ideal gas)
• Assumptions
o Characterize air as 21 mol% O2 / 79 mol% N2 & gasoline as isooctane (iC8, C8H18, LHV of 
5065 kJ/mol) 
o Air+fuel mix an ideal‐gas stoichiometric mixture of @ 1.0 bar & 25°C
o Air+fuel mix molar density is 0.0403 mol/L (i.g.) with 1.72 mol% iC8
• Thermal efficiency is 33% at these stated conditions
 Ideal‐gas Otto Cycle shows upper limit of 50.2% (=1.3)

11
Gasoline Thermal Efficiency Using Aspen Plus
25
1
100
0.00

B1
7
HEATVAL
FUEL 1
HIERARCHY 6052
FUELMIX 1.00

B2
W
W-12
25 384 2674
1 24 116
5952 6052 6487
1.00 1.00 1.00

BURN-1
FLAMEVAL
AIR MIX-HP 2A CMBSTGAS
HIERARCHY

B4
W
Temperature (C) W-34
Pressure (bar) 1544 25
Molar Flow Rate (kmol/hr) Q-RESID 7 1
Vapor Fraction
6487 6487
Q 1.00 0.89
Duty (kJ/sec)
Power(kW) LOSTHEAT

EXHAUST AMBIENT

• 44.7% thermal efficiency assuming isentropic compression & expansion 
 Care must be taken to calculate heats & works from internal energy values, not enthalpy values
 iC8 as model gasoline component
 10:1 volumetric compression ratio
 33% thermal efficiency & 33% lost heat to exhaust using 89% isentropic efficiency & 5% mechanical 
losses during compression & expansion 

12
Water as Working Fluid in Rankine Cycle
• Aspen Plus flowsheet
 Flow system
• Energy considerations from enthalpy, not 
internal energy
 Cycle represented by once‐through flow 
system
• LP‐WATER must match conditions of LP‐
WATR2
• “Out” direction of Energy & Work streams 
represent calculated values
• Can use arbitrary flow rate for thermal 
efficiency calculation
 Thermal efficiency from heat & work values 
Wnet  W‐TURBIN    W‐PUMP 
th  
Qin  Q‐BOILER 

13
Typical operating parameters
• TURBINE exhaust fully condensed in CONDSR • BOILER increases temperature & changes phase 
 Outlet saturated liquid (i.e., vapor fraction is zero) or  (liquid  vapor) 
subcooled  At minimum, exit at saturated vapor conditions (i.e., 
• No vapor to PUMP to prevent cavitation vapor fraction is one).

 Temperature controlled by available cooling media   May be superheated to much higher temperature.

• 15 – 35oC (60 – 95oF) typical for cooling water  Exit temperature controlled by heat source available 


& materials of construction – maximum about 420 –
• 45 – 50oC (110 – 125oF) typical for air cooling 580oC (790 – 1075oF)
 Pressure will “float” to match this saturation  • Highest temperatures require expensive nickel & 
temperature cobalt alloys 
• PUMP increases pressure of water to high‐ • Shaft work produced in TURBINE when pressure of 
pressure conditions steam let down to CONDSR inlet conditions
 Pressure chosen to match common TURBINE inlet   Very complicated rotating machinery that can have 
pressures – 1500, 1800, & 2400 psig for large power  multiple number of stages, multiple entry & 
applications extraction points, …
 Real isentropic efficiencies 75 – 90% at optimal   Real isentropic efficiencies 70 – 90% at optimal 
flowrates flowrates
• Inefficiency causes temperature rise in water   May be designed to exhaust gas phase or 
water/steam phase (condensing turbine) 
 Mechanical efficiency represents energy loss in drive 
train   Mechanical efficiency represents energy loss in drive 
train 

14
Example #1 Steam Turbine Operation
• Operating conditions
 Condenser outlet saturated liquid @ 35oC
• No pressure loss through exchanger
 Pump outlet 1500 psig
• Ideal compression
 Boiler outlet saturated vapor
• No pressure loss through exchanger
 Turbine 
• Ideal expansion
 No pressure losses through piping
 No mechanical losses in rotating equipment

 W‐TURBIN    W‐PUMP  2789  29


th    0.388
 Q‐BOILER  7111

15
Example #2 Steam Turbine Operation
• Operating conditions
 Condenser outlet saturated liquid @ 35oC
• No pressure loss through exchanger
 Pump outlet 1500 psig
• 80% isentropic efficiency
 Boiler outlet saturated vapor
• No pressure loss through exchanger
 Turbine 
• 75% isentropic efficiency
 No pressure losses through piping
 No mechanical losses in rotating equipment

 W‐TURBIN    W‐PUMP  2092  36


th    0.289
 Q‐BOILER  7104

16
Advanced Heat Cycles
• Reheat 
 Multiple step expansion, turbine exhaust reheated before next step
 Keep the steam gas‐phase for as much of the process as possible
 Increased thermal efficiency with increased capital cost
• Heat recycle
 Multiple step expansion, turbine exhaust split before next step
• Majority sent to low‐pressure turbine
• Remainder condensed against the high‐pressure boiler feed water
 Trades off the heat of vaporization relative to power from expansion process 

17
Example Steam Turbine With Reheat
• Operating conditions
 Condenser outlet saturated liquid @ 45oC
• No pressure loss through exchanger
 Pump outlet 120 bar‐a
• Ideal compression
 Boiler outlet 150oC superheat
• No pressure loss through 
exchanger
 Turbine intermediate 24 bar
• 80% isentropic efficiency
 Reheat to 475oC
• No pressure loss through exchanger
 No pressure losses through piping
 No mechanical losses in rotating equipment

th 
 921  2465  34  0.341
 8555  1277 

18
Example Steam Turbine With Reheat

19
Example Steam Turbine With Heat Recycle
• Operating conditions
 Condenser outlet 
saturated liquid @ 45oC
• No pressure loss 
through exchanger
 Pump outlet 120 bar‐a
• Ideal compression
 Boiler outlet 150oC superheat
• No pressure loss through 
exchanger
 Turbine intermediate 10 bar
• 80% isentropic efficiency
 10% split to recycle
 No pressure losses through piping
 No mechanical losses in rotating equipment
th 
1306  1414   34  0.336
7986

20
Example Steam Turbine With Heat Recycle

21

You might also like