Differentiation of Exponential and Logarithmic Functions
Differentiation of Exponential and Logarithmic Functions
MODULE - VIII
                                                                                                          Calculus
                                              28
We are aware that population generally grows but in some cases decay also. There are many
other areas where growth and decay are continuous in nature. Examples from the fields of
Economics, Agriculture and Business can be cited, where growth and decay are continuous.
Let us consider an example of bacteria growth. If there are 10,00,000 bacteria at present and
say they are doubled in number after 10 hours, we are interested in knowing as to after how
much time these bacteria will be 30,00,000 in number and so on.
Answers to the growth problem does not come from addition (repeated or otherwise), or
multiplication by a fixed number. In fact Mathematics has a tool known as exponential function
that helps us to find growth and decay in such cases. Exponential function is inverse of logarithmic
function. We shall also study about Rolle's Theorem and Mean Value Theorems and their
applications. In this lesson, we propose to work with this tool and find the rules governing their
derivatives.
           OBJECTIVES
After studying this lesson, you will be able to :
l      define and find the derivatives of exponential and logarithmic functions;
l      find the derivatives of functions expressed as a combination of algebraic, trigonometric,
       exponential and logarithmic functions; and
l      find second order derivative of a function.
l      state Rolle's Theorem and Lagrange's Mean Value Theorem; and
l      test the validity of the above theorems and apply them to solve problems.
                      ex  1                                     a x 1
        (i)       lim        1                    (ii)      lim         loge a
                  x 0 x                                     x 0 x
                          eh  1
        (iii)     lim                1
                  h 0      h
MATHEMATICS                                                                                            239
                                                        Differentiation of Exponential and Logarithmic Functions
MODULE - VIII     l       Definition of derivative and rules for finding derivatives of functions.
 Calculus
                       28.1 DERIVATIVE OF EXPONENTIAL FUNCTIONS
                  Let y  e x be an exponential function.                                                .....(i)
                            y  y  e
                                          x x    (Corresponding small increments)                     .....(ii)
         Notes
                  
                  From (i) and (ii), we have
                                                     y  e x x  e x
                  Dividing both sides by x and taking the limit as x  0
                                                 y           ex  1
                                          lim       lim e x
                                           x 0  x  x 0      x
                                                     dy
                                                        e x .1  e x
                                                     dx
                                    d x
                  Thus, we have
                                    dx
                                           
                                       e  ex .
                                                    d x        d
                  Working rule :
                                                    dx
                                                       
                                                       e  ex   x   ex
                                                               dx
                  Next, let                               y  e ax  b .
                                                              eax  b ea x  1
                                                                                
                                                                          ea x  1
                                                             y    ax  b          
                                                               e
                                                             x               x
                                                                                     ea  x  1
                                                                   a  e ax b                          [Multiply and divide by a]
                                                                                       ax
                  Taking limit as x  0 , we have
                                                                y                      ea  x  1
                                                       lim          a  eax  b  lim
                                                        x 0   x                 x 0 a  x
                                                             dy                                         ex 1 
                  or                                             a  eax  b 1                   lim        1       ax b
                                                             dx                                    x 0 x        ae
            240                                                                                                       MATHEMATICS
  Differentiation of Exponential and Logarithmic Functions
Working rule :
                                                                                        MODULE - VIII
                                                                                         Calculus
                          d  ax  b  ax b d
                             e        e         ax  b   eax  b  a
                         dx                   dx
                          d  ax  b 
                            e          aeax  b
                         dx
                                                                                        Notes
Example 28.1           Find the derivative of each of the follwoing functions :
                                                                                 3x
                                                    ax                       
                            5x                                                    2
                    (i) e                  (ii) e                  (iii) e
Then y  e t where 5 x = t
                    dy                                   dt
                       et               and 5 
                    dt                                   dx
                     d 5x         d
Alternatively
                     dx
                        e    
                           e5x   5x   e5x  5  5e
                                 dx
                                                        5x
                                  dy           dt
                                     e t and    a
                                  dt           dx
                                  dy dy dt
We know that,                             et  a
                                  dx dt dx
                                   dy
Thus,                                  a  eax
                                   dx
                                      3x
(iii) Let                          ye 2
                                           3
                                   dy         x        d  3 
                                      e   2                x
                                                        
                                   dt                 dx  2 
                                                  3x
                                    dy 3
Thus,                                   e         2
                                    dt  2
MATHEMATICS                                                                           241
                                                           Differentiation of Exponential and Logarithmic Functions
MODULE - VIII Solution : (i)               y  e x  2cos x
 Calculus
                                                  dy d  x   d
                                                      e 2     cos x   ex  2sin x
                                                  dx dx      dx
                                                                 2          5
                   (ii)                                   y  e x  2sin x  e x  2e
                                                                            3
          Notes                                            2 d
                                                   dy                          5
                   
                                                   dx
                                                       ex
                                                             dx
                                                                              
                                                                x 2  2 cos x  e x  0 [Since e is constant]
                                                                               3
                                                                        2          5
                                                                  2xe x  2cos x  e x
                                                                                   3
                                                  dy
                   Example 28.3            Find      , when
                                                  dx
                                                                                                               1 x
                                                                                1
                   (i)     ye   x cos x                        (ii)         y  ex              (iii)   ye   1 x
                                                                                x
                   Solution : (i)              y  e x cos x
                                             dy              d
                                                e x cos x     x cos x 
                                             dx             dx
                                             dy                       d                   d     
                                                e x cos x           x dx cos x  cos x dx (x) 
                                             dx                                                 
                                                       e x cos x   x sin x  cos x 
                                                          1 x
                   (ii)                           y        e
                                                          x
                                             dy      d 1 1 d x
                                            dx
                                                 ex     
                                                     dx  x  x dx
                                                                   e                                                [Using product rule]
                                                      1               1 x
                                                             ex        e
                                                          2            x
                                                      x
                                                      ex                     ex
                                                             [ 1  x]          [x  1]
                                                      x2                     x2
                                                    1x
                   (iii)                       y  e1 x
                                                       1x
                                              dy          d 1 x 
                                                  e1 x           
                                              dx         dx  1  x 
                                                     1 x
                                                                 1.(1  x)  (1  x).1 
                                                   e1 x                               
                                                                      (1  x) 2        
                                                     1 x                                     1 x
                                                                 2            2
                                                   e1 x                2
                                                                                      e1 x
                                                                 (1  x)  (1  x)2
             242                                                                                                         MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
Example 28.4            Find the derivative of each of the following functions :                                   MODULE - VIII
                                                                                                                    Calculus
(i)      esin x  sin ex                                (ii) eax  cos  bx  c 
                                                        d x                     d
                                esin x  cos e x 
                                                        dx
                                                               
                                                           e  sin e x  esin x
                                                                                dx
                                                                                   sin x 
                                esin x  cos ex  ex  sin e x  esin x  cos x
                                esin x [e x  cos e x  sin e x  cos x]
(ii)                         y  eax cos(bx  c)
                           dy         d                            d
                              eax  cos(bx  c)  cos  bx  c  eax
                           dx        dx                           dx
                                                                 d                            d
                                e ax  [ sin(bx  c)]            (bx  c)  cos(bx  c)e ax (ax)
                                                                dx                           dx
                                eax sin(bx  c)  b  cos(bx  c)eax .a
                                dy              eax
Example 28.5            Find       , if y 
                                dx          sin(bx  c)
                                                     d ax          d
                                sin(bx  c)            e  eax [sin(bx  c)]
                         dy                         dx            dx
Solution :                  
                         dx                           sin 2 (bx  c)
              dy
2.     Find      , if
              dx
MATHEMATICS                                                                                                      243
                                                      Differentiation of Exponential and Logarithmic Functions
MODULE - VIII                     1
                                  x                                                                      1  x
                         (a) y  e  5e                                 (b) y  tan x  2sin x  3cos x  e
 Calculus                         3                                                                      2
                         (c) y  5sin x  2e x                          (d) y  e x  e  x
                                      y 1       x 
                                          log 1  
                                      x x        x 
                                                 1 x       x 
                                                    log 1                    [Multiply and divide by x]
                                                 x x        x 
                                                                   x
                                                 1          x   x
                                                  log 1  
                                                 x        x
                  Taking limits of both sides, as  x  0 , we get
                                                                                        x
                                             y 1               x  x
                                       lim           lim log 1  
                                       x 0  x   x  x 0      x
            244                                                                                                 MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                                             x                                            MODULE - VIII
                              
                    dy 1             x  x                                             Calculus
                        log  lim 1   
                    dx x      x 0   x  
                                              
                                                                                 x 
                         1                                lim            x  x 
                         log e                                        1    e 
                         x                                x 0                          Notes
                                                                           x      
                              1
                          
                              x
                 d             1
Thus,               (log x) 
                dx             x
Next, we consider logarithmic function
                y  log (ax  b)                     ...(i)
               y  y  log[a(x  x)  b]   ...(ii)
[ x and y are corresponding small increments]
From (i) and (ii), we get
                     y  log[a(x  x)  b]  log (ax  b)
                                  a(x  x)  b
                           log
                                     ax  b
                                  (ax  b)  ax
                           log
                                      ax  b
                                    ax 
                           log 1 
                                 ax  b 
                     y 1         ax 
                       log 1 
                     x x       ax  b 
                      a     ax  b         ax                                a 
                                 log 1            Multiply and divide by ax+b 
                    ax  b ax          ax  b 
                                                     ax  b
                              a            ax      ax
                                  log 1 
                            ax  b      ax  b 
MATHEMATICS                                                                              245
                                                       Differentiation of Exponential and Logarithmic Functions
MODULE - VIII Working rule :
 Calculus               d                                1 d
                                      log(ax  b)               (ax  b)
                                 dx                    ax  b dx
                                                         1           a
                                                             a 
                                                       ax  b      ax  b
          Notes   Example 28.6           Find the derivative of each of the functions given below :
                  (i) y  log x 5              (ii) y  log x                  (iii) y   log x 3
                                                dy 1 1 1
                                                   
                                                dx 2 x 2x
                                                               3
                  (iii)                            y   log x 
                                                  dy            dt 1
                                                     3t 2 and   
                                                  dt            dx x
                                        dy dy dt          1
                  We know that,                 3t 2 
                                        dx dt dx          x
                                                   dy                1
                                                      3(log x) 2 
                                                   dx                x
                                                  dy 3
                                                    (log x) 2
                                                  dx x
                                                  dy
                   Example 28.7           Find,      if
                                                  dx
                           (i)         y  x 3 log x               (ii)        y  e x log x
                  Solution :
                  (i)                         y  x 3 log x
                                            dy         d            d
                                               log x (x 3 )  x 3 (log x)              [Using Product rule]
                                            dx        dx           dx
                                                                       1
                                                 3x 2 log x  x 3 
                                                                       x
            246                                                                                                 MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                                                                                  MODULE - VIII
                            x 2  3log x  1                                     Calculus
(ii)                    y  e x log x
                       dy       d                   d
                          ex    (log x)  log x  e x
                       dx      dx                  dx
                                      1                                           Notes
                            ex         e x  log x
                                      x
                                 1        
                            e x   log x 
                                 x        
                                            1                     d        
                                                     sin log x  log x 
                                      cos  log x               dx        
                                       sin(log x) 1
                                                 
                                      cos(log x) x
                                     1
                                    tan(log x)
                                     x
                              dy
Example 28.9           Find      , if y = log(sec x + tan x)
                              dx
Solution :                     y = log (sec x + tax x )
                              dy       1        d
                                                sec x  tan x 
                              dx sec x  tan x dx
                                            1
                                                   sec x tan x  sec2 x 
                                      sec x  tan x                       
MATHEMATICS                                                                     247
                                                   Differentiation of Exponential and Logarithmic Functions
MODULE - VIII                                                1
                                                                     sec x sec x  tan x 
 Calculus                                              sec x  tan x
                                                      sec x(tan x  sec x)
                                                   
                                                         sec x  tan x
                                                   = sec x
         Notes
                                              dy
                   Example 28.10       Find      , if
                                              dx
                                                                              1
                                                             2             2 2
                                                       (4x        1)(1  x )
                                              y                             3
                                                                 3
                                                             x       (x  7) 4
                  Solution : Although, you can find the derivative directly using quotient rule (and product rule)
                  but if you take logarithm on both sides, the product changes to addition and division changes to
                  subtraction. This simplifies the process:
                                                                          1
                                                         2             2 2
                                                   (4x        1)(1  x )
                                             y                          3
                                                             3
                                                         x       (x  7) 4
 1 
                                  log y  log 
                                                   
                                               4x 2  1 1  x 2                  2   
                                                                                         
                                                               3                        
                  
                                                  x3  x  7  4                        
                                                                                        
                                                        1                      3
                  or                                                       
                                  log y  log 4x 2  1  log 1  x 2  3log x  log(x  7)
                                                        2                      4
                                                                                             
                                                                                                 [ Using log properties]
                  Now, taking derivative on both sides, we get
                             d             1               1           3 3  1 
                                (log y)  2      8x         2
                                                                  2x      
                             dx          4x  1        2(1  x )       x 4 x7
                                   1 dy   8x      x     3      3
                                       2         2
                                                        
                                   y dx 4x  1 1  x    x 4  x  7
                                      dy     8x        x     3    3 
                                         y                         
                                      dx        2          2  x 4(x  7) 
                                             4x  1 1  x
                                             (4x 2  1) 1  x 2  8x        x     3    3 
                                                                2                       
                                                          3                    2  x 4(x  7) 
                                                  3
                                                                 4x  1 1  x
                                                x (x  7) 4
            248                                                                                       MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                                                                                                                      MODULE - VIII
             CHECK YOUR PROGRESS 28.2                                                                                  Calculus
1.     Find the derivative of each the functions given below:
       (a) f (x) = 5 sin x 2 log x                (b) f (x) = log cos x
                 dy
2.     Find         , if                                                                                              Notes
                 dx
                                                            x   2
                                                  (b) y  e
                     2
       (a) y  ex log x
                                                          log x
                          a  b tan x 
       (c) y  log                               (d) y = log (log x )
                          a  b tan x 
                 dy
4.     Find         , if
                 dx
                                                                                                 3
                        1        2              1
                                                        
                                                          3                           x (1  2x) 2
                                                                           y
       (a)   y  (1  x) (2  x) 3 (x 2
                        2                       7
                                             5) (x  9) 2           (b)                 5            1
                                                                                (3  4x) 4 (3  7x 2 ) 4
We know that derivative of the function x n w.r.t. x is n x n 1 , where n is a constant. This rule is
not applicable, when exponent is a variable. In such cases we take logarithm of the function and
then find its derivative.
Therefore, this process is useful, when the given function is of the type f  x g  x  . For example,
a x , x x etc.
Derivative of ax w.r.t. x
Let                   y  ax ,              a>0
                 d              d                             1 dy           d
                    log y   (x log a)         or               log a   x 
                 dx            dx                             y dx          dx
                            dy
or                              y log a
                            dx
MATHEMATICS                                                                                                         249
                                                     Differentiation of Exponential and Logarithmic Functions
MODULE - VIII
                                                  a x log a
 Calculus
                                         d x
                  Thus,                     a  a x log a ,                  a>0
                                         dx
                  Example 28.11 Find the derivative of each of the following functions :
         Notes            (i) y  x x                     (ii) y  x sin x
Solution : (i) y  x x
                                    1 dy                   1
                                         1  log x  x 
                                    y dx                   x
                                                = log x + 1
                                           dy
                                              y[log x  1]
                                           dx
                                          dy
                  Thus,                       x x (log x  1)
                                          dx
                  (ii)                      y  x sin x
                  Taking logarithm on both sides, we get
                                  log y = sin x log x
                                        1 dy d
                                           (sin x log x)
                                        y dx dx
                                        1 dy                         1
                  or                         cos x.log x  sin x 
                                        y dx                         x
                                           dy                   sin x 
                  or                           y cos x log x 
                                           dx                     x 
                                           dy                         sin x 
                  Thus,                        x sin x cos x log x 
                                           dx                           x 
            250                                                                                                 MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
Solution : Here taking logarithm on both sides will not help us as we cannot put                              MODULE - VIII
                                                                                                               Calculus
 (log x) x  (sin 1 x)sin x in simpler form. So we put
                                           du                     1 
Thus,                                          u  log(log x)        
                                           dx                   log x 
                                           du                            1 
Thus,                                          (log x) x log(log x)             .....(ii)
                                           dx                          log x 
                     dv          sin x                          
or,                      v                cos x  logsin 1 x 
                     dx         1
                            sin x 1  x
                                         2
                                                                 
                                       sin x        sin x                             
                            sin 1 x         1             cos x log sin 1 x          ....(iii)
                                                             2
                                                sin x 1  x                           
From (i), (ii) and (iii), we have
dy            x                  1   1 sin x       sin x                      
     log x  log  log x           sin x                   cos xlogsin1 x 
dx                             log x                 1
                                                   sin x 1  x
                                                                2
                                                                                    
MATHEMATICS                                                                                                 251
                                                 Differentiation of Exponential and Logarithmic Functions
MODULE - VIII                       dy     log x
                                       
 Calculus                           dx 1  log x 2
                                                dy
                  Example 28.14        Find ,      if
                                                dx
                                   e x log y  sin  1 x  sin 1 y
                  Solution : We are given that
                                   e x log y  sin  1 x  sin 1 y
                  Taking derivative with respect to x of both sides, we get
                                       1 dy  x            1        1     dy
                                   ex         e log y        
                                       y dx              1 x2   1  y 2 dx
                                    ex   1  dy         1
                                                            e x log y
                  or
                                    y 1  y 2  dx   1 x 2
                                   dy y 1  y 1  e 1  x log y 
                                             2       x      2
                  or                  
                                   dx   e x 1  y 2  y  1  x 2
                                                        
                                           dy                            cos x ......
                  Example 28.15 Find          , if y   cos x  cos x 
                                           dx
                  Solution : We are given that
            252                                                                                             MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                                                                                                  MODULE - VIII
                                            cos x  cos x ......                                Calculus
                             y   cos x 
                                                                                y
                                                                      cos x 
Taking logarithm on both sides, we get
                        log y  y log cos x
Differentiating (i) w.r.t.x, we get                                                               Notes
                        1 dy        1                                dy
                              y         sin x   log cos x  
                        y dx      cos x                              dx
                    1                  dy
or                   y  log  cos x  dx   y tan x
                                      
                                            dy
or                  1  y log  cos x       y 2 tan x
                                            dx
                                                    dy      y 2 tan x
or                                                     
                                                    dx 1  y log  cos x 
            dy      y 2 cot x
               
            dx 1  y log  sin x 
                    dy      1
                       
                    dx x  2x  1
MATHEMATICS                                                                                     253
                                                        Differentiation of Exponential and Logarithmic Functions
MODULE - VIII          28.4 SECOND ORDER DERIVATIVES
 Calculus
                  In the previous lesson we found the derivatives of second order of trigonometric and inverse
                  trigonometric functions by using the formulae for the derivatives of trigonometric and inverse
                  trigonometric functions, various laws of derivatives, including chain rule, and power rule discussed
                  earlier in lesson 21. In a similar manner, we will discuss second order derivative of exponential
                  and logarithmic functions :
         Notes
                  Example 28.16 Find the second order derivative of each of the following :
                                  x
                          (i) e              (ii) cos (logx)                     (iii) x x
                                                                                d2y           d x
                  Taking derivative w.r.t. x on both sides, we get                             (e )  e x
                                                                                     2       dx
                                                                                dx
                                               d2y
                                                        ex
                                               dx 2
                  (ii) Let                    y = cos (log x)
                  Taking derivative w.r.t x on both sides, we get
                                            dy                    1  sin  log x 
                                                 sin  log x   
                                            dx                    x       x
                  Taking derivative w.r.t. x on both sides, we get
                                               d2 y          d    sin  log x  
                                                    2
                                                                              
                                               dx           dx          x       
                                                                                     1
                                                               x  cos  log x        sin  log x 
                  or                                                               x
                                                                                x2
                                               d2 y         sin  log x   cos  log x 
                                                   2
                                                        
                                               dx                          x2
                  (iii) Let y  x x
                  Taking logarithm on both sides, we get
                                    log y = x log x                ....(i)
                  Taking derivative w.r.t. x of both sides, we get
                                      1 dy      1
                                           x   log x  1  log x
                                      y dx      x
                                         dy
                  or                         y(1  log x)                      ....(ii)
                                         dx
            254                                                                                              MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
Taking derivative w.r.t. x on both sides we get                                                                                MODULE - VIII
                      d2y             d                                                                                         Calculus
                                        y(1  log x) 
                      dx 2           dx
                                            1                         dy
                                  = y   (1  log x)                                          ...(iii)
                                            x                         dx
                                                                                                                               Notes
                                  y
                                   (1  log x)y(1  log x)
                                  x
                                      y
                                        (1  log x) 2 y                                      (Using (ii))
                                      x
                                     1                
                                  y   (1  log x) 2 
                                      x               
                     d2 y     1              2
                        x x   1  log x  
                         2
                     dx       x               
                                                    1 x
Example 28.17            If y  ea cos                     , show that
                                     d2 y   dy
                 1 x2           dx 2  x dx  a2y  0 .
                                                1 x
Solution : We have, y  ea cos                                .....(i)
                                  dy         1    a
                                      ea cos x 
                                 dx              1 x2
                                                ay
                                                                                             Using (i)
                                            1  x2
                     2
              dy    a 2 y2
or                
              dx  1  x 2
                             2
                  dy 
                         2   2 2
                                 
                   1 x  a y  0
                  dx 
                                                                          .....(ii)
MATHEMATICS                                                                                                                  255
                                                           Differentiation of Exponential and Logarithmic Functions
MODULE - VIII
 Calculus                        CHECK YOUR PROGRESS 28.4
                  1.        Find the second order derivative of each of the following :
                                                                                         log x
                                                             (b) tan  e 
                                 4 5x                                   5x
                            (a) x e                                                (c)
                                                                                           x
         Notes
                  2.        If       y  a cos  log x   b sin  log x  , show that
                                            d2 y           dy
                                     x2           2
                                                      x      y0
                                            dx             dx
                                           1 x
                  3.        If y  e tan          , prove that
                                                      d2y           dy
                                     1 x2        dx 2   2x 1 dx 0
                  Sometimes x and y are two variables such that both are explicitly expressed in terms of a
                  third variable, say t, i.e. if x = f(t) and y = g(t), then such functions are called parametric
                  functions and the third variable is called the parameter.
                  In order to find the derivative of a function in parametric form, we use chain rule.
                                                              dy   dy dx
                                                                 =   .
                                                              dt   dx dt
                                                                   dy
                                                              dy   dt            dx
                       or                                        = dx , provided    0
                                                              dx                 dt
                                                                   dt
                                             dy
                  Example 28.18             Find , when x = a sin t, y = a cos t
                                             dx
                       Differentiating w.r. to ‘t’, we get
                                                              dx               dy
                                                                 = a cos t and      a sin t
                                                              dt               dt
                               dy    dy / dt  a sin t
                       Hence,     =                      tan t
                               dx    dx / dt a cos t
                                          dy
                   Example 28.19 Find        , if x  2at 2 and y  2at .
                                          dx
                  Solution : Given x  2at 2 and y  2at .
                       Differentiating w.r. to ‘t’, we get
            256                                                                                      MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                        dx             dy                                                              MODULE - VIII
                             = 4at and     2a
                        dt             dt                                                               Calculus
          dy   dy / dt 2a     1
    Hence    =            
          dx   dx / dt 4at 2t
                          dy
Example 28.20 Find           , If x  a (  sin ) and y  a (1  cos )
                          dx                                                                           Notes
Solution : Given                  x = a(  sin ) and
                                  y = a(1  cos )
    Differentiating both w.r. to ‘’, we get
                                dx                    dy
                                   = a(1  cos ) and     a(  sin )
                                d                    d
                                dy   dy / d      a sin 
    Hence                          =                         cot 
                                dx   dx / d  a (1  cos )           2
                          dy
Example 28.21 Find           , if x = a cos3t and y = a sin3t
                          dx
Solution : Given x = a cos3t and y = a sin3t
    Differentiating both w.r. to ‘t’, we get
                                dx         2 d                  2
                                   = 3a cos t (cos t )  3a cos t sin t
                                dt           dt
                                dy         2 d                 2
    and                            = 3a sin t (sin t )  3a sin t cos t
                                dt           dt
                                dy   dy / dt 3a sin 2 t cos t
    Hence                          =                           tan t
                                dx   dx / dt 3a cos2 t sin t
                           dy            1 t 2          2bt
Example 28.22      Find       , If x  a      2 and y =        .
                           dx            1 t           1 t 2
                          1 t 2          2bt
Solution : Given x  a           and y =
                          1 t 2
                                         1 t 2
    Differentiating both w.r. to ‘t’, we get
                               3at               3at 2
                  7.     x            and y 
                              1 t 2             1 t2
                  8.     x  sin 2t and y  cos 2t
                                           d2y
                   Example 28.23 Find            , if x = at2 and y = 2at
                                            dx 2
                  Solution : Differentiating both w.r. to ‘t’, we get
                                                         dx           dy
                                                            = 2at and     2a
                                                         dt           dt
                                                    dy      dy / dt 2a 1
                                                       =             
                                                    dx      dx / dt 2at t
                         Differentiating both sides w.r. to x, we get
            258                                                                                     MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                                                                                        MODULE - VIII
                              d2y    d  1 d  1 dt                                    Calculus
                                                        
                                 2 = dx 
                                         t  dt  t  dx
                              dx
                              d2y       1   1       1
                                  =          
                              dx 2     t 2 2at     2at 3
                   d2y                                                                  Notes
Example 28.24 Find      , if x = a sin3  and y = b cos3 
                   dx 2
                              d2y    b d            b d            d
                                   =      (cot  )       (cot  ) 
                              dx 2   a dx            a d            dx
                              d2y    b           2              1
                                  =    (  cosec    ) 
                              dx 2   a                    3a sin 2  cos 
                              d2y     b
                                2 =    2
                                          cosec4 sec 
                              dx     3a
                                                         d2y         
Example 28.25 If x  a sin t and y  b cos t , find         2 at t 
                                                         dx          4
                                dx               dy
                                   = a cos t and     b sin t
                                dt               dt
                                dy   dy / dt b sin t  b
                                  =                    tan t
                                dx   dx / dt a cos t   a
     Differentiating both sides w.r. to ‘x’, we get
MATHEMATICS                                                                           259
                                                           Differentiation of Exponential and Logarithmic Functions
MODULE - VIII                                               d2y    b d            dt b              1
                                                                                             2
 Calculus                                                        =      (tan t )       sec   t 
                                                            dx 2   a dt            dx a            a cos t
                                                            d2y    b 3
                                                                =    sec t
                                                            dx 2   a2
         Notes
                                               d2 y           b 3  b          2 2b
                                               2  at t  4 = 2 sec   2 ( 2)3 
                                                dx               a     4 a            a2
                      1A
                       %   +
                                       LET US SUM UP
                                           d x                                   d x
                  l            (i)            (e )  e x               (ii)         (a )  a x log a ; a  0
                                           dx                                    dx
                  l            If  is a derivable function of x, then
                                                     dx
                               (i)         log a       ;a  0
                                                     dx
                                           d ax  b
                               (iii)          (e    )  eax  b  a  aeax  b
                                           dx
                                           d            1              d           1 d
                  l            (i)            (log x)    (ii)            (log x)     , if  is a derivable function of x.
                                           dx           x              dx          x dx
                                           d                  1           a
                  l            (iii)          log(ax  b)         a 
                                           dx               ax  b      ax  b
            260                                                                                                MATHEMATICS
    Differentiation of Exponential and Logarithmic Functions
                                                                                                      MODULE - VIII
l      If
          dy dy / dt
                     h(t ) ,                                                                         Calculus
          dx dx / dt
            d2y d            dt
       then    2
                  [h(t )] 
            dx    dt         dx
                                                                                                      Notes
http://www.themathpage.com/acalc/exponential.htm
http://www.math.brown.edu/utra/explog.html
http://www.freemathhelp.com/derivative-log-exponent.html
TERMINAL EXERCISE
                                                     xx 
               x x
        (a) (x )                              (b) x
              dy
2.      Find     , if
              dx
                                                              cos   1 x
        (a) y  a x log sin x                 (b) y  (sin x)
                                                                        3
                          x2
                 1                                        x  x  4 4 
        (c) y  1                          (d) y  log e          
                 x                                            x4 
                                                                        
             dy                               x4 x  6                               e x  ex
5.      Find    , if           (a)   If y                       (b)       If y 
             dx                               (3x  5) 2                            (e x  e x )
               dy                                                                   2  2x
6.      Find      , if         (a)   If y  a x  x a            (b)       y  7x
               dx
MATHEMATICS                                                                                         261
                                                            Differentiation of Exponential and Logarithmic Functions
MODULE - VIII 7.        Find the derivative of each of the following functions :
 Calculus
                                      2 2x
                                                                                       2x cot x
                        (a) y  x e             cos 3x                       (b) y 
                                                                                           x
                                            x.......
                                     xx                                  dy      y2
                 8.     If y  x                        , prove that   x    
         Notes                                                           dx 1  y log x
                         x  1 x  2 
                 11.
                         x  3 x  4 
                                      x            1
                             1       x
                 12.     x        x    x
                             x 
                                        t
                 13. x  a  cos t  log  and y  a sin t
                                         2
                 14. x  a (cos    sin ) and y  a (sin    cos )
                             1                 1
                 17. x  a  t   and y  a  t  
                                 t                   t
                                                                                  dy        
                 18. If x  a (  sin ) and y  a (1  cos ) , find               at  
                                                                                  dx        3
                               2bt           a (1  t 2 )        dy
                 19. If x           and y               , find    at t = 2.
                              1 t 2          1 t2              dx
                                sin 3 t         cos3 t               dy
                 20. If x              and y          , prove that      cot 3t
                                 cos 2t          cos 2t              dx
                                                                                                   dy        3 
                 21. If x  2cos   cos 2 and y  2 sin   sin 2 , prove that                      tan  
                                                                                                   dx        2
                                                                           dy   1         2
                 22. If x = cos t and y = sin t, prove that                       at t 
                                                                           dx    3         3
                                                                                            d2y
                 23. If x  a (cos t  t sin t ) and y  a (sin t  t cos t ) , find
                                                                                            dx 2
           262                                                                                             MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                                                                             MODULE - VIII
                                                      d2y                    Calculus
24. If x  a (  sin ) and y  a (1  cos ) , find    2
                                                           at  
                                                      dx          2
                                                           d2y
25. If x  a sin pt and y  b cos pt , find the value of        at t = 0
                                                           dx 2
                         1        d2y                                        Notes
26. If x  log t and y    , find
                         t        dx 2
                                                       d2y        
27. If x  a(1  cos t ) and y  a (t  sin t ) , find    2 at
                                                               t
                                                       dx         2
                                       2
                                     d y
28. If x  at 2 and y  2at , find        .
                                     dx 2
MATHEMATICS                                                                263
                                                             Differentiation of Exponential and Logarithmic Functions
MODULE - VIII
 Calculus                      ANSWERS
                   CHECK YOUR PROGRESS 28.1
                                                                                                    7
                                                                                          7  x                                2
         Notes
                  1.     (a) 5e     5x      (b) 7e   7x  4    (c)     2e   2x       (d)  e 2               (e) 2  x  1 e x  2x
                                                                                          2
                               1
                               x                   2                       1 x
                  2.     (a) e              (b) sec x  2 cos x  3 sin x  e                       (c) 5cos x  2e x      (d) ex  e x
                               3                                           2
                               e    x 1
                                                                       cot x
                                                                                  cos ec 2 x 
                  3.     (a)                                   (b) e                          
                               2 x 1                                            2 cot x 
                                           2x                                        2
                         (c) e x sin             [sin x  2x cos x] sin x (d) e x sec x sec2 x  2x sec 2 x tan x 
                  4.     (a) xex                               (b) 2e 2x sin x(sin x  cos x)
                                                                                 2x 2 log x  1          2
                  2.     (a) e     x2                1
                                                                          (b)                     .e x
                                         2x log x  x                         x(log x) 2
                             cot(log x)                                           2absec 2 x                       1
                  3.     (a)                         (b) sec x            (c)                                (d) x log x
                                 x                                              a 2  b 2 tan 2 x
                                     1         2           1           3    1             2          2x         3 
                  4.     (a) (1  x) 2 (2  x) 3 (x 2  5) 7 (x  9)  2   2(1  x)  3(2  x)                      
                                                                                                 7(x 2  5) 2(x  9) 
                                                     3
                                          x (1  2x) 2         1       3      5       7x        
                         (b)           5          1                                          
                                       4       2 4              2x 1  2x 3  4x 2(3  7x 2 ) 
                               (3  4x) (3  7x )
                                           sin x                          sin x 
                         (c)  log x              cos x log  log x   x log x 
                                                                                 
            264                                                                                                            MATHEMATICS
 Differentiation of Exponential and Logarithmic Functions
                                                                                                                                     MODULE - VIII
                          x                    x                                          x2
                                                                                                                       x3 
       (d)  tan x           log tan x  sin x cos x                      (e) (1  x)                       2
                                                                                                  2x log(1  x )  2                Calculus
                                                                                                                  1  x 2 
                  2 sin x)  x 2    sin x                     
       (f) x (x                             (2x  cos x)log x 
                                   x                          
                                                                                                                                     Notes
3.     (a) cosec 2 x 1  log tan x   tan x cot x   log cot x  xcosec 2 x tan x   cot x x
                                                 1 x                       log sin x 
       (b) 2x  log x 1 log x   sin x sin                          1
                                                              cot x sin x            
                                                                              1  x2 
1.     (a) e
            5x
                   
               25x 4  40x 3  12x 2                            5x  2 x
                                                          (b) 25e sec e            
                                                                          1  2e5x tan e5x                        
              2 log x  3
       (c)
                    x3
MATHEMATICS                                                                                                                        265
                                                            Differentiation of Exponential and Logarithmic Functions
MODULE - VIII
 Calculus                                    x2
                                                  
                                                  
                                                                          
                                 1                             1   1 
                        (c) 1                 2x log  x                                (d) 1        3
                                                                                                                     
                                                                                                                         3
                              x                             x  1 1                                    4(x  4) 4(x  4)
                                                                     x 
                                                      2
                        (a) cos x log(x)e x  x x   tan x                1                     
         Notes
                  3.                                                               2x  1  log x 
                                                                         x log x                  
                                                                     2                                  sin x    
                        (b) (sin 1 x) 2 .x sin x e 2x                            cos x log x                2
                                                             1  x 2 sin 1 x                            x      
                                                                            1
                  4.    (a) (tan x)log x  2cos ec 2 x log x  log tan x 
                                                                           x             
                                       tan x
                        (b) x tan x                        
                                              sec 2 x log x  + (sin x) cos x [cot x cos x  sin x log sin x)]
                                       x                    
                                        x4 x  6  4     1        6                                            4e 2x
                  5.    (a)                                  
                                                2  x 2(x  6) (3x  5)                          (b)
                                        (3x  5)                                                            (e 2x  1)2
                                                                                                                   2  2x
                  6.    (a)            a x .x a 1[a  x log e a]                                 (b)         7x            (2x  2)log e 7
                                                       2                                            2 x cot x                     1 
                  7.    (a)            x 2 e 2x cos 3x   2  3tan 3x  (b)                                     log 2  2cos ec2x  
                                                        x                                                x                        2x 
                                      cos x
                  9.       sin x              sin x log sin x  cos x.cot x 
                                      log x    log  log x   1 
                  10.      log x                               
                                                       x         
                           x  1 x  2   1  1  1  1 
                  11.
                           x  3 x  4   x  1 x  2 x  3 x  4 
                                         x                               1
                            1                     1  x 2  1           2
                                                                       x  x  1
                                                                         x
                                                                                          x 2  1
                  12.     x                log
                                                x             x      2    log x         
                            x                     x  x 2  1          x              x2 
                                                                                               y log x                      x
                  13.     tan t        14. tan                 15. tan t           16.                            17.               18.  3
                                                                                               x log y                       y
                        4a                         sec3              1                       b                             1                1
                  19.                  20.                      21.                 22.           2                23.               24.
                        3b                           a               a                       a                              t                a
                          1                       1                                         1
                  25.         3        26.                      27. 2              28.
                        2at                         t                                         t
266 MATHEMATICS