0% found this document useful (0 votes)
95 views35 pages

Printing Functional Materials: Jennifer A. Lewis

Polymer inks can be used for 3D printing of functional materials. Researchers are working to develop inks with properties like shear thinning and viscoelasticity to enable high-resolution printing through fine nozzles. Silver nanoparticle inks are being developed for applications like printed electronics and flexible solar cells, with the goal of reducing costs and active material usage compared to traditional manufacturing. Advances in ink rheology and 3D printing techniques could further the transformation to additive manufacturing of functional materials.

Uploaded by

kal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
95 views35 pages

Printing Functional Materials: Jennifer A. Lewis

Polymer inks can be used for 3D printing of functional materials. Researchers are working to develop inks with properties like shear thinning and viscoelasticity to enable high-resolution printing through fine nozzles. Silver nanoparticle inks are being developed for applications like printed electronics and flexible solar cells, with the goal of reducing costs and active material usage compared to traditional manufacturing. Advances in ink rheology and 3D printing techniques could further the transformation to additive manufacturing of functional materials.

Uploaded by

kal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 35

Polymer inks !

Printing Functional Materials


Jennifer A. Lewis

School of Engineering and Applied Sciences


Wyss Institute for Biologically Inspired Engineering
Harvard University

NSF Additive Manufacturing Workshop – 07.11.13

http://lewisgroup.seas harvard.edu
!
3D Printing – Design, Print, Innovate
Broad range of commercial printers and solidification schemes
(photocuring, !T, laser sintering, drying, etc.)

Stereolithography Laser Sintering Fused Deposition PolyJet Process


3D Systems 3D Systems Stratasys Objet

3D Printing Robocasting Laser Net Shaping Electron Beam Melting


Z Corp Robocasting Enterprises Optomec Arcam
3D Printing – Design, Print, Innovate
Broad range of commercial printers and solidification schemes
(photocuring, !T, laser sintering, drying, etc.)

Stereolithography Laser Sintering Fused Deposition PolyJet Process


3D Systems 3D Systems Stratasys Objet

!!!!!!!!!!!!"#$%!&'!()*+%*+,!-.%/#0$!1234!#+.!#)!-#).!#5!%/.!
!5#11#6*+,!2%%)*78%.$9!
:;<"!"2%.)*21$!=.>*7*1*%?!
:@<"!A7*1*%?!%#!(2%%.)+!B+.!5.2%8).$!:C!;DD!µ-< !!
:&<"!E*,/!%/)#8,/(8%!
3D Printing Robocasting Laser Net Shaping Electron Beam Melting
Z Corp Robocasting Enterprises Optomec Arcam
!
Several advances needed for 3D printing of
high performance, functional materials
!

FG.5#).!%/*$!(.)$#+21!-2+8523%8)*+,!).H#18%*#+!32+!%24.!(123.I!%/#8,/I!).$.2)3/.)$!6*11!
+..0!%#!0.H.1#(!2!7)#20.)!2))2?!#5!)#78$%!()*+%*+,!-2%.)*21$JK!!!
!
FJ!)2(*01?!,)#6*+,!-2)4.%I!L;!G!$21.$J!!!
27#8%!MDN!#5!-2)4.%!*$!()#%#%?(*+,K!
!
O/.-*321!P!Q+,*+..)*+,!R.6$I!R#H!;SI!@D;;!*$$8.!
Our research focus
 
Ø  Broaden materials palette for 3DP

Ø  Integration of multiple materials

Ø  Digitally specify form and function

Ø  Improve feature resolution by 100x

Ø  Improve throughput by 100x

…  expedite  transformation  from  rapid  prototyping    


to  manufacturing  of  functional  materials  
Custom stages designed for 3D printing

Moderate Area, High Precision! Large Area, High Speed Stage!


10x10x5 cm3 ± 50 nm ! ! !1m2x10 cm ± 5 µm!
V = 0.1 -10 mm/s ! ! ! !V = 1 -1000 mm/s !!

E*,/!().3*$*#+I!12),.!2).2I!!
2+0!/*,/!$(..0!$%2,.$!
T!*+%.,)2%*+,!-81%*(1.!&'!()*+%/.20$! .U,UI!V'"!
Printing ink filaments (in and out of plane)

Ink filament printing!


!
continuous filament!
is extruded through !
deposition nozzle!

&D!-*3)#+!+#]]1.!

Desired Ink Rheology:

W*$3#$*%?I!!!!:X2!$<!
$#1*0[1*4.!

"#081*!:X2<!
•" Shear thinning behavior facilitates $/.2)!
flow through fine nozzles without %/*++*+,!
=8*0!!
clogging
"!!
R.6%#+*2+! ""!
•" Viscoelastic behavior enables
Y/.2)!Z2%.!:$[;<! Y/.2)!Y%).$$!:X2<!
printing of self-supporting
(spanning) features V*12-.+%2)?!()*+%*+,! \+271.!%#!).%2*+!
B12-.+%2)?!$/2(.!
Viscoelastic inks designed for 3D printing
Ink design and deposition
• ink must flow through nozzle without jamming
• ink filaments must form high integrity interfaces
• ink must solidify rapidly (via gelation, coagulation, or evaporation)
• concentrated inks minimize shrinkage during drying

colloidal inks! fugitive inks! nanoparticle inks! polyelectrolyte inks! sol-gel inks!

/01*µ2* /01*(2*
!"#$"%&'()*+"%,-$"*&'."*
Reactive silver inks for integrated electronics

^214.)I!_.6*$!#$%&!:@D;@<`!X2%.+%!!B1.0!
a!bDN!7814!3#+083%*H*%?!2%!;DDcO !!!
Silver particle inks for integrated electronics

@D!+-!2H.)2,.!I!d!e!dD!+-!0*$%)*78%*#+!

A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$I!.%!21UI!&'()*')!:@DDb<`!A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!!
Silver particle inks for printed electronics

!
Silver inks are highly conductive as-printed

A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$I!.%!21UI!&'()*')!:@DDb<`!A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!!
Z8$$#!.%!21UI!A0H2+3.0!"2%.)*21$!:@D;;<!
Solar panels - present design
100 µm
interconnects

78$72)$
78$72)$!

fK!XW!3.11!

Rigid, costly, active materials* occupy large area

*silicon PV cells and silver interconnects


Printing High Aspect Ratio Silver Microelectrodes!
1 µm nozzle 5 µm nozzle 10 µm nozzle

5 µm nozzle 30 µm nozzle

10 µm nozzle 5 µm nozzle
10 µm nozzle
30 µm nozzle

A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$!.%!21U!&'()*')!:@DDb<U!
!A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!!
Flexible photovoltaics
Q>2-(1.9!
Y*!-*3)#3.11$!T!
_8-*+.$3.+%!12?.)!
:\W[38)271.!2+0!#),2+*3!0?.<!!
!

W2$%!).083%*#+!*+!23%*H.!-2%.)*21$!8$.0!
!
X)*+%271.!-*3)#3.11$!P!*+%.)3#++.3%$!
3#-7*+.0!6*%/!3#+3.+%)2%#)!#(%*3$!!!

Z#,.)$I!R8]]#I.%!21I!+,-./)!%0112!:@D;;<U!
Printing interconnects and bus bars
610 µm nozzle

f;D!µ-!!
+#]]1.!

G8$!72)$!
g+%.)3#++.3%$! 30 µm nozzle

g+X!3.11$!

&D!µ-!!
+#]]1.!

10 cmx10 cm
g+%.)3#++.3%$!
Sparse array of PV cells; finer interconnects
!

g+!3#1127#)2%*#+!6*%/!Y.-()*8$!2+0!YAgO!
Flexible concentrator photovoltaics

"ink~1x10-5 #•cm (after 30 min @ 175°C)


Sheet resistance = 30 m#/sq

6” polyimide substrate

Printed interconnects are highly flexible and can withstand


repeated bending (1000’s cycles) without performance loss

Printed interconnects exhibit excellent I-V response

g+!3#1127#)2%*#+!6*%/!Y.-()*8$!2+0!YAgO!
Conformal printing of electrically small antennas

3#((.)[7234.0!$87$%)2%.! h[2)-!2+%.++2!
3#+083%*H.!.(#>?!

$*1H.)!
Q1.3%)#0.$!
:;DD!µ-<!

,12$$!!
Y8((#)%!
5..0!(#*+%! @dUh!--!0*2-.%.)!
8,!i!DUS;!!

6*%/!G.)+/2)0!,)#8(!:QOQ!j!g11*+#*$<! 2" 8,!C!DUd!*+0*32%.$!2+!


k= .1.3%)*3211?!$-211!
!0 2+%.++2!:QYA<!
!*U.UI!,!9!"o:;<!!
A02-$I!'8#$$I!"214#6$4*I!A/+I!R8]]#I!G.)+/2)0I!_.6*$I!$34,*')3!5,-)/(,67!:@D;;<!
Performance characteristics

G^!k!;SU&N!

Z.$#+2+%!2%!
k;UM!lE]!
O#+32H.!2+%.++2!

Qm3*.+3?!kM;N!

VSWR: a measure of signal reflected at component junctions


Ideally, VSWR = 1 (no reflected power, no mismatch loss)

A02-$I!'8#$$I!"214#6$4*I!A/+I!R8]]#I!G.)+/2)0I!_.6*$I!$34,*')3!5,-)/(,67!:@D;;<!
Embedded Electronics
(carbon ink printed in polymer matrix)
!
SDD!n-!
+#]]1.!

A$!()*+%.0! A5%.)!.+32($812%*#+!

@DD!n-!! DN!$%).%3/!
+#]]1.!

!!!!"8%/!!!!!!!!!!
&DDN!$%).%3/!

o#1.$4?!!!!!!!!!!!!!

6*%/!%/.!^##0!,)#8(!
Embedded Electronics
(carbon ink printed in polymer matrix)
 

Strain  Gage  
Length  =  20  mm  
 
All  printed  
sequentially  in  
1mm  thick  
EcoFlex  reservoir  

with  the  Wood  group  


3D Printed of Strain Gage Arrays

6*%/!%/.!^##0!,)#8(!
Printed Three-Layer Stretchable Sensors

6*%/!%/.!^##0!,)#8(!
Aim: Print Microbatteries w/ High Power & Energy Density

For autonomous devices that: Energy !


Emission!
1. Harvest energy
- photovoltaic Control!
- thermoelectric
- piezoelectric!

2. Store energy Energy !


- micro-batteries w/ high energy Storage!
and power density Energy !
Harvesting!
3. Perform function
- Mechanical
- Sensing
- RF
!0.H*3.!

r8)!,#219!
X)*+%!;!--&!!
&'!-*3)#72%%.)*.$! X
!
*U.UI!$*].!#5!2!$*+,1.!
,)2*+!#5!$2+0!:s<! !72%%.)?!

Lai et al., Adv. Mater. 2010! Warneke et al., Computer 2001!


Key Factors Influencing Power & Energy Density
;U" "2%.)*21$!'.$*,+!
t" E*,/!#8%(8%!H#1%2,.!%/)#8,/!0.$*,+!
#5!%/.!%6#!/215!.1.3%)#0.!).23%*#+$!
t" E*,/!*#+!0*u8$*#+!3#.m3*.+%$!:ETI!_*T!
*+!/#$%!-2%.)*21$<!
t" R.6!1*,/%[6.*,/%!/#$%!-2%.)*21$!
t" V2$%!).23%*#+!4*+.%*3$!
_*O#r@! _*V.XrS! _*"+@rS!
!
@U" Y%)83%8).!'.$*,+!
O/.-*321!Y#3*.%?!Z.H*.6$I!!
t" &'!.1.3%)#0.!2)3/*%.3%8).! @DDbI!&hI!@@f!
t" _2),.!$8)523.!2).2!
t" v/*+!B1-!#5!23%*H.!-2%.)*21$!

!!ZQ'\OQ!vZARYXrZv!_QRlvEY!

r8)!V#38$9!!!
&'!*+%.)0*,*%2%.0!!
-*3)#72%%.)*.$!

A/+! ^.*!
Printing 3D Interdigitated Microbatteries!
a) b) Nozzle
Current (30 µm) !
collector (Au) !
LTO !

Glass!

c) LTO ! d) Packaging !
LFP!

oU!Y8+I!_.6*$I!'*11#+!.%!21I!$342!5,-)/2!@D;&!
Ink Viscosity and Elastic Modulus  
LFP  ink  (cathode)  
Ink  rheology  tailored  for  3D  filamentary  printing  

LTO  ink  (anode)  

K.  Sun,  Lewis,  Dillon  et  al,  Adv.  Mater.  2013  


Printing High Aspect Ratio Structures!

;!--!

Y2+0!,)2*+$!

[!!.23/!-*3)#72%%.)?!.p8*H21.+%!*+!$*].!%#!2!$*+,1.!,)2*+!#5!$2+0!
Printed 3D Interdigitated Microbattery  

200 µm 300 µm

K.  Sun,  Lewis,  Dillon  et  al,  Adv.  Mater.  2013  


Printed and Packaged 3D Microbattery  

200 µm

K.  Sun,  Lewis,  Dillon  et  al,  Adv.  Mater.  2013  


LFP-LTO Full Cell Properties  

K.  Sun,  Lewis,  Dillon  et  al,  Adv.  Mater.  2013  


Z.5!&S9!O/*2+,!:"gv<!!
Microbattery Performance!

&'[g"A!:_.6*$I!'*11#+<!

Z.5!&M9!G)28+I!o*+,!:\g\O<!!

2).21!0.+$*%*.$!w!;$%!,.+!()*+%.0!72%%.)*.$!.>/*7*%!.>3.(%*#+21!(.)5#)-2+3.s!
High throughput 3D printing

5 mm
@'!
3;!

<;!
Multinozzle design based on
Murray’s law: 1 mm

3
rparent = " rbranch
3
_ generation

Hierarchical branching network


Created by CNC milling 200 μm

All 64 nozzles are 205±3 µm on a side


High throughput printing of 3D architectures
Periodic polymer
3D Interpenetrating
foam
Architectures!

h[+#]]1.!2))2?!
'821!-81%*+#]]1.!()*+%/.20!

!_2),.[2).2!:;!-@<!&'!$%)83%8).$!()*+%.0!*+!-*+8%.$!8$*+,!-81%*+#]]1.!()*+%/.20$!
Summary
!" Created model and functional inks with
controlled flow behavior

!" Printed flexible electronics, photovoltaics,


and sensors from conductive inks

!" Printed 3D Li-ion microbatteries

!" Implemented new multimaterial 3D printing

!" Designed and implemented microvascular


nozzle arrays for high throughput printing
.>(.0*%*+,!%)2+$5#)-2%*#+!5)#-!)2(*0!()#%#%?(*+,!!
%#!-2+8523%8)*+,!#5!20H2+3.0!-2%.)*21$!
Thank you!

_.6*$!,)#8(!

http://lewisgroup.seas harvard.edu
!

You might also like