0% found this document useful (0 votes)
219 views4 pages

Definition of de Morgan's Law

The document defines and proves De Morgan's laws of sets using examples. It shows that: (1) The complement of the union of sets A and B is equal to the intersection of their complements. The proof uses elements of the sets to show equality in both directions. (2) Similarly, the complement of the intersection of sets A and B is equal to the union of their complements. (3) Two examples are then given to demonstrate De Morgan's laws hold true for specific sets. Elements are used to explicitly show the laws hold in both examples.

Uploaded by

Saad ullah
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
219 views4 pages

Definition of de Morgan's Law

The document defines and proves De Morgan's laws of sets using examples. It shows that: (1) The complement of the union of sets A and B is equal to the intersection of their complements. The proof uses elements of the sets to show equality in both directions. (2) Similarly, the complement of the intersection of sets A and B is equal to the union of their complements. (3) Two examples are then given to demonstrate De Morgan's laws hold true for specific sets. Elements are used to explicitly show the laws hold in both examples.

Uploaded by

Saad ullah
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 4

Proof of De Morgan’s Law

Definition of De Morgan’s law: 


The complement of the union of two sets is equal to the intersection
of their complements and the complement of the intersection of two
sets is equal to the union of their complements. These are called De
Morgan’s laws.
For any two finite sets A and B;
(i) (A U B)' = A' ∩ B' (which is a De Morgan's law of union).
(ii) (A ∩ B)' = A' U B' (which is a De Morgan's law of intersection).

Proof of De Morgan’s law: (A U B)' = A' ∩ B'


Let P = (A U B)' and Q = A' ∩ B'
Let x be an arbitrary element of P then x ∈ P ⇒ x ∈ (A U B)'
⇒ x ∉ (A U B)
⇒ x ∉ A and x ∉ B
⇒ x ∈ A' and x ∈ B'
⇒ x ∈ A' ∩ B'
⇒x∈Q
Therefore, P ⊂ Q …………….. (i)
Again, let y be an arbitrary element of Q then y ∈ Q ⇒ y ∈ A' ∩ B'
⇒ y ∈ A' and y ∈ B'
⇒ y ∉ A and y ∉ B
⇒ y ∉ (A U B)
⇒ y ∈ (A U B)'
⇒y∈P
Therefore, Q ⊂ P …………….. (ii)
Now combine (i) and (ii) we get; P = Q i.e. (A U B)' = A' ∩ B'

Proof of De Morgan’s law: (A ∩ B)' = A' U B'


Let M = (A ∩ B)' and N = A' U B'
Let x be an arbitrary element of M then x ∈ M ⇒ x ∈ (A ∩ B)'
⇒ x ∉ (A ∩ B)
⇒ x ∉ A or x ∉ B
⇒ x ∈ A' or x ∈ B'
⇒ x ∈ A' U B'
⇒x∈N
Therefore, M ⊂ N …………….. (i)
Again, let y be an arbitrary element of N then y ∈ N ⇒ y ∈ A' U B'
⇒ y ∈ A' or y ∈ B'
⇒ y ∉ A or y ∉ B
⇒ y ∉ (A ∩ B)
⇒ y ∈ (A ∩ B)'
⇒y∈M
Therefore, N ⊂ M …………….. (ii)
Now combine (i) and (ii) we get; M = N i.e. (A ∩ B)' = A' U B'

Examples on De Morgan’s law: 


1. If U = {j, k, l, m, n}, X = {j, k, m} and Y = {k, m, n}.
Proof of De Morgan's law: (X ∩ Y)' = X' U Y'.
Solution: 
We know,  U = {j, k, l, m, n}
X = {j, k, m}
Y = {k, m, n}
(X ∩ Y) = {j, k, m} ∩ {k, m, n}           
           = {k, m} 

Therefore, (X ∩ Y)' = {j, l, n}  ……………….. (i)


Again, X = {j, k, m} so, X' = {l, n}
and    Y = {k, m, n} so, Y' = {j, l}

X' ∪ Y' = {l, n} ∪ {j, l}

Therefore,  X' ∪ Y' = {j, l, n}   ……………….. (ii)

Combining  (i)and (ii) we get;


(X ∩ Y)' = X' U Y'.          Proved

2. Let U = {1, 2, 3, 4, 5, 6, 7, 8}, P = {4, 5, 6} and Q = {5, 6, 8}. 


Show that (P ∪ Q)' = P' ∩ Q'.

Solution:
We know, U = {1, 2, 3, 4, 5, 6, 7, 8}

P = {4, 5, 6}
Q = {5, 6, 8}

P ∪ Q = {4, 5, 6} ∪ {5, 6, 8} 

         = {4, 5, 6, 8}

Therefore, (P ∪ Q)' = {1, 2, 3, 7}   ……………….. (i)

Now P = {4, 5, 6} so, P' = {1, 2, 3, 7, 8}

and Q = {5, 6, 8} so, Q' = {1, 2, 3, 4, 7}

P' ∩ Q' = {1, 2, 3, 7, 8} ∩ {1, 2, 3, 4, 7}

Therefore, P' ∩ Q' = {1, 2, 3, 7}   ……………….. (ii)

Combining  (i)and (ii) we get;


(P ∪ Q)' = P' ∩ Q'.          Proved

You might also like