0% found this document useful (0 votes)
47 views9 pages

Grand Test-2 Key & Hints

This document contains a key sheet for a JEE Mains model practice test with answers for Physics, Chemistry, and Mathematics sections. It provides the correct answer options for 75 multiple choice questions across the three subjects. The document also includes physics hints and solutions for some of the physics questions, explaining the conceptual steps and calculations required to arrive at the answers.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
47 views9 pages

Grand Test-2 Key & Hints

This document contains a key sheet for a JEE Mains model practice test with answers for Physics, Chemistry, and Mathematics sections. It provides the correct answer options for 75 multiple choice questions across the three subjects. The document also includes physics hints and solutions for some of the physics questions, explaining the conceptual steps and calculations required to arrive at the answers.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

JEE MAINS MODEL PRACTICE TEST

GRAND TEST - 2
(KEY SHEET)

PHYSICS

01) 1 02) 2 03) 3 04) 1 05) 2

06) 1 07) 1 08) 1 09) 4 10) 2

11) 4 12) 1 13) 3 14) 2 15) 1

16) 1 17) 2 18) 3 19) 1 20) 2

21) 1 22) 4 23) 1 24) 1 25) 1

CHEMISTRY

26) 4 27) 2 28) 4 29) 2 30) 3

31) 2 32) 4 33) 4 34) 3 35) 2

36) 4 37) 2 38) 3 39) 2 40) 1

41) 1 42) 3 43) 1 44) 4 45) 3

46) 3 47) 4 48) 4 49) 3 50) 2

MATHEMATICS

51) 3 52) 2 53) 1 54) 3 55) 1

56) 1 57) 3 58) 3 59) 1 60) 4

61) 3 62) 1 63) 1 64) 1 65) 4

66) 4 67) 1 68) 4 69) 3 70) 3

71) 2 72) 3 73) 2 74) 4 75) 1


PHYSICS HINTS & SOLUTIONS 3R/11
.
01. Sol: Since [Fv]  M1L2T 3
04. Sol. In minimum incidence case the angles will
 be as shown in figure.
So  2  should also be [M1L2T 3 ]
x 

[]  
2
 M1L2T 3  []  M1L4 T3 and  Fv  x 2  A
[x ] imin A-ic
will also have dimension [M1L2T 3 ] ic

[]
So 2
 [M1L2T 3 ]  []  M1L2T 1 .
[t ]

2V2 V
1
02. Sol. P  aV  W   aV dV  aV 3
2 2
3 V1
V 1 Applying snell’s law:
(P V )
1 2 2
1 7
 PV  (P2 V2  P1V1 )  1 R(T2  T1 ) . 1  sinimin  sin(A  ic )
3 ( P1V1 ) 3 3 3
03. Sol: Here we are drawing step by step 7
simplified circuit diagrams  (sin A cosic  cos A sinic )
3

7 3 3 1
  sin60 1   cos60 
In parallel 3 7 7 2

 imin  30
  max  imin  90  A  30  90  60  60 .
A B
In parallel /2 /2
A B
05. Sol: T1 C k1 k2 T2 C

C T0 C
R
R Let temperature of junction be T0 C
Temperature difference across slab
A R O R B
 A  (T1  T0 )C

R/2 Temperature difference across slab


B  (T0  T2 )C
Since both slabs are connected in series, heat
R current through both will be equal

R k1A(T1  T0 ) k 2 A(T0  T2 )

/2  /2
A,C R O B

 k2 k
R2 As k1   2 (T1  T0 )  (T0  T2 )k 2
2 2

R T1  T0  2T0  2T2

T1  2T2  3T0 ––––––– (1)


R/2 R As T1  T2  12C  T2  T1  12 –––––– (2)
A B From (1) and (2), we get

R/3
T1  2(T1  12)  3T0 As the maximum current is through last bulb
and equal to 2A so for maximum power
3T1  24  3T0 dissipation with proper functioning
T1  T0  8C . I  2A
06. Sol: Maximum distance upto which a bullet can So, total power dissipated in circuit is
be fired is its maximum range, therefore I2 I2
P  2  R  3  R  I2 R
v2 2 v 4 4 9
Rmax  . Maximum area  (R max )  .
g g2 12 12
P   12  22 W .
07. Sol.   W / Q  (2000  100) / 10  103  20% . 2 3

F
11. Sol: Acceleration of two mass system is a 
2m
leftward
B
N
r

08. Sol.
60°

J 30°

Magnetic field intensity at any inside point of FBD of block A


  
current carrying is given by B  0 [J  r] . The mF
N3F .
2 N cos60  F  ma 
2m
above expression can be easily found by using
ampere’s law. Now using superposition 12. Sol. As elevator accelerates up at 2 ms–2, tension
principle we can find, the magnetic field at in the string is
any point inside the cavity. T  m(g  a)  4(10  2)  48 N
P Linear mass density of string is
  19.2  103 kg / m
O'
Speed of transverse waves on string is
O
 
T 48
   50 ms1 .
 19.2  103
Using principle of superposition
Magnetic field at any point inside the cavity
         dF B
is, B  0 [J  OP]  0 [J  OP]  0 [J  OO']
2 2 2
Which is uniform i.e., constant at all points in
the cavity and non-zero. 13. Sol. A
09. Sol. Conceptual/Basic Question. x dx
10. Sol: The current distribution in various branches
of the circuit are shown in figure.

I/3
I/2
Consider an element of wire AB as shown.
I I/3 I Force experienced by this element is,

 I 
dF  I  0  
dx 5 I2 dx
I/2  0 
 2x  cos37 8 x
I/3
Force experienced by all the elements of the  2  100    10 rad / s
wire would be in same direction so integration  10 5
can be done directly. f   .
2 2 
13a
5 I2 dx 5 0I2  13 
F   dF  0  5
 n   . BvL BvL
8 a x 8  5 18. Sol: VC  VD  and VC  VA 
2 2
14. Sol. E1 (for 4th to 3rd excited state) So VA  VD  0 .
1 1 dN
 13.6  32  2  2   2.75 eV  N
4 5  19. Sol.Activity 
dt
E2 (for 3rd to 2nd excited state) These activities are same at t  0 , so

1 1 N1 : N2 : N 3  1 : 2 : 4 where N1 , N2 , N3 are the


 13.6  3 2  2  2   5.95 eV
3 4  number of initial nuclei of  ,  and deuteron
emission respectively.
For shorter wavelength i.e., for E 2 ,
Probability of  emission at t  1600 s is
V01  3.95 V
From eV01  hv    3.95  5.95      2eV 1N1
 16 1 1
For longer wavelength, 1N1  2N2  3N3  1  4  8  13 .
 
eV02  2.75  2  0.75 eV 16 4 2

So V02  0.75 V . 20. Sol. From the i  t graph, area from t  0 to


1
 6.28  104 t  2 sec   2  10  10 Amp. sec
15. Sol.      500 2
0 4   107
10
  1    Average Current   5 Amp .
2
      1  500  1  499 . L L
21. Sol.At equilibrium mg  A2g  Ag
16.Sol. At the time of Collision of spring is 2 2
m2 g 3
elongated by, x  mg  LAg
k 2
From momentum conser vation, If the block is depressed by the distance x
m1u  (m1  m1 )v where v is the speed of
 L  L  
combined block just after collision. At this F    x  A2g    x  Ag   mg
instant total energy of system is,  2  2  

(m1  m2 )v 2 kx 2 3
E   LAg  Agx  mg  F  Agx
2 2 2

m12u2 m 2g2  A g  m
  2 a  x  T  2 .
2(m1  m2 ) 2k  m  Ag
This is the oscillation energy.
17. .Sol. Given that potential lenergy is U  mV
22. Sol: V(O1 )  Kq  Kq
2 2
 U  (50x  100)10 R R 2  d2

dU Kq Kq
F  (100x )102 V(O2 )  
dx R d2 2 R
2 2
 m x  (100  10 )x
1 1 
3 2 2 V  V(O1 )  V(O2 )  2Kq   
10  10  x  100  10 x R R 2  d2 
q q species]
Now, K.E.   T.E.
R R
 T.E.  4x and I.E.  T.E.  ( 4x)  4x .
O1 O2 30. Sol. Conceptual/Basic Question.
31. Sol. Polytetrafluoroethene (teflon) is a chain
d
growth polymer formed by polymerisation of
tetrafluoroethene in presence of persulphate
catalyst.
q 1 1 
   . 32. Sol.
20 R
2 2
R d 
OH
23. Sol. The electrostatic energy density is equal
CHO CH COOH
to magnetostatic energy density.
HCN
CN H O
24. Sol. For common base circuit current gain is, (CHOH)4  (CHOH)4  2
 NH3
 CHOH

IC CH2OH (CHOH)4

IE  IC  0.96 IE
CH2OH
COOH
From KCK, IC  IB  IE  IB  0.041 IE
HI, heat
(CH2 )5 

60 A
 IE   1.5 mA CH3
0.04
Heptanoic acid
IC  1.5 mA  60A  1.44 mA .
33. Sol. Detergents containing branched hydrocarbon
2
mv hc chains are non-biodegradable.
25. Sol. Let m is the mass of particle, 
2 photon 34. Sol. Conceptual/Basic Question.
where symbols have their usual meaning. 35. Sol. Conceptual/Basic Question.
36. Sol.
p2 hc h
  and p N 2 : ( 1s2 )(  *1s2 )( 2s2 )(  * 2s2 )( 2p2x  2p2y ) ( 2p1z )
2m  photon  particle
1
photon 2mc B.O.   (9  4)  2.5
    particle  2mc  h 2
 particle h h mv
1
2c N2 : B.O.   (10  4)  3
  40 . 2
0.05c
O2 : ( 1s2 )(  *1s2 )( 2s2 )(  * 2s2 )( 2p2z )
CHEMISTRY HINTS & SOLUTIONS
26. Sol. Conceptual/Basic Question. ( 2p2x  2p2y ) (  * 2p1x )
27. Sol. Conceptual/Basic Question.
1
B.O.   (10  5)  2.5
CH3 CH3 2
28. Sol.
 CH3  C  CH2  Br 
CH 3  C  CH2  Br  1
O2 : B.O.   (10  6)  2
H H 2
2°-Carbocation
Since N2 has lower bond order than N2 , bond
CH3 CH3 1,2-hydride
shift
CH3O
CH3  C  CH3 

CH 3  C CH3 length of N  N in N2 increases. In O2 , bond
CH3OH 

OCH3 3°-Carbocation order increases from 2 to 2.5 hence, bond


length decreases.
37. Sol. Conceptual/Basic Question.
K.E.1 Z12  n22 x 22  3 2
29. Sol. K.E.  n2  Z2 or K.E.  22  62 38. Sol. [Co(py)2 (H2O)2 C 2 ]C
2 1 2 2
and [Co(py )2 (H2O) C 3 ] H2O show hydrate
5
 K.E.2  4x [Z for M  6 as it is H-like isomerism.

39. Sol. 4 LinO3   2 Li2O  4NO2  O2 ;
COCH 3 COOH
 43. Sol.
2 NaNO3   2 NaNO2  O2 .
I2 /NaOH
40. Sol. 1) (F); As the size of halogen atom increases  H
 CHI3 
crowding on Si atom will increase, hence, (Y)
tendency of attack of Lewis base decreases. (X) (Z)
COOH
2) (T); M.P. of NH 3 is highest due to
intermolecular H-bonding in it. Next lower KMnO4 / H 
M.P. will be of SbH3 followed by AsH3 due to
high mol. wt. of SbH3 . (Z)

3) (F); M.P. and B.P. of increase from PH3 to 44. Sol. For Buffer solution, we should have two
SbH3 via AsH3 due to increase in mol. wt. NH3 constituents i.e., a weak & it’s conjugate base .
does not follow this trend due to inter alc.KOH
molecular H-bonding. 45. Sol. H2C  CH2 
 KBr
 CH2  CHBr
 H2O
4) (T); Value of bond moment decreases. Br Br (X)
41. Sol. Work done, w  Pext .dV NaNH2

 NaBr
CH  CH
 NH3
W  2  2.5  5 L atm  506.3 J (Y)
Because this work is used in raising the
temperature of water, so work done is equal 46. Sol. pH   log [H ]  14  [H ]  1014
to the heat supplied i.e., w  q  m  c sT Hence, [OH ]  1 M [H ][OH ]  104
Given that, m  18g (  1 mole) ,
Cu(OH)2  Cu2  2OH
cs  4.184 J g 1K 1 ,
K sp  [Cu2 ][OH  ]2
q  506.3 J , T  ? (Heat is given to water)
For the reaction, Cu2  2e   Cu , n  2
q 506.3 0.0591 1
T    6.72 o
E cell  Ecell  log
cs  m 4.184  18 n [Cu2 ]
 Final temperature, Tf  Ti  T  293  6.72
0.0591 1
299.72 K  300 K . Ecell  0.34  log  0.22 V .
2 1 1019
42. Sol: Initially, number of moles of gas in each 47. Sol. For bcc, Z  2
pi V pi V
bulb is n1  RT and n2  RT d
ZM d  NA  a3
1 1 3 M
NA  a Z
After the temperature of second bulb is
raised to T2 then the number of moles of 4  6  1023  (500  1010 )3
 M
pf V 2
gas in both the bulbs are n'1  and
RT1 4  6  1023  125  1024
  150 g mol1 .
pf V 2
n'2 
RT2 Now, the total number of moles of 48. Sol. Molarity of Na 2CO3 solution 2.65 1000
   0.1 M
106 250
gas in both the bulbs remains same in both
10 mL of this solution is diluted to 500 mL
the cases. n1  n2  n'1  n'2
M1V1  M2 V2
2pi V pf V pf V 2p V p V  T  T1 
   i  f  2  0.1  10  M 2  500  M2  0.002 M .
RT1 RT1 RT2 RT1 R  T1T2 
3.6
2piT2 49. Sol. Mass of O 2 per gram of adsorbent  3
pf  1.2
T1  T2 .
Number of moles of O 2 per gram of adsorbent
3 n 
    n  ( 1)   
32  6
Volume of O2 per gram of adsorbent 7
n
or n  ( 1) .
3 0.0821  273 6
   2.10 .
32 1 60. Sol: Let A  (h, k)
50. Sol. Conceptual/Basic Question.
k 4 4
MATHEMATICS HINTS & SOLUTIONS m AH  , mOB 
51. Sol: Conceptual/Basic Question. h 1 3
52. Sol: Conceptual/Basic Question. (k  4) 4
  1  4k  3h  19 ––––– (1)
53. Sol: Conceptual/Basic Question. (h  1) 3
54. Sol: Conceptual/Basic Question.
k 44
55. Sol: 2x  3y  1  0 mOA  , mBH  0
h 3 1
3x  y  2  0  x  1 , y  1 Since OA and BH are mutually perpendicular,
If the equations are consistent, then it implies that h  0 .
a(1)  2( 1)  b  0  a  b  2 . 19
Putting h  0 in eq. (1), we get k 
1
56. Sol: sin (sin5)  x  4x 2 4

 sin1[sin(5  2 )]  x 2  4x  19 
Thus, orthocentre is  0,  .
2
 4
 x 2  4x  5  2  x  4x  (2  5)  0
61. Sol: Given, (x  y )  ( y  x )  a –––– (1)
 (x  2)2  9  2  x  2  9  2 .
2x
 y2 y2 
 x  y  y x  ––––– (2)
57. Sol: f  2x 2  , 2x 2    xy a
 8 8  Adding eqns. (1) and (2), then

2 2 2x
 y 2   2 y2  2 xy a
  2x 2     2x   a
 8   8 
2
Squaring, 4x  4y  a 2  4x  4x
 f(60, 48)  f(80, 48)  f(13, 5) a2
 (60) 2  ( 48 )2  ( 80) 2  ( 48 )2  (13) 2  ( 5) 2 dy 8x
 44 0 2 4
 36  64  12  112 . dx a
2
A B 5  04d y  8
58. Sol: tan  tan  ,
2 2 6 dx 2 a 2

A B 1  A B d2 y 2
tan  tan   tan   1   .
2 2 6  2  dx 2 a 2

 62. Sol: We have, z  (1  icot8)3


 A  B  2 .
4  cosec3 8(sin8  icos8)3
59. Sol: Given 2sin2   3sin   2  0 3
3    
1  cosec 8 cos   8   isin   8  
 sin   2 ,   2  2 
2
  3   3 
1   7  cosec3 8 cos   24   isin   24  
 sin     sin    or sin   2   2 
2  6 6
3 i( 24  3  /2)
 cosec3 8  ei( 3 /2 24 )  cosec 8  e .
63. Sol: Let the ‘n’ consecutive integers be P
2k  1, 2k  3, 2k  5,...., 2k  2n  1

n O (0, 0)
their sum  [2k  1  2k  2n  1]
2 q
Q R
 n(2k  n)  n2  2kn  (n  k)2  k 2 (3, 4) ( 4, 3)

Given, (n  k)2  k 2  252  112 3 4


Slope of OR  , slope OQ 
 k  11 , n  k  25  n  14 . 4 3
 OR and QO are perpendicular..
64. Sol: Value  ( 40 C9  40C10 )  41 C11  ...  50C20

 ( 41 C10  41C11 )  42C12  ...  50C20  
2
 ...  50C19  50C20  51C20 .  
Hence, QPR   .
65. Sol: Let the required plane be ax  by  cz  0 2 4
We have 3a  5b  2c  0 , a  2b  3c  0 70. Sol: Shortest distance will take place along the
common normal.
a b c
  
15  4 2  9 6  5 y
 a : b : c  11 : 11 : 11 A
Thus plane is x  y  z  0 .
x
66. Sol: Total number of even numbers in the set is O (6, 0)

18 and total number of odd numbers is 16. C


A : Sum of selected numbers is even.
B : Selected numbers are odd. y'

18
C2  16 C2 16
C2 Equation of normal for y 2  4x at (at2 , 2t) is
P(A)  34
, P(A  B)  34
C2 C2
y  tx  t  t3
16
 B  P(A  B) C2 40
P    16 18
 . If it passes through (6, 0), then t3  5t  0
A P(A) C2  C2 91
 t  0, t  5
2 2
67. Sol: I   (ln x ) dx  x  (ln x )  2  ln x dx
 A  (5, 2 5 ) , C  (5,  2 5 )
2
 x(ln x )  2(x  ln x  x)  C
Now, PA  PC  1  20  21 , OP  6
2
 x[(ln x )  2 ln x  2]  C .
 Minimum distance  ( 21  5 ) units .
2 2
68. Sol: (2y  6xy )dx  (3x  8x y)dy  0 NUMERICAL VALUE QUESTIONS:
 2y dx  3x dy  6xy 2 dx  8x 2 y dy  0 1
71. Sol: Let sin x   , then x  sin 
 2xy dx  3x 2 dy  6x 2 y 2 dx  8x 3 y dy  0  
Since,   sin1 x 
3 2 2 2
 2xy dx  3x y dy  6x y dx  8x y dy  0 4 3 3 2 2

 d(y 3  x 2 )  2d(x 3 y 4 )  0  
  
2 2
 x 2 y 3  2x 3 y 4  c .

69. Sol: Let O(0, 0) be the centre of the given circle. Also as x  1 ,   h
2
1  
Clearly, QPR  QOR  . 2
2 2  Required limit  lim

  cos 
2
h (m, n)  {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (3, 0)} .
 lim
h 0
   Number of terms free from radical sign is 6.
cos   h 
 2  Second Method :
General term in the given expansion
  
Putting   2  h, h  0 
 
10!  3 7
 1  3  7 , where       10
 !!  !
h h  Possible value of  are : 0, 3, 6, 9
 lim  lim 1.
h 0 sinh h  0 sin h
Possible values of  are : 0, 7
72. Sol: y  f(x )  x  1  x  2  x  3 Possible value of  are : 0, 1, 2, ..., 10
or y  3x  6 ,   x  1 Since,       10

 x  4 , 1  x  2  Possible triplets ( , ,  ) will be (0, 0, 10),


 3x  6 , 2  x   (0, 7, 3), (3, 0, 7), (3, 7, 0), (6, 0, 4), (9, 0, 1).
75. Sol: After shifting the origin at the point
dy
  3 ,   x  1  1, 1  x  2 (2,  1) , the equation of curve becomes
dx
x  y  1 . This curve will represent a square
e
 3, 2  x  
as shown in the figure below.
dy Y
Sign scheme for is
dx
B
dec. min. inc y x 1 x  y 1
 
 ve 1  ve 2  ve C A
X
O
Thus, y has least value at x  2 . x  y  1 x y 1
Least value of f(x)  f(2)  2 .
D
b c
73. Sol: x1  x 2   , x1 x 2  Clearly, area of this square  4 times the area
a a
of triangle OAB  2 sq. units.
1 1 x12  x 22
Now,   2 2
x12 x 22 x1 x 2
***THE END***
(x  x 2 )2  2x 1x 2
 1
(x 1x 2 )2

2
 x  x2  2 b2 2a
 1    2 
 x1x 2  x1x 2 c c

b2 2a b
We have, 2
 
c c a

b2 2ac bc b2 bc
    2   2
c c a ac a

b2 bc
   2.
ac a 2
74. Sol: The term free from radical sign must be of the
form (constant) (31/3 )3m  (71/7 )7n where
3m  7n  10 and m, n are non-negative integers.
This inequality has 6 solutions

You might also like