∑ Fy=0
N 2−w 2 y =0
N 2=w 2 y
N 2=m 2∗g∗cos( 30° )
∑ F x=m2∗a 1
w 2 x−fr 2=m2∗a1
m 2∗g∗sen (30 °)−μ 2∗(m 2∗g∗cos (30 °))=m 2∗a 1
g∗sen (30 °)−μ 2∗(g∗cos (30 °))=a 1
9,807 m/ s2∗sen( 30° )−0,3∗( 9,807 m/s 2∗cos (30 °))=a 1
a 1=2,3556 m/ s2
dv
=a 1=2,3556 m/s 2
dt
dv =2,3556 dt
v t
∫ dv=2,3556∫ dt
0 0
v=2,3556∗t
dr
=v =2,3556∗t
dv
dr =2,3556∗t dt
r t
∫ dr=2,3556∗∫ t dt
0 0
2,3556∗1 2
r= t
2
r =10
2,3556∗1 2
10= t
2
t=2,9138 s
Reemplaza el tem en la ecu v
v=2,3556∗(2,9138 s)
v=6,8637 m/s
∑ Fy=0
N 2−F 2 y−w 2 y =0
N 2=F 2 y +w 2 y
N 2=m 2∗a∗sen(30 ° )+ m2∗g∗cos (30 ° )
N 2=5 a+ 84,9311(1)
N 2=5(10,4066 m/ s2 )+ 84,9311(1)
N 2=136,9641 N
∑ F x=0
F 2 x−fr 2−w 2 x=0
m 2∗a∗cos ( 30 ° )−μ 2∗N 2−m2∗g∗sen( 30° )=0
10∗a∗cos ( 30 ° )−0,3∗(5 a+ 84,9311)−10∗(9 , 8 07)∗sen (30° )=0
8,6603 a−1,5 a−25,4793−49,035∗sen ( 30° ) =0
a=10,4066 m/s 2
∑ Fy=0
N 1+ fr 2−w 1−N 2 y=0
N 1=−fr 2+w 1+ N 2 y
N 1=−μ 2∗N 2∗sen ( 30 ° ) +m1∗g+ N 2∗cos (30 ° )
N 1=−(0,3)∗(136.9641)∗sen ( 30 ° ) +(50)∗(9.807)+( 136.9641)∗cos (30 °)
N 1=588,4198 N
∑ F x=(m 1+ m2)∗a
F−fr 1−fr 2 x−N 2 x=(m1+m 2)∗a
F=0,3∗588,4198+0,3∗136.9641∗sen (30 ° ) +136.9641∗cos ( 60° )+(10+50)∗10,4066
F=890,4151 N
∑ Fy=0
T 1 y−T 2 y−w=0
T 1∗sen (23,5782°)−T 2∗sen ( 23,5782° )−m∗g=0
T 1∗sen ( 23,5782 ° )−T 2∗sen (23,5782 ° )−2∗9,807=0
T 1=44,9414+T 2
∑ Fc=0
Fc−T 1 x−T 2 x =0
m∗w2∗R−T 1∗cos (23,5782° )−T 2∗cos (23,5782° )=0
2∗( 9,4248 )2∗(9,1652)−( 44,9414+T 2)∗cos ( 23,5782°)−T 2∗cos (23,5782°)=0
T 2=863,7700 N
T 1=912,8049 N
T1==10,99N
a=101,9114 m/s2
T1=8,84561
T1=8,84561N
A2=101,9114 m/s2