0% found this document useful (0 votes)
114 views10 pages

Lulc, LST, Ndvi - Bibliography

Uploaded by

Igwe Victor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
114 views10 pages

Lulc, LST, Ndvi - Bibliography

Uploaded by

Igwe Victor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 10

LULC, LST, NDVI - BIBLIOGRAPHY

Aboelnour, M., and Engel, B. (2018) Application of Remote Sensing Techniques and
Geographic Information Systems to Analyze Land Surface Temperature in Response to Land
Use/Land Cover Change in Greater Cairo Region, Egypt. Journal of Geographic Information
System, 10, 57-88. DOI: 10.4236/jgis.2018.101003.
Acharya, T., Lee, D., Yang, I., and Lee, J. (2016). Identification of Water Bodies in a Landsat 8
OLI Image using a J48 Decision Tree. Sensors, 16(7), 1075. MDPI AG. Retrieved from
http://dx.doi.org/10.3390/s16071075
Ahmad, A., and Quegan, S. (2012). Analysis of Maximum Likelihood Classification on
Multispectral Data. Applied Mathematical Sciences, 6(129), 6425 – 6436.
Akpan-Ebe N., Udotong I.R. and Ekpenyong R.E. (2016). Ecological Consequences of
Urbanization of Uyo Capital City, Akwa Ibom State, Nigeria. Journal of Agriculture and
Ecology Research International 7(3): 1-12, 2016; Article no.JAERI.19554 ISSN: 2394-1073.
Anderson, J.R. (1971). Land use classification schemes used in selected recent geographic
applications of remote sensing: Photogramm. Eng, 37(4), 379-387.
Ayanlade, A. (2016). Variation in diurnal and seasonal urban land surface temperature: landuse
change impacts assessment over Lagos metropolitan city. Model. Earth Syst. Environ. 2, 1–8
(2016). https://doi.org/10.1007/s40808-016-0238-z
Babalola, O.S., and Akinsanola, A.A. (2016). Change Detection in Land Surface Temperature
and Land Use Land Cover over Lagos Metropolis, Nigeria. Journal of Remote Sensing and GIS,
5(3), 1000171. DOI: 10.4172/2469-4134.1000171
Banai, R., and DePriest, T. (2014). Urban Sprawl: Definitions, Data, Methods of Measurement,
and Environmental Consequences. Journal of Sustainability Education, 7, ISSN: 2151-7452.
Breitmeier, H., In, F., Kuhn, J., and Schwindenhammer, S. (2009). Analysing urban adaptation
strategies to climate change: a comparison of the coastal cities of Dhaka, Lagos and Hamburg.
Changnon, S.A. (1992). Inadvertent Weather Modification in Urban Areas: Lessons for Global
Climate Change. Bulletin of the American Meteorological Society, 73(5), 619-627 Published by:
American Meteorological Society. https://www.jstor.org/stable/26229820
Chen, M., Zhang, H., Liu, W., and Zhang, W. (2014). The Global Pattern of Urbanization and
Economic Growth: Evidence from the Last Three Decades
https://doi.org/10.1371/journal.pone.0103799
CLIMATE-DATA.ORG retrieved from https://en.climate-data.org/africa/nigeria/akwa-
ibom/uyo-4733/
Collier, G. (2006). The impact of urban areas on weather. Quarterly Journal of the Royal
Meteorological Society. Vol. 132, Part A No. 614, 132, 1–25 doi: 10.1256/qj.05.199
Congalton, R.G. (1991) A Review of Assessing the Accuracy of Classifications of Remotely
Sensed Data. Remote Sensing of Environment, 37, 35-46. https://doi.org/10.1016/0034-
4257(91)90048-B
Congalton, R., and Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices, Third Edition. DOI: 10.1201/9780429052729.
Crawley, M. J. (2005). Statistics: An Introduction using R, John Wiley and Sons Ltd, West
Sussex, England.
Cui, Y., Xu, X., Dong, J., and Qin, Y. (2016). Influence of Urbanization Factors on Surface
Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases.
Sustainability 8(8), 706.
Danodia, A., Nikam, B., Kumar, S., and Patel, R. (2017). Land Surface Temperature Retrieval by
Radiative Transfer Equation and Single Channel Algorithms Using Landsat-8 Satellite Data.
Encyclopedia of Ecology. https://www.researchgate.net/publication/320727952
Ekpoh, I.J. (2015). Climate Change and Recent Severe Flooding in Uyo, Akwa Ibom State,
Nigeria. Global Journal of Social Sciences, 14, 23-33 ISSN 1596-6216 DOI:
http://dx.doi.org/10.4314/gjss.v14i1.3
Eludoyin A.O., Omotoso I., Eludoyin, O.M., and Popoola, K.S. (2019). Remote Sensing
Technology for Evaluation of Variations in Land Surface Temperature, and Case Study Analysis
from Southwest Nigeria. © Springer Nature Switzerland AG 2019. K. Koutsopoulos et al. (eds.),
Geospatial Challenges in the 21st Century, Key Challenges in Geography,
https://doi.org/10.1007/978-3-030-04750-4_8
Essien, E., and Cyrus, S. (2019). Detection of Urban Development in Uyo (Nigeria) Using
Remote Sensing. Land 2019, 8, 102; doi:10.3390/land8060102.
Eyoh, A., and Ekpa, A. (2019). Assessment of Change in the Built-Up Index of Uyo Metropolis
and its Environs using Remote Sensing. European Journal of Engineering Research and Science.
4(6), 84-89. DOI: https://doi.org/10.24018/ejers.2019.4.6.1349
Feng, Y., Gao, C., Tong, X., Chen, S., Lei, Z., and Wang, J. (2019). Spatial Patterns of Land
Surface Temperature and their Influencing Factors: A Case Study in Suzhou, China. Remote
Sens.  2019, 11(2), 182; https://doi.org/10in.3390/rs11020182
Fils, N., and César, S. (2017). Re: Which bands of Landsat 7 (6.1 or 6.2 or both?) & 8 (10 or 11
or both?) for LST estimation?. Retrieved from:
https://www.researchgate.net/post/Which_bands_of_Landsat_7_61_or_62_or_both_8_10_or_11
_or_both_for_LST_estimation/593eaa1793553b6cb5664e58/citation/download.
Fonseka, H.P.U., Zhang, H., Sun, Y., Su, H., Lin, H., and Lin, Y. (2019). Urbanization and Its
Impacts on Land Surface Temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to
2016. Remote Sens. 11(8), 957.
Global Strategy to improve Agricultural and Rural Statistics (GSARS). (2017). Handbook on
Remote Sensing for Agricultural Statistics. GSARS Handbook: Rome. Retrieved from:
http://www.fao.org/3/ca6394en/ca6394en.pdf
Han, J., Baik, J., and Lee, H. (2014). Urban impacts on precipitation. Asia-Pacific J Atmos
Sci 50, 17–30. https://doi.org/10.1007/s13143-014-0016-7
Haque, M.I., and Basak, R. (2017). Land cover change detection using GIS and remote sensing
techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian
Journal of Remote Sensing and Space Sciences 20 (2017) 251–263.
https://doi.org/10.1016/j.ejrs.2016.12.003
Hasmadi, M., Pakhriazad, H.Z., and Shahrin, M.F. (2009). Evaluating supervised and
unsupervised techniques for land cover mapping using remote sensing data. Geografia:
Malaysian Journal of Society and Space, 5 (1), 1-10. ISSN 2180-2491.
Hosseini, S., and Mehran, H. (2018). Drivers of urban sprawl in urban areas of Iran. Papers in
Regional Science. 98, 1137-1158. 10.1111/pirs.12381.
Huang, X., Weng, C., Lu, Q., Feng, T., and Zhang, L. (2015). Automatic Labelling and Selection
of Training Samples for High-Resolution Remote Sensing Image Classification over Urban
Areas. Remote Sensing. 7. 16024-16044. 10.3390/rs71215819.
Kaul, H.A., and Sopan, I. (2012). Land Use Land Cover Classification and Change Detection
Using High Resolution Temporal Satellite Data. The Journal of Environment. 1(5), 146-152.
ISSN 2049-8373
Khandelwal, S., Goyal, R., Kaul, N., and Mathew, A. (2018). Assessment of land surface
temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian
Journal of Remote Sensing and Space Science, 21(1), 87-94
http://dx.doi.org/10.1016/j.ejrs.2017.01.005
Kovats, R.S., and Hajat, S. (2008). Heat Stress and Public Health: A Critical Review. Annual
Review of Public Health. 29 (1), 41–
55. doi:10.1146/annurev.publhealth.29.020907.090843. PMID 18031221.
Li, L., Tan, Y., Ying, S., Yu, Z., Li, Z., and Lan, H. (2014). Impact of Land Cover and
Population Density on Land Surface Temperature: Case Study in Wuhan, China. Journal of
Applied Remote Sensing, 8, 1-19. https://doi.org/10.1117/1.JRS.8.084993
Li, H., Zhou, Y., Li, X., Meng, L., Wang, X., Wu, S., and Sodoudi, S. (2018). A new method to
quantify surface urban heat island intensity, Science of The Total Environment, 624, 262-272,
ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2017.11.360.
Lillesand, T.M., and Kiefer, R.W. (2000). Remote Sensing and Image Interpretation. 4th ed.
New York, Wiley and
Liu, L., and Zhang, Y. (2011). Urban heat island analysis using the LandSat TM data and
ASTER Data: A case study in Hong Kong. Remote Sensing. 3. 1535-1552. 10.3390/rs3071535.
Lu, D., Mausel, P., Brondízio, E., and Moran, E. (2004). Change detection
techniques, International Journal of Remote Sensing, 25(12), 2365-
2401, DOI: 10.1080/0143116031000139863
Marco, H. (2019). Spatiotemporal Contextual Uncertainties in Green Space Exposure Measures:
Exploring a Time Series of the Normalized Difference Vegetation Indices. Int. J. Environ. Res.
Public Health 2019, 16, 852; doi:10.3390/ijerph16050852 www.mdpi.com/journal/ijerph
Meera, G.G., Parthiban, S., Nagaraj, T., and Christy, A. (2015). NDVI: Vegetation Change
Detection using Remote Sensing and GIS – A Case Study of Vellore District. 3rd International
Conference on Recent Trends in Computing 2015 (ICRTC-2015). Procedia Computer Science
57 (2015): 1199 – 1210. 1877-0509 © 2015 Published by Elsevier B.V. doi:
10.1016/j.procs.2015.07.415
Miles, Victoria and Esau, Igor. (2017). Seasonal and Spatial Characteristics of Urban Heat
Islands (UHIs) in Northern West Siberian Cities. Remote Sensing. 2017, 9, 989;
doi:10.3390/rs9100989,
Mushtaq, A.G., and Asima, N. (2016). Determining the Vegetation Indices (NDVI) from Landsat
8 Satellite Data. International Journal of Advance Research, 4(8), 1459-1463.
http://dx.doi.org/10.21474/IJAR01/1348
NASA (2006) Ecosystem, Vegetation Affect Intensity of Urban Heat Island Effect.
https://www.nasa.gov/mission_pages/terra/news/heat-islands.html
NASA (2001). Vegetation Limits City Warming Effects
https://earthobservatory.nasa.gov/images/86440/vegetation-limits-city-warming-effects

Obiefuna, J.N., Nwilo, P.C., Okolie, C.J., Emmanuel, E.I., and Daramola, O.E. (2018). Dynamics
of Land Surface Temperature in response to Land Cover changes in Lagos Metropolis. Nigerian
Journal of Environmental Sciences and Technology, 2(2): 148 – 159. ISSN (Print): 2616-051X |
ISSN (electronic): 2616-0501. https://doi.org/10.36263/nijest.2018.02.0074
Oguz, H. (2013). LST Calculator: a program for retrieving land surface temperature from
Landsat TM/ETM+ imagery. Environmental Engineering and Management Journal, March 2013,
Vol.12 (3): 549 – 555.

Oke, T. R. (1982). The energetic basis of urban heat island. Quarterly Journal of the Royal
Meteorological Society. 108. 1 - 24. 10.1002/qj.49710845502.
https://doi.org/10.1155/2015/607181

Oke T. R. (2010). Urban heat islands. in N. Mazhar et al (2015). The Routledge handbook of
urban ecology
Otukei, J.R., and Blaschke, T. (2010). Land cover change assessment using decision trees,
support vector machines and maximum likelihood classification algorithms. International Journal
of Applied Earth Observation and Geoinformation Volume 12, Supplement 1, S27-S31.
https://doi.org/10.1016/j.jag.2009.11.002
Qin, Z., Karnieli, A., and Berlinera, P. (2001). Mono-Window Algorithm for Retrieving Land
Surface Temperature from Landsat TM Data and its application to the Israel-Egypt Border
Region. International Journal of Remote Sensing, 22(18), 3719–3746 ISSN 0143-1161
print/ISSN 1366-5901. DOI: 10.1080/01431160010006971.
Saghir, J., and Santoro, J. (2018). Urbanization in Sub-Saharan Africa: Meeting Challenges by
Bridging Stakeholders. © 2018 by the Center for Strategic and International Studies.
www.csis.org
Sekertekin, A., and Bonafoni, S. (2020). Land Surface Temperature Retrieval from Landsat 5, 7,
and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models
and Toolbox Implementation. Remote Sens. 2020, 12, 294; doi:10.3390/rs12020294
Sharma, M., Gupta, R., Kumar, D., and Kapoor, R. (2011). Efficacious approach for satellite
image classification. Journal of Electrical and Electronics Engineering Research, 3(8), 143-150.
Sobrino, J.A., Jiménez-Muñoz, J.C., and Paolini, L. (2004). Land surface temperature retrieval
from LANDSAT TM 5, Remote Sensing of Environment, 90 (4), 434-440, ISSN 0034-4257,
https://doi.org/10.1016/j.rse.2004.02.003.
Stone, B., Hess, J.J., and Frumkin, H. (2010). Urban Form and Extreme Heat Events: Are
Sprawling Cities More Vulnerable to Climate Change Than Compact Cities? Environmental
Health Perspectives, 118(10), 1425–1428.
Tarawally, M., Wenbo, X., Weiming, H., and Terence, D.M. (2018). Comparative Analysis of
Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a
Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone, Remote Sensing
2018, 10: 112, 18p. doi:10.3390/rs10010112.
Thapa R.B., and Murayama, Y. (2010). Drivers of urban growth in the Kathmandu valley, Nepal:
Examining the efficacy of the analytic hierarchy process. Applied Geography, 30(1), 70-83.
https://doi.org/10.1016/j.apgeog.2009.10.002
Townshend, J. (2001). Landsat Imagery in Geography, International Encyclopedia of the Social
and Behavioral Sciences, 8265-8270 https://doi.org/10.1016/B0-08-043076-7/02527-4
Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M., and Kieu, H.V. (2017).
Characterizing the Relationship between Land Use Land Cover Change and Land Surface
Temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132.
https://doi.org/10.1016/j.isprsjprs.2017.01.001
Udosen, C.E. (2012). Rainfall Trends in Uyo-Akwa Ibom State and its Implication on Urban
Flooding. Journal of Engineering and Applied Sciences, 7 (1), 79-85, 2012 ISSN: I816-949X.
Uduak. C.U., and Edem, I.D. (2012). Analysis of Rainfall Trends in Akwa Ibom State, Nigeria.
Journal of Environment and Earth Science 2(8), ISSN 2224-3216 (Paper) ISSN 2225-0948.
Unninayar, S., and Olsen, L. (2008). Monitoring, Observations, and Remote Sensing – Global
Dimensions. Encyclopedia of Ecology, 2425-2446 https://doi.org/10.1016/B978-008045405-
4.00749-7
USGS (2019). Landsat 8 (L8) Data Users Handbook. Department of the Interior U.S. Geological
Survey. LSDS-1574 Version 5.0. https://www.usgs.gov/media/files/landsat-8-data-users-
handbook
Weng, Q., Liu, H., Liang, B., and Lu, D. (2008). The Spatial Variations of Urban Land Surface
Temperatures: Pertinent Factors, Zoning Effect, and Seasonal Variability. Selected Topics in
Applied Earth Observations and Remote Sensing, IEEE Journal of. 1. 154 - 166.
10.1109/JSTARS.2008.917869.
World Bank (2020). Understanding Poverty/ Topics/ Urban Development
https://www.worldbank.org/en/topic/urbandevelopment/overview
Wu, W.J., Zhao, S.Q., and Henebry, G.M. (2018). Drivers of urban expansion over the past
three decades: A comparative study of Beijing, Tianjin, and Shijiazhuang. Environmental
Monitoring and Assessment, 191: 34. doi: 10.1007/s10661-018-7151-z.
Yang, S., Paik, K., McGrath, G., Urich, C., Krueger, E., Kumar, P., and Rao, P. (2017).
Functional Topology of Evolving Urban Drainage Networks. Water Resources Research. DOI:
10.1002/2017WR021555
Yu, X., Guo, X., and Wu, Z. (2014). Land Surface Temperature Retrieval from Landsat 8 TIRS
—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm
and Single Channel Method. Remote Sens. 6(10), 9829-9852. https://doi.org/10.3390/rs6109829
Zemba, A., Adebayo, A.A., and Musa, A.A. (2010). Evaluation of The Impact of Urban
Expansion on Surface Temperature Variations using Remote Sensing-GIS Approach. Global
Journal of Human Social Science, 10(2), 20-29.
Zhao, L. (2018). Urban growth and climate adaptation. Nature Clim Change 8, 1034 (2018).
https://doi.org/10.1038/s41558-018-0348-x
Zhou, D., Zhao, S., Liu, S., Zhang, L., Zhu, C., (2014). Surface urban heat island in China's 32
major cities: spatial patterns and drivers. Remote Sensing of Environment. 152, 51–61.
https://doi.org/10.1016/j.rse.2014.05.017
Zhou, D., Zhao, S., Zhang, L., Sun, G., and Liu, Y. (2015). The footprint of urban heat island
effect in China. Scientific Reports. 5. DOI: 10.1038/srep11160
Abbas I.I., 2008. Use of satellite remote sensing and geographic information systems to monitor
land degradation along Ondo Coastal Zone (Nigeria). Balwois, Orid, Macedonia, 27, 1-13.
Abbas I.I., Fasona M.J., 2012. Remote sensing and geographic information techniques: veritable
tools for land degradation assessment. American Journal of Geographic Information System,
1(1): 1-6.
Adegun O., Odunuga S., Appia Y., 2015. Dynamics in the Landscape and Ecological Services in
System I Drainage Area of Lagos. Ghana Journal of Geography, 7(1): 75-96.
Ajibola M., Adeleke A.M., Ogungbemi A., 2016. An Assessment of Wetland Loss in Lagos
Metropolis, Nigeria. Developing Country Studies, 6(7): 1-7.
Ajibola M., Adewale B., Ijasan K., 2012. Effects of urbanisation on Lagos wetlands.
International Journal of Business and Social Science, 3(17): 310-318.
Butuc B.R., Moldovean G., 2011. Environmental impact scenario of an azimuthal tracked PV
platform based on CO2 emissions reduction. Environmental Engineering and Management
Journal, 10: 271-276.
Chen X., Zhao H., Li P., Yin Z., 2006. Remote sensing image based analysis of the relationship
between urban heat island and land use/cover changes. Remote Sensing of Environment, 104:
133-146.
Chen X.-L., Zhao H-M., Li P.-X., Yin Z.-Y., 2005. Remote sensing image-based analysis of the
relationship between urban heat island and land use/cover changes. Remote Sensing of
Environment, 104: 133–146. doi:10.1016/j.rse.2005.11.016

Term
Cummings S., 2007. An Analysis of Surface Temperature in San Antonio, Texas.
Project. EES5053/ES4093: Remote Sensing, UTSA.
D’Allestro P., Parente C., 2015. GIS application for NDVI calculation using Landsat 8 OLI
Images. International Journal of Applied Engineering Research ISSN 0973-4562, 10(21):
42099-42102
David A.R., 2008. A re-interpretation of Landsat TM data on Chernobyl. International Journal of
Remote Sensing, 10 (8): 1423 – 1427.
Deng Y., Shijie W., Xiaoyong B., Yichao T., Luhua W., Jianyong X., Fei C., Qinghuan Q., 2018.
Relationship among land surface temperature and LUCC, NDVI in typical karst area. Scientific
Reports, 8, 641, 12pps. DOI:10.1038/s41598-017-19088-x.
Fagherazzi S., Kirwan M.L., Mudd S.M., Guntenspergen G.R., Temmerman S., D'Alpaos A., . . .
Craft C., 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic
factors. Reviews of geophysics, 50(1).  https://doi.org/10.1029/2011RG000359
Goetz S.J., Halthore R.N., Hall F.G., Markham B.L., 1995. Surface temperature retrieval in
temperate grassland with multiresolution sensors. Journal of Geophysical Research, 100: 25397–
25410.
Green E., Mumby P., Edwards A., Clark C., 1996. A review of remote sensing for the
assessment and management of tropical coastal resources. Coastal management, 24(1): 1-40.
Grimm N.B., Grove J.G., Pickett S.T., Redman C.L., 2000. Integrated approaches to long-term
studies of urban ecological systems: Urban ecological systems present multiple challenges to
ecologists—Pervasive human impact and extreme heterogeneity of cities, and the need to
integrate social and ecological approaches, concepts, and theory. AIBS Bulletin, 50(7): 571-584.
Held A., Ticehurst C., Lymburner L., Williams N., 2003. High-resolution mapping of tropical
mangrove ecosystems using hyperspectral and radar remote sensing'. International Journal of
Remote Sensing, 24(13): 2739-2759.
James G.K., Adegoke J.O., Saba E., Nwilo P., Akinyede, J., 2007. Satellite-based assessment of
the extent and changes in the mangrove ecosystem of the Niger Delta. Marine Geodesy, 30(3),
249-267.
Jeevalakshmi D., Narayana Reddy S., Manikiam B., 2017. Land surface temperature retrieval
from Landsat data using Emissivity Estimation, International Journal of Applied Engineering
Research, 12 (20): 9679-9687.
Ji C., Liu Q., Sun D., Wang S., Lin P., Li X., 2001., Monitoring urban expansion with remote
sensing in China. International Journal of Remote Sensing, 22(8): 1441-1455.
Jimenez-Munoz J.C., Sobrino J.A., 2003. A generalized single-channel method for retrieving
land surface temperature from remote sensing data. Journal of Geophysical Research, 108, doi:
10.1029/2003JD003480.
Kaptue A.T., Hanan N.P., Prihodko, L., 2013. Characterization of the spatial and temporal
variability of surface water in the Soudan-Sahel region of Africa, J. Geophys. Res. Biogeosci.,
118: 1472–1483, doi:10.1002/jgrg.20121.
Kindscher K., Fraser A., Jakubauskas M.E., Debinski D.M., 1998. Identifying Wetland Meadows
in Grand Teton National Park Using Remote Sensing and Average Wetland Values. Wetlands
Ecology and Management, 5: 265-273. http://dx.doi.org/10.1023/A:1008265324575
Kolios S., Stylios C.D., 2013. Identification of land cover/land use changes in the greater area of
the Preveza peninsula in Greece using Landsat satellite data. Applied Geography, 40: 150-160.
Luque, S., 2000. Evaluating temporal changes using Multi-Spectral Scanner and Thematic
Mapper data on the landscape of a natural reserve: the New Jersey Pine Barrens, a case study.
International Journal of Remote Sensing, 21(13-14): 2589-2610.
Marco H., 2019. Spatiotemporal Contextual Uncertainties in Green Space Exposure Measures:
Exploring a Time Series of the Normalized Difference Vegetation Indices. Int. J. Environ. Res.
Public Health 2019, 16, 852; doi:10.3390/ijerph16050852 www.mdpi.com/journal/ijerph
Meera G.G., Parthiban S., Nagaraj T., Christy. A., 2015. NDVI: Vegetation Change Detection
using Remote Sensing and GIS – A Case Study of Vellore District. 3rd International Conference
on Recent Trends in Computing 2015 (ICRTC-2015). Procedia Computer Science 57(2015):
1199 – 1210. doi: 10.1016/j.procs.2015.07.415
Mushtaq A.G., Asima, N., 2016. Determining the Vegetation Indices (NDVI) from Landsat 8
Satellite Data. Article DOI:10.21474/IJAR01/1348. International Journal of Advance Research
(IJAR) - Int. J. Adv. Res. 4(8): 1459-1463. http://dx.doi.org/10.21474/IJAR01/1348
Ngie A., Abutaleb K., Ahmed F., Taiwo O.J., Darwish A.A., Ahmed M., 2015., An Estimation
of Land Surface Temperatures from Landsat ETM+ Images for Durban, South Africa.
GeoTechRwanda 2015 -Kigali, 18-20 November 2015.
Nwilo P.C., Olayinka D.N., Atagbaza A.O., Adzandeh A.E., 2012. Determination of Land
Surface Temperature (LST) and Potential Urban Heat Island Effect in Parts of Lagos State using
Satellite Imageries. FUTY Journal of the Environment, 7(1): 19-33.
http://dx.doi.org/10.4314/fje.v7i1.2.
Obiefuna J.N., Nwilo P., Atagbaza A., Okolie C.J., 2013a. Spatial changes in the wetlands of
Lagos/Lekki Lagoons of Lagos, Nigeria. Journal of Sustainable Development, 6(7): 123.
Obiefuna J.N., Nwilo P.C., Atagbaza A.O., Okolie, C.J., 2013b. Land Cover Dynamics
Associated with the Spatial Changes in the Wetlands of Lagos/Lekki Lagoon System of Lagos,
Nigeria. Journal of Coastal Research, 29 (3): 671–679.
http://www.bioone.org/doi/abs/10.2112/JCOASTRES-D-12-00038.1
Obiefuna J.N., Nwilo P.C., Okolie C.J., Emmanuel E.I., Daramola O.E., 2018. Dynamics of Land
Surface Temperature in response to Land Cover changes in Lagos Metropolis. Nigerian Journal
of Environmental Sciences and Technology, 2(2): 148 – 159.
https://doi.org/10.36263/nijest.2018.02.0074
Odindi J., Mutanga O., Abdel-Rahman E.M., Adam E., Bangamwabo V., 2017. Determination of
urban land-cover types and their implication on thermal characteristics in three South African
coastal metropolitans using remotely sensed data. S. Afr. Geogr. J. 2017, 99, 52–67.
Odindi J.O., Bangamwabo V., Mutanga O. (2015). Assessing the Value of Urban Green Spaces
in Mitigating Multi-Seasonal Urban Heat using MODIS Land Surface Temperature (LST) and
Landsat 8 data. Int. J. Environ. Res., 9(1): 9-18, ISSN: 1735-6865.
Odunuga S., Oyebande L., 2007. Change Detection and Hydrological Implications in the Lower
Ogun Flood Plain, SW Nigeria. Water and Energy Abstracts, 17(4): 12-12.
Oguz H., 2013. LST Calculator: a program for retrieving land surface temperature from Landsat
TM/ETM+imagery. Environmental Engineering and Management Journal, 12(3): 549–555.
Panda U., Mohanty, P., 2008. Monitoring and modelling of Chilika environment using remote
sensing data. Paper presented at the Proceedings of Taal2007: The 12th World Lake Conference.
Panigrahi S., Acharya B.C., Panigrahy R.C., Nayak B.K., Banarjee K., Sarkar S.K., 2007.
Anthropogenic impact on water quality of Chilika lagoon RAMSAR site: a statistical approach.
Wetlands Ecology and Management, 15(2): 113-126.
Praveen K.M., Jayarama R.S.S., 2013. Analysis of Land Use/Land Cover Changes Using
Remote Sensing Data and GIS at an Urban Area, Tirupati, India. Hindawi Publishing
Corporation. The Scientific World Journal Volume 2013, ArticleID 268623, 6 pages.
http://dx.doi.org/10.1155/2013/268623
Qin Z., Karnieli A., Berlinier P., 2001. A Mono-window Algorithm for retrieving Land Surface
Temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J.
Remote Sensing, 22(18): 3719–3746.
Ruiz-Luna A., Berlanga-Robles C.A., 2003. Land use, land cover changes and coastal lagoon
surface reduction associated with urban growth in northwest Mexico. Landscape Ecology, 18(2):
159-171.
Schott J.R., Volchok W.J., 1985. Thematic Mapper thermal infrared calibration.
Photogrammetric Engineering and Remote Sensing, 51: 1351–1357.
Tarawally M., Wenbo X., Weiming H., Terence D.M., 2018. Comparative Analysis of
Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a
Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone, Remote Sensing
2018, 10, 112, 18p. doi:10.3390/rs10010112.
Ugbodaga K., 2014. Six Years Of Greening Lagos. Retrieved from P.M. News:
https://www.pmnewsnigeria.com/2014/07/21/six-years-of-greening-lagos/
UN DESA 2016. Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems,
sustainably manage forests, combat desertification, and halt and reverse land degradation and
halt biodiversity loss. Retrieved from United Nations Department of Economic and Social
Affairs: https://unstats.un.org/sdgs/report/2016/goal-15/
United States Geological Survey, USGS 2015, Landsat 8 (L8) Data Users Handbook, Version
1.0. LSDS-1574. Department of the Interior, U.S. Geological Survey.
Weng Q., Lu D., Schubring J., 2004. Estimation of land surface temperature – vegetation
abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4):
467–483.
Wilson J.S., Clay M., Martin E., Stuckey D., Vedder-Risch K., 2003. Evaluating environmental
influences of zoning in urban ecosystems with remote sensing. Remote Sensing of Environment,
86 (3): 303-321.
Wukelic G.E., Gibbons D.E., Martucci L.M., Foote H.P., 1989. Radiometric calibration of
Landsat Thematic Mapper Thermal Band. Remote Sensing of Environment, 28: 339–347.
Xiao R., Ouyang Z., Zheng H., Li W., Schienke E.W., Wang X., 2007. Spatial pattern of
impervious surfaces and their impacts on land surface temperature in Beijing, China, Journal of
Environmental Sciences, 19, 250-256.
Yue W., Xu J., Tan W., Xu L., 2007. The relationship between land surface temperature and
NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data'. International Journal
of Remote Sensing, 28 (15): 3205-3226.
Zaharaddeen I., Ibrahim I.B., Zachariah A., 2016. Estimation of land surface temperature of
Kaduna metropolis, Nigeria using Landsat images. Science World Journal, 11 (3): 36 – 42. ISSN
1597-6343.
Zareie S., Khosravi H., Nasiri A., 2016. Derivation of Land Surface Temperature from Landsat
Thematic Mapper (TM) sensor data and analysing relation between Land Use changes and
Surface Temperature. Solid Earth Discuss. doi:10.5194/se-2016-22, 201.
Zhang J., Wang Y., Li Y., 2006. A C++ program for retrieving land surface temperature from the
data of Landsat TM/ETM+ band 6, Computers & Geosciences, 32: 1796-1805.
Zhang Y., Odeh I.O.A., Han C., 2009. Bi-temporal characterization of land surface temperature
in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis.
International Journal of Applied Earth Observation and Geoinformation 11: 256–264.
doi:10.1016/j.jag.2009.03.001.

You might also like