BESAVILLA
REVIEW CENTER
LECTURE 5
Instructor:
ENGR. RUPERTO T. FAELNAR, JR.
BESAVILLA REVIEW CENTER
BESAVILLA
REVIEW CENTER
Review Reference
BESAVILLA REVIEW CENTER
BESAVILLA
REVIEW CENTER
Topics
1. Simple Curve
2. Symmetrical Parabolic Curve
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 1
The longitude of San Francisco (USA) is 73° 57’
30’’ W and that of Cebu (Philippines) is
122°36’15’’ E. Determine the time in Cebu
when it is 2:30 AM in San Francisco.
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 1
The longitude of San Francisco (USA) is 73° 57’ 30’’ W and that of
Cebu (Philippines) is 122°36’15’’ East. Determine the time in Cebu
when it is 2:30 AM in San Francisco.
0° 122°36’15’’ E
73° 57’ 30’’ W
Greenwich
San Francisco
Cebu
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 1
The longitude of San Francisco (USA) is 73° 57’ 30’’ W and that of
Cebu (Philippines) is 122°36’15’’ East. Determine the time in Cebu
when it is 2:30 AM in San Francisco.
0°
Solution:
Diff. in longitude = 122°36'15'' +
73°57'30''
Diff in longitude = 196°33'45''
San Francisco
Note: 15° = 1 hr
Time measure = 13h 06m 15s Cebu
Time in Cebu = 2h 30m + 13h 06m 15s 73° 57’ 30’’ 122°36’15’’ E
= 15h 36m 15s
Time in Cebu = 3 : 36 :15 PM
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 2
Find the correction in latitude of line AB and
the correction of departure of line BC.
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 2
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 2
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 2
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 2
BESAVILLA REVIEW CENTER
REVIEW PROBLEMS
PROBLEM 2
Find the
correction in
latitude of line
AB and the
correction of
departure of
line BC.
BESAVILLA REVIEW CENTER
SIMPLE CURVE
BESAVILLA REVIEW CENTER
SIMPLE CURVE
BESAVILLA REVIEW CENTER
SIMPLE CURVE???
BESAVILLA REVIEW CENTER
SIMPLE CURVE
BESAVILLA REVIEW CENTER
SIMPLE CURVE
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PC – point of curvature P.T.
Lc
PT – point of tangency
Lc – length of curve
P.C. R
I – central angle/angle
R I
of intersection
R – radius of the curve
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
I T
Tangent Distance, T P.T.
Lc
T
tan(I/2) = T/R
T = R tan (I/2)
P.C. R
R I/2
I
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
T
External Distance, E P.T.
E
T
E = R sec(I/2) - R
E = R [sec (I/2) – 1]
P.C. R
R I/2
I
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
T
Middle Ordinate, M P.T.
T
M
M = R [1 – cos(I/2)]
P.C. R
R I/2
I
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
T
Length of Chord, C P.T.
T
P.C. R
R I
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
T
Length of Chord, C P.T.
T
sin(I/2) = (C/2) / R C/2
C = 2R sin(I/2) C/2
P.C. R
R I/2
I
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
Length of Curve, Lc P.T.
Lc
Lc 20
I D
20m
20 I
Lc (M etric) P.C. R
D
100 I
Lc (English) R D I
D
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
Degree of Curve, D
20m
D 360
20 2R
1145.916
D (M etric) R
R
5729.58
D (English) R
D
R
Note:
D → 20 m (Metric)
D → 100 ft (English)
BESAVILLA REVIEW CENTER
SIMPLE CURVE
SIMPLE CURVE
T
Deflection angle, Ɵ P.T.
2 360 d1
Ɵ
d1 2R x/2
90d1
x/2
R R
P.C.
90
(deflectio n angle per R
R Ɵ
Ɵ
unit length of curve)
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 3
A simple curve having a radius of 400 ft. has an angle
of intersection of 44°. Stationing of P.C. is 11 + 10.57,
P.I. = 12 + 72.18 and P.T. = 14 + 17.75
1. Determine the length of long chord from the P.C. to
station 12 + 00
2. Determine the perpendicular offset distance of STA
12 + 00 from the tangent passing thru the P.C.
3. Determine the perpendicular offset distance from
the tangent passing thru the P.C. from sta. 14 +
17.75.
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 3
A simple curve having a radius of 400 ft. has an angle of
intersection of 44°. Stationing of P.C. is 11 + 10.57, P.I. = 12 +
72.18 and P.T. = 14 + 17.75
P.T.
Lc= (14 + 17.75) – (11 + 10.57) 14 + 17.75
Lc= 307.18 ft
Lc= 307.18 ft
P.C.
11 + 10.57
I = 44°
R = 400 ft
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 3
A simple curve having a radius of 400 ft. has an angle of
intersection of 44°. Stationing of P.C. is 11 + 10.57, P.I. = 12 +
72.18 and P.T. = 14 + 17.75
Solution:
1. Determine the length of
P.T.
long chord from the P.C.
to station 12 + 00 12 + 00
14 + 17.75
d1 = (12 + 00) - (11 + 10.57) d1
d1 = 1200 - 1110.57 C
d1 = 89.43 ft. P.C.
11 + 10.57
I = 44°
R = 400 ft
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 3
A simple curve having a radius of 400 ft. has an angle of
intersection of 44°. Stationing of P.C. is 11 + 10.57, P.I. = 12 +
72.18 and P.T. = 14 + 17.75
Solution:
1. Determine the length of
long chord from the P.C. d1
6°24'18''
to station 12 + 00
d1 = (12 + 00) - (11 + 10.57)
d1 = 89.43 ft.
11 + 10.57
6°24'18''
6°24'18''
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 3
A simple curve having a radius of 400 ft. has an angle of
intersection of 44°. Stationing of P.C. is 11 + 10.57, P.I. = 12 +
72.18 and P.T. = 14 + 17.75
Solution:
1. Determine the length of
long chord from the P.C. d1
6°24'18''
to station 12 + 00
11 + 10.57
c = 2(400) Sin 6°24'18''
6°24'18''
6°24'18''
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 3
A simple curve having a radius of 400 ft. has an angle of
intersection of 44°. Stationing of P.C. is 11 + 10.57, P.I. = 12 +
72.18 and P.T. = 14 + 17.75
Solution:
2. Perpendicular offset
d1
distance, x of sta. 12 + 00 6°24'18''
from the tangent passing
thru the P.C.
11 + 10.57
x = C sin 6°24'18''
x = 89.244 sin 6°24'18''
x = 9.956 ft.
6°24'18''
6°24'18''
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 3
A simple curve having a radius of 400 ft. has an angle of
intersection of 44°. Stationing of P.C. is 11 + 10.57, P.I. = 12 +
72.18 and P.T. = 14 + 17.75
Solution: y
3. Perpendicular offset
P.T.
distance from the tangent
passing thru the P.C. from sta.
14 + 17.75
14 + 17.75.
x/2
x/2 = 400 sin 22°
x = 299.685 22°
x/2
P.C.
y = x Sin 22° 11 + 10.57
y = 299.685 Sin 20°
22°
y = 112.264 ft. 22°
R = 400 ft
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 4
Given data for a simple P.T.
curve: 11 + 50
14 + 17.75
I = 44°
R = 400 ft. x
P.C. = 11 + 10.57 P.C.
P.I. = 12 + 72.18
11 + 10.57
P.T. = 14 + 17.75
I = 44°
R = 400 ft
Compute the short
chord, x from P. C. to
station 11 + 50
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 4
Compute the short chord, x from P. C. to
station 11 + 50
Solution:
d1 = (11 + 50) - (11 + 10.57)
d1 = 39.43 ft. d1
11 + 10.57
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 4
Compute the short chord, x from P. C. to
station 11 + 50
Solution:
d1
11 + 10.57
BESAVILLA REVIEW CENTER
SIMPLE CURVE
PROBLEM 5
Given data for a simple curve: P.T.
R = 400 ft. Ɵ
I = 44° 14 + 17.75
PC = 11 + 10.57
P.I. = 12 + 72.18 50 ft
P.T. = 14 + 17.75
P.C.
Compute the deflection angle
11 + 10.57
for 50 ft. intervals of the curve.
I = 44°
R = 400 ft
BESAVILLA REVIEW CENTER
VERTICAL CURVES
BESAVILLA REVIEW CENTER
VERTICAL CURVES
BESAVILLA REVIEW CENTER
VERTICAL CURVES
BESAVILLA REVIEW CENTER
VERTICAL CURVES
BESAVILLA REVIEW CENTER
SYMMETRICAL PARABOLIC CURVE
BESAVILLA REVIEW CENTER
SYMMETRICAL PARABOLIC CURVE
H
y
H
L/2 L/2
y H
x 2
L
2
2
BESAVILLA REVIEW CENTER
SYMMETRICAL PARABOLIC CURVE
PROBLEM 6
Given:
PVI = 26 + 00 g1 = + 6.38%
Elev. PVI = 655.06 g2 = - 3.54%
L = 4 stations
Determine the vertical distance from PVI to the
curve.
BESAVILLA REVIEW CENTER
SYMMETRICAL PARABOLIC CURVE
PROBLEM 6
Given:
PVI = 26 + 00 g1 = + 6.38%
Elev. PVI = 655.06 g2 = - 3.54%
L = 4 stations (400 ft)
Determine the vertical distance from
PVI to the curve.
BESAVILLA REVIEW CENTER
SYMMETRICAL PARABOLIC CURVE
PROBLEM 7
Given:
Station of PVI = 26 + 00 g1 = + 6.38%
Elev. of PVI = 655.06 m. g2 = - 3.54%
L = 4 stations (400 ft)
Determine the curve elevation of station 25 + 50.
BESAVILLA REVIEW CENTER
SYMMETRICAL PARABOLIC CURVE
PROBLEM 7
Given:
g1 = + 6.38%
g2 = - 3.54%
Station of PVI = 26 + 00
Elev. of PVI = 655.06 m. H
L = 4 stations (400 ft)
Determine the curve
elevation of STA 25 + 50
BESAVILLA REVIEW CENTER
SYMMETRICAL PARABOLIC CURVE
Solution:
y H
x 2
L
2
2
y 4.96
2
150 200 2
y 2.79 ft
Elev. of B = 655.06 - 50(0.0638)
Elev. of B = 651.87 ft. Elev. A = 651.87 - 2.79
Elev. A = 649.08 ft.
BESAVILLA REVIEW CENTER