Exam P Formula
Exam P Formula
	
      Discrete	Distributions	
	
                      	                                     PMF	                          Mean	             Variance	                           MGF	                                        PGF	                   Special	Properties	
  Discrete	Distributions	                                      1                        𝑎𝑎 + 𝑏𝑏         (𝑏𝑏 − 𝑎𝑎 + 1)c − 1           𝑒𝑒 kj − 𝑒𝑒 (ml3)j
         Discrete	Uniform	
                  	                                      PMF	         	              Mean	 	              Variance	         	            MGF	               	                              –	
                                                                                                                                                                                         PGF	                               –	
                                                                                                                                                                                                                 Special	Properties	
                                                        𝑏𝑏 − 𝑎𝑎 + 1                        2                     12             (1  −   𝑒𝑒 j )(𝑏𝑏 − 𝑎𝑎 + 1)
                                                           1                         𝑎𝑎 + 𝑏𝑏         (𝑏𝑏 − 𝑎𝑎 + 1)c − 1          𝑒𝑒 kj − 𝑒𝑒 (ml3)j
      Discrete	Uniform	                             𝑛𝑛 H          	                          	                            	                               	                                –	                               –	
              Binomial	                           @ 𝑏𝑏A−𝑝𝑝 𝑎𝑎(1+−1 𝑝𝑝) 1ZH 	            2𝑛𝑛𝑛𝑛	              𝑛𝑛𝑛𝑛(1
                                                                                                               12 − 𝑝𝑝)		               )(𝑏𝑏j−+𝑎𝑎𝑞𝑞)+1 	1)
                                                                                                                              (1 − 𝑒𝑒 j(𝑝𝑝𝑒𝑒                                            (𝑝𝑝𝑝𝑝 + 𝑞𝑞)1 	                           –	
                                                    𝑥𝑥
                                                𝑛𝑛                                             𝑚𝑚
           Binomial	                         @ 𝑚𝑚A A𝑝𝑝H⋅ (1
                                             w@
                                                           𝑁𝑁−−𝑝𝑝)
                                                                 𝑚𝑚1ZH 	 𝑁𝑁            𝑛𝑛𝑛𝑛	            𝑛𝑛𝑛𝑛(1 −–	𝑝𝑝)		                (𝑝𝑝𝑒𝑒 j + –	
                                                                                                                                                 𝑞𝑞)1 	                              (𝑝𝑝𝑝𝑝 + 𝑞𝑞)
                                                                                                                                                                                             –	 	
                                                                                                                                                                                                 1
                                                                                                                                                                                                                            –	 –	
         Hypergeometric	                        𝑥𝑥𝑥𝑥 @ 𝑛𝑛 − 𝑥𝑥 Az{@ 𝑛𝑛 A	               𝑛𝑛 ⋅ 	
                                                                                                𝑁𝑁
                                        𝑚𝑚     𝑁𝑁 − 𝑚𝑚       𝑁𝑁                           𝑚𝑚
                                                                                                                                                                                           –	𝑝𝑝𝑝𝑝
                                                                                                                                                       j
             Geometric	
      Hypergeometric	                 w@ A ⋅ @(1 − 𝑝𝑝) HZ3
                                                        Az{𝑝𝑝	
                                                           @ A	                      𝑛𝑛 ⋅ 1		                 –	                              –	𝑝𝑝𝑒𝑒                                                       	                –	
                                        𝑥𝑥      𝑛𝑛 − 𝑥𝑥       𝑛𝑛                           𝑁𝑁𝑝𝑝               1 − 𝑝𝑝                                              	
                    	                                                                                                                   1 − (1 − 𝑝𝑝)𝑒𝑒 j                              1 − (1 − 𝑝𝑝)𝑡𝑡
                                                                                        1                            	                            j                                       𝑝𝑝𝑝𝑝 𝑝𝑝                 Memoryless	property	
       𝑋𝑋:Geometric	
           trials; 𝑌𝑌: failures	                      HZ3                               1	                      𝑝𝑝c                         𝑝𝑝𝑒𝑒 𝑝𝑝
                                             (1 −
                                                (1𝑝𝑝)                                                                                                                                                   	 	
             𝑋𝑋 =	 𝑌𝑌 + 1	                         − 𝑝𝑝) á𝑝𝑝	𝑝𝑝	                        𝑝𝑝  − 1	            1 − 𝑝𝑝                   1−   (1(1  −−   𝑝𝑝)𝑒𝑒
                                                                                                                                                              	
                                                                                                                                                             j 	                   1−   (1(1  −−  𝑝𝑝)𝑡𝑡
                                                                                        𝑝𝑝                         	                    1−                𝑝𝑝)𝑒𝑒 j                     1−             𝑝𝑝)𝑡𝑡       Memoryless	property	
    𝑋𝑋: trials; 𝑌𝑌: failures	                                                        1 𝑟𝑟                    𝑝𝑝c                              𝑝𝑝𝑝𝑝𝑒𝑒 j              ä                      𝑝𝑝𝑝𝑝𝑝𝑝            ä
                                             𝑥𝑥 − 1 𝑝𝑝)     á                                                                                                 	                                         	 â 	
          𝑋𝑋 = 𝑌𝑌 + 1	
       Negative	Binomial	                  à (1 −    â 𝑝𝑝ä (1𝑝𝑝	− 𝑝𝑝) HZä 	             − 1		
                                                                                     𝑝𝑝 𝑝𝑝                                           1ã1−−(1(1−−𝑝𝑝)𝑒𝑒        j å 	                 1à1−−(1(1−−𝑝𝑝)𝑡𝑡
                    	                        𝑟𝑟 − 1                                                              1 − 𝑝𝑝                                  𝑝𝑝)𝑒𝑒 äj                                   𝑝𝑝)𝑡𝑡          Neg	Bin(𝑟𝑟 = 1, 𝑝𝑝)	~	
                                         𝑥𝑥 − 1 ä                                       𝑟𝑟                  𝑟𝑟 à c â	                      𝑝𝑝𝑒𝑒 j                                        𝑝𝑝𝑝𝑝            ä
       𝑋𝑋: trials; 𝑌𝑌: failures	
    Negative	Binomial	                à 𝑦𝑦 + 𝑟𝑟â −  𝑝𝑝 1(1 −ä 𝑝𝑝) HZä 	 á               𝑟𝑟 	                       𝑝𝑝             ã               𝑝𝑝          å 	ä              à             𝑝𝑝      â 	ä             Geometric(𝑝𝑝)	
             𝑋𝑋 =	 𝑌𝑌 + 𝑟𝑟	             à𝑟𝑟 − 1           â 𝑝𝑝 (1 − 𝑝𝑝) 	               𝑝𝑝 − 𝑟𝑟	             1 − 𝑝𝑝                 1à− (1 − 𝑝𝑝)𝑒𝑒 j j â 	                        1à− (1 − 𝑝𝑝)𝑡𝑡 â 	
                                               𝑟𝑟 − 1                                   𝑝𝑝                                             1 − (1 − 𝑝𝑝)𝑒𝑒                                1 − (1 − 𝑝𝑝)𝑡𝑡              Neg	Bin(𝑟𝑟 = 1, 𝑝𝑝)	~	
                                                                                                         𝑟𝑟 à c â	
    𝑋𝑋: trials; 𝑌𝑌: failures	          𝑦𝑦 + 𝑟𝑟 − 1 ä                                 𝑟𝑟                         𝑝𝑝                           𝑝𝑝                 ä                         𝑝𝑝             ä          Geometric(𝑝𝑝)	
          𝑋𝑋 = 𝑌𝑌 + 𝑟𝑟	              à                â 𝑝𝑝 (1 − 𝑝𝑝) á 	                 − 𝑟𝑟	                                     à                           â 	               à                     â 	
                                           𝑟𝑟 − 1 𝑒𝑒 Zè ⋅ 𝜆𝜆H                        𝑝𝑝                                             1 − (1 − 𝑝𝑝)𝑒𝑒          j                     1 − (1 − 𝑝𝑝)𝑡𝑡                   Sum	of	independent	
                                                                                                                                                     í
               Poisson	                                          	                           𝜆𝜆	                    𝜆𝜆	                     𝑒𝑒 èrë Z3s	                                   𝑒𝑒 è(jZ3) 	                   Poissons	~			
                                                          𝑥𝑥!                                                                                                                                                      Poisson(𝜆𝜆 = ∑1023 𝜆𝜆0 )	
                                                                                                                                                                                                                 Sum	of	independent	
                                                    Zè       H
                                                  𝑒𝑒 ⋅ 𝜆𝜆                                                                                          í Z3s
            Poisson	                                           	                          𝜆𝜆	                 𝜆𝜆	                         𝑒𝑒 èrë       	                               𝑒𝑒 è(jZ3) 	                    Poissons	~			
                                                      𝑥𝑥!                                                                                                                                                        Poisson(𝜆𝜆 = ∑1023 𝜆𝜆0 )	
         Continuous	
          Continuous	
            Continuous	                               11 1                                         𝑥𝑥 𝑥𝑥−−
                                                                                                         𝑥𝑥𝑎𝑎 −
                                                                                                              𝑎𝑎 𝑎𝑎                                  𝑎𝑎 𝑎𝑎++
                                                                                                                                                           𝑎𝑎𝑏𝑏 +
                                                                                                                                                                𝑏𝑏 𝑏𝑏                   (𝑏𝑏(𝑏𝑏
                                                                                                                                                                                            −(𝑏𝑏
                                                                                                                                                                                               −
                                                                                                                                                                                               𝑎𝑎)−c c c
                                                                                                                                                                                                  𝑎𝑎)𝑎𝑎)                        𝑒𝑒 mj
                                                                                                                                                                                                                                   𝑒𝑒 mj−
                                                                                                                                                                                                                                       𝑒𝑒 mj
                                                                                                                                                                                                                                          −𝑒𝑒 kj
                                                                                                                                                                                                                                              𝑒𝑒 kj𝑒𝑒 kj
                                                                                                                                                                                                                                              −                                      (𝑋𝑋|𝑋𝑋
                                                                                                                                                                                                                                                                                        (𝑋𝑋|𝑋𝑋
                                                                                                                                                                                                                                                                                           (𝑋𝑋|𝑋𝑋
                                                                                                                                                                                                                                                                                              >>𝑐𝑐)	~	Uniform(𝑐𝑐,
                                                                                                                                                                                                                                                                                                   >
                                                                                                                                                                                                                                                                                                   𝑐𝑐)	~	Uniform(𝑐𝑐,
                                                                                                                                                                                                                                                                                                      𝑐𝑐)	~	Uniform(𝑐𝑐,
                                                                                                                                                                                                                                                                                                                   𝑏𝑏)	𝑏𝑏)	𝑏𝑏)	
                                                            	 	 	                                            	 	 	                                             	 	 	                                	 	 	                                        	 	 	
          Uniform	
           Uniform	
              Uniform	                            𝑏𝑏 𝑏𝑏
                                                     −− 𝑏𝑏𝑎𝑎 −
                                                             𝑎𝑎 𝑎𝑎                                 𝑏𝑏 𝑏𝑏−−
                                                                                                         𝑏𝑏𝑎𝑎 −
                                                                                                              𝑎𝑎 𝑎𝑎                                      22 2                               121212                               𝑡𝑡(𝑏𝑏
                                                                                                                                                                                                                                    𝑡𝑡(𝑏𝑏
                                                                                                                                                                                                                                        −
                                                                                                                                                                                                                                        𝑡𝑡(𝑏𝑏
                                                                                                                                                                                                                                           −𝑎𝑎)−
                                                                                                                                                                                                                                               𝑎𝑎)𝑎𝑎)                         (𝑋𝑋(𝑋𝑋−(𝑋𝑋
                                                                                                                                                                                                                                                                                      −𝑐𝑐|𝑋𝑋
                                                                                                                                                                                                                                                                                          −
                                                                                                                                                                                                                                                                                          𝑐𝑐|𝑋𝑋
                                                                                                                                                                                                                                                                                             𝑐𝑐|𝑋𝑋
                                                                                                                                                                                                                                                                                              >>𝑐𝑐)	~	Uniform(0,
                                                                                                                                                                                                                                                                                                   >
                                                                                                                                                                                                                                                                                                   𝑐𝑐)	~	Uniform(0,
                                                                                                                                                                                                                                                                                                      𝑐𝑐)	~	Uniform(0,
                                                                                                                                                                                                                                                                                                                   𝑏𝑏 𝑏𝑏
                                                                                                                                                                                                                                                                                                                      −−   𝑏𝑏𝑐𝑐)	−
                                                                                                                                                                                                                                                                                                                                𝑐𝑐)	𝑐𝑐)	
                                                  1 1Z1HZHZH                                                    H H H                                                                                                               11 1                                               Memoryless	property:	
                                                                                                                                                                                                                                                                                        Memoryless	property:	
                                                                                                                                                                                                                                                                                           Memoryless	property:	
     Exponential	
      Exponential	
        Exponential	                                 𝑒𝑒 𝑒𝑒π 	𝑒𝑒π 	 π 	                           11
                                                                                                  −−1𝑒𝑒 Z−
                                                                                                         𝑒𝑒πZ	𝑒𝑒πZ	 π 	                                    𝜃𝜃	𝜃𝜃	 𝜃𝜃	                           𝜃𝜃 c𝜃𝜃	 c𝜃𝜃	 c	                            	 	 	
                                                  𝜃𝜃 𝜃𝜃 𝜃𝜃                                                                                                                                                                        11
                                                                                                                                                                                                                                   −−1𝜃𝜃𝜃𝜃−
                                                                                                                                                                                                                                          𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃                                      (𝑋𝑋(𝑋𝑋−(𝑋𝑋
                                                                                                                                                                                                                                                                                                −𝑎𝑎|𝑋𝑋
                                                                                                                                                                                                                                                                                                   −𝑎𝑎|𝑋𝑋
                                                                                                                                                                                                                                                                                                       𝑎𝑎|𝑋𝑋
                                                                                                                                                                                                                                                                                                        >>𝑎𝑎)	~	𝑋𝑋	
                                                                                                                                                                                                                                                                                                             >
                                                                                                                                                                                                                                                                                                             𝑎𝑎)	~	𝑋𝑋	
                                                                                                                                                                                                                                                                                                                𝑎𝑎)	~	𝑋𝑋	
                                                                                               ∫Z3
                                                                                                 ∫Z3
                                                                                                   ∫Z3
                                           𝑥𝑥 ∫Z3
                                              𝑥𝑥 ∫Z3
                                                  𝑥𝑥 ∫Z3 ZHZHZH                        11
                                                                                        −−1/
                                                                                           −/Pr(𝑌𝑌
                                                                                             /Pr(𝑌𝑌
                                                                                                 Pr(𝑌𝑌
                                                                                                   ==𝑘𝑘)=
                                                                                                        𝑘𝑘)
                                                                                                         ,	 𝑘𝑘)
                                                                                                             ,	 ,	                                                                                                                 1 1 1∫ ∫ ∫ Sum	of	𝛼𝛼	independent	exponentials(𝜃𝜃)	~	
                                                                                                                                                                                                                                                  Sum	of	𝛼𝛼	independent	exponentials(𝜃𝜃)	~	
                                                                                                                                                                                                                                                    Sum	of	𝛼𝛼	independent	exponentials(𝜃𝜃)	~	
                                                                                                                                                                                                    c c c
                 Gamma	
                  Gamma	
                    Gamma	                                ⋅ 𝑒𝑒⋅ 𝑒𝑒π⋅ 	𝑒𝑒π 	 π 	                                                                          𝛼𝛼𝛼𝛼	
                                                                                                                                                            𝛼𝛼𝛼𝛼	
                                                                                                                                                               𝛼𝛼𝛼𝛼	                          𝛼𝛼𝜃𝜃𝛼𝛼𝜃𝜃
                                                                                                                                                                                                     𝛼𝛼𝜃𝜃
                                                                                                                                                                                                     	 	 	                     à à à â â	 â	 	
                                         Γ(𝛼𝛼)
                                           Γ(𝛼𝛼)⋅ 𝜃𝜃⋅ ∫𝜃𝜃⋅∫𝜃𝜃 ∫
                                              Γ(𝛼𝛼)                                            82\
                                                                                                 82\
                                                                                                   82\
                                                                                                                                     H H H                                                                                      11−−1𝜃𝜃𝜃𝜃−
                                                                                                                                                                                                                                         𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃              Gamma(𝛼𝛼,
                                                                                                                                                                                                                                                                Gamma(𝛼𝛼,𝜃𝜃)	𝜃𝜃)	𝜃𝜃)	
                                                                                                                                                                                                                                                                  Gamma(𝛼𝛼,
                                                                                      	𝑌𝑌	~	Poisson@𝜆𝜆
                                                                                         	𝑌𝑌	~	Poisson@𝜆𝜆
                                                                                            	𝑌𝑌	~	Poisson@𝜆𝜆
                                                                                                        ==A	 =A	 A	
                                                                                                                                     π π π
                                                                                                                                                                                                                                                                                             Symmetry:	
                                                                                                                                                                                                                                                                                                Symmetry:	
                                                                                                                                                                                                                                                                                                   Symmetry:	
                                                                                                      𝑋𝑋 𝑋𝑋
                                                                                                         −− 𝑋𝑋𝜇𝜇 −
                                                                                                                 𝜇𝜇 𝜇𝜇                                                                                                                                                                Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                       Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                          Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                            ≤≤𝑧𝑧)≤
                                                                                                                                                                                                                                                                                                 𝑧𝑧)
                                                                                                                                                                                                                                                                                                   =𝑧𝑧)
                                                                                                                                                                                                                                                                                                     =Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                                        =
                                                                                                                                                                                                                                                                                                        Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                                          Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                                            ≥≥−𝑧𝑧)	
                                                                                                                                                                                                                                                                                                                ≥
                                                                                                                                                                                                                                                                                                                −𝑧𝑧)	
                                                                                                                                                                                                                                                                                                                    −𝑧𝑧)	
                                            11 1          (HZæ) ñ ñ ñ
                                                               (HZæ)
                                                             (HZæ)                             𝑍𝑍 𝑍𝑍=𝑍𝑍
                                                                                                     == 	 	 	                                                                                                                            ø ñø
                                                                                                                                                                                                                                            j ññ jøññ j ñ
                 Normal	
                  Normal	
                    Normal	
                                                         Z Z Zñ ñ ñ
                                                ⋅ 𝑒𝑒⋅ 𝑒𝑒⋅ 𝑒𝑒                                             𝜎𝜎 𝜎𝜎 𝜎𝜎                                          𝜇𝜇	𝜇𝜇	 𝜇𝜇	                           𝜎𝜎 c𝜎𝜎	 c𝜎𝜎	 c 	                                                                      Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                       Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                          Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                            ≤≤−𝑧𝑧)
                                                                                                                                                                                                                                                                                                 ≤
                                                                                                                                                                                                                                                                                                 −𝑧𝑧)
                                                                                                                                                                                                                                                                                                    −𝑧𝑧)
                                                                                                                                                                                                                                                                                                     ==Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                                          =
                                                                                                                                                                                                                                                                                                          Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                                            Pr(𝑍𝑍
                                                                                                                                                                                                                                                                                                              ≥≥𝑧𝑧)	
                                                                                                                                                                                                                                                                                                                  ≥𝑧𝑧)	𝑧𝑧)	
                                         𝜎𝜎√2𝜋𝜋
                                           𝜎𝜎√2𝜋𝜋
                                             𝜎𝜎√2𝜋𝜋
                                                            cøcøcø
                                                                                                       	 	 	                                                                                                                     𝑒𝑒 æjl
                                                                                                                                                                                                                                    𝑒𝑒 æjl
                                                                                                                                                                                                                                        𝑒𝑒 æjl
                                                                                                                                                                                                                                            c c	 c	 	                                                    	   	   	
                                                                                        Pr(𝑍𝑍
                                                                                         Pr(𝑍𝑍
                                                                                            Pr(𝑍𝑍
                                                                                              ≤≤𝑧𝑧)≤
                                                                                                   𝑧𝑧)=𝑧𝑧)
                                                                                                        =Φ(𝑧𝑧)	
                                                                                                           =
                                                                                                           Φ(𝑧𝑧)	
                                                                                                             Φ(𝑧𝑧)	                                                                                                                                                            Sum	of	independent	normals	~	
                                                                                                                                                                                                                                                                                 Sum	of	independent	normals	~	
                                                                                                                                                                                                                                                                                   Sum	of	independent	normals	~	
                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                                                                                                                            ∑1023
                                                                                                                                                                                                                                                                                               ∑𝜇𝜇1023             c c∑1∑1023
                                                                                                                                                                                                                                                                                                                           ∑𝜎𝜎1023
                                                                                                                                                                                                                                                                                                                                 c c )	c )	
                                                                                                                                                                                                                                                                              Normal(𝜇𝜇
                                                                                                                                                                                                                                                                               Normal(𝜇𝜇==∑=
                                                                                                                                                                                                                                                                                 Normal(𝜇𝜇  023              , c𝜎𝜎
                                                                                                                                                                                                                                                                                                    0𝜇𝜇, 0𝜎𝜎𝜇𝜇  0 ,=𝜎𝜎= =
                                                                                                                                                                                                                                                                                                                        023     0𝜎𝜎)	
                                                                                                                                                                                                                                                                                                                                   0 𝜎𝜎0
                                                                                                        	 	 	                                 	 	 	
  MULTIVARIATE
   MULTIVARIATE
 MULTIVARIATE  PROBABILITY
                 PROBABILITY
              PROBABILITY  DISTRIBUTIONS
                              DISTRIBUTIONS
                          DISTRIBUTIONS                                                                 	 	 	
                                                                                                       MULTIVARIATE PROBABILITY DISTRIBUTIONS 	 	 	
                                                                                                        	 	 	                                 	 	 	
    𝑉𝑉𝑉𝑉𝑉𝑉[𝑎𝑎𝑎𝑎
       𝑉𝑉𝑉𝑉𝑉𝑉[𝑎𝑎𝑎𝑎
 𝑉𝑉𝑉𝑉𝑉𝑉[𝑎𝑎𝑎𝑎  ++    +    ==𝑎𝑎c=
                     𝑏𝑏𝑏𝑏]
                  𝑏𝑏𝑏𝑏] 𝑏𝑏𝑏𝑏]     c c
                               𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]
                                   𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]
                                         𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]
                                               ++  𝑏𝑏 c+  c c
                                                       𝑏𝑏𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌]
                                                           𝑏𝑏𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌]
                                                                𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌]
                                                                      ++ 2𝑎𝑎𝑎𝑎
                                                                           +
                                                                           2𝑎𝑎𝑎𝑎
                                                                               2𝑎𝑎𝑎𝑎                        == =                                           H£H£ H£
                                                                                                                                                  ⋅ 𝑝𝑝⋅ 𝑝𝑝⋅ 𝑝𝑝⋅ …      ⋅…        ⋅8𝑝𝑝H⋅8®𝑝𝑝H	 8® 	H® 	
                                                                                                                                                                            ⋅⋅ 𝑝𝑝…                                                                    For	i.i.d.	random	variables,	
                                                                                                                                                                                                                                                         For	i.i.d.	random	variables,	
                                                                                                                                                                                                                                                              For	i.i.d.	random	variables,	
                                                                                                                𝑥𝑥3𝑥𝑥! 3⋅𝑥𝑥!…3⋅ !…⋅⋅ 𝑥𝑥…⋅8𝑥𝑥!⋅8𝑥𝑥! 83! 3 3                                                                                                     (𝑥𝑥)                  1 1 1
                                        ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
                                           ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
                                    ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,   𝑌𝑌]	𝑌𝑌]	𝑌𝑌]	                                                                                                                                                                                       𝑆𝑆C𝑆𝑆(£)
                                                                                                                                                                                                                                                            C𝑆𝑆 C(𝑥𝑥)
                                                                                                                                                                                                                                                              (£) (£)
                                                                                                                                                                                                                                                                      (𝑥𝑥)
                                                                                                                                                                                                                                                                      ==[𝑆𝑆=[𝑆𝑆
                                                                                                                                                                                                                                                                            C (𝑥𝑥)]
                                                                                                                                                                                                                                                                               [𝑆𝑆(𝑥𝑥)]
                                                                                                                                                                                                                                                                               C   C (𝑥𝑥)]
                                                                                                                                                                                                                                                                                       	 	 	
                                                                                                            𝐸𝐸[𝑋𝑋
                                                                                                               𝐸𝐸[𝑋𝑋] 0=
                                                                                                                  0𝐸𝐸[𝑋𝑋 ] 0=]𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑝𝑝
                                                                                                                                        0 	𝑛𝑛𝑝𝑝
                                                                                                                                            0	 0	
                                                                                                                                                                                                                                                                           CC C 	 	 	
                                                                                                                                                                                                                                                              (𝑥𝑥)
                                                                                                                                                                                                                                                                 (𝑥𝑥)(𝑥𝑥)[𝐹𝐹
                                                                                                                                                                                                                                                                           [𝐹𝐹
                                                                                                                                                                                                                                                                             (𝑥𝑥)]
                                                                                                                                                                                                                                                                               [𝐹𝐹
                                                                                                                                                                                                                                                                                (𝑥𝑥)]1 1 1
                                                                                                                                                                                                                                                                                    (𝑥𝑥)]
     	       	       	
                                                                                                                                                                                                                                                     𝐹𝐹C𝐹𝐹(°)𝐹𝐹
                                                                                                                                                                                                                                                           C(°)C(°)  =  =  =
                                       𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
                                          𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
                                             𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
                                                  𝑌𝑌]𝑌𝑌]𝑌𝑌]                                                    𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋 0 ] 0=
                                                                                                                   𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋
                                                                                                            𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋            ] 0=]𝑛𝑛𝑝𝑝  =
                                                                                                                                            𝑛𝑛𝑝𝑝0 (1 0 (1
                                                                                                                                                    𝑛𝑛𝑝𝑝  −0 (1−𝑝𝑝0− 𝑝𝑝)	0 )	
                                                                                                                                                                           𝑝𝑝0 )	
  𝜌𝜌C,n
    𝜌𝜌C,n
        𝜌𝜌=C,n
            =𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
               =𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
                   𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋,
                          𝑌𝑌]𝑌𝑌]=𝑌𝑌]
                                  ==                        	 	 	                                           𝐶𝐶𝐶𝐶𝐶𝐶ó𝑋𝑋
                                                                                                               𝐶𝐶𝐶𝐶𝐶𝐶ó𝑋𝑋
                                                                                                                   𝐶𝐶𝐶𝐶𝐶𝐶ó𝑋𝑋        ò0 _, =
                                                                                                                                          ò _=   ò−𝑛𝑛𝑝𝑝
                                   e𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]e𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌]
                                     e𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]e𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌]
                                       e𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋]e𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌]                                                            0 , 𝑋𝑋0 ,_𝑋𝑋     𝑋𝑋          =−𝑛𝑛𝑝𝑝−𝑛𝑛𝑝𝑝
                                                                                                                                                              0 𝑝𝑝0_𝑝𝑝
                                                                                                                                                                     , _0 𝑝𝑝
                                                                                                                                                                           , _ , 𝑖𝑖 ≠    𝑖𝑖 ≠𝑖𝑖𝑗𝑗	≠𝑗𝑗	 𝑗𝑗	
 	 	 	
     Insurance
 Insurance and
   Insurance   and
               Risk
             and   Risk
                 Risk   Management
                    Management
                      Management                                                                                        INSURANCE AND RISK MANAGEMENT
 	       	       	
                                 Category	
                                  Category	
                                    Category	                                         Definition	of	Payment,	𝒀𝒀	
                                                                                       Definition	of	Payment,	𝒀𝒀	
                                                                                         Definition	of	Payment,	𝒀𝒀	                                                                                                                                                          𝑬𝑬[𝒀𝒀]	
                                                                                                                                                                                                                                                                               𝑬𝑬[𝒀𝒀]	
                                                                                                                                                                                                                                                                                  𝑬𝑬[𝒀𝒀]	
                                                                                                                                                                                                                     YY Y
                                                                                                   								0,
                                                                                                      								0,
                                                                                                          								0, 𝑋𝑋 𝑋𝑋≤𝑋𝑋
                                                                                                                            ≤𝑑𝑑 ≤
                                                                                                                                𝑑𝑑 𝑑𝑑                                                                             ∫S∫S(𝑥𝑥
                                                                                                                                                                                                                       ∫(𝑥𝑥
                                                                                                                                                                                                                        S
                                                                                                                                                                                                                          −(𝑥𝑥
                                                                                                                                                                                                                            −𝑑𝑑)− 𝑑𝑑) 𝑓𝑓⋅C𝑓𝑓(𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                    ⋅ 𝑑𝑑)   C⋅ 𝑓𝑓(𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                                  C (𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                                        		 		 		                                             For	exponential:	
                                                                                                                                                                                                                                                                                                              For	exponential:	
                                                                                                                                                                                                                                                                                                                  For	exponential:	
                                 Deductible	
                                  Deductible	
                                    Deductible	                                                =ƒ =
                                                                                         𝑌𝑌 𝑌𝑌=𝑌𝑌   ƒ ƒ                         	 	 	                                                                                     YY Y
                                                                                                  𝑋𝑋 𝑋𝑋−𝑋𝑋−𝑑𝑑,−
                                                                                                              𝑑𝑑, 𝑑𝑑, 𝑋𝑋 𝑋𝑋>𝑋𝑋
                                                                                                                            >𝑑𝑑	>
                                                                                                                                𝑑𝑑	 𝑑𝑑	                                                                                 ∫S∫S𝑆𝑆∫CS𝑆𝑆(𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                   C𝑆𝑆(𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                       C (𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                                 		 		 		                                                     𝜃𝜃 𝜃𝜃
                                                                                                                                                                                                                                                                                                                 ⋅ Pr(𝑋𝑋
                                                                                                                                                                                                                                                                                                                    ⋅𝜃𝜃Pr(𝑋𝑋
                                                                                                                                                                                                                                                                                                                        ⋅ Pr(𝑋𝑋
                                                                                                                                                                                                                                                                                                                           >>𝑑𝑑)	
                                                                                                                                                                                                                                                                                                                                >
                                                                                                                                                                                                                                                                                                                                𝑑𝑑)	𝑑𝑑)	
                                                                                                                                                                                                               « « «
                                                                                                       𝑋𝑋,𝑋𝑋,𝑋𝑋, 𝑋𝑋 𝑋𝑋<𝑋𝑋<𝑢𝑢 <
                                                                                                                             𝑢𝑢 𝑢𝑢                                                                           ∫\∫\𝑥𝑥∫𝑥𝑥\⋅ 𝑓𝑓⋅𝑥𝑥
                                                                                                                                                                                                                            C𝑓𝑓(𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                               C⋅ 𝑓𝑓(𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                     C (𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                            ++ 𝑢𝑢 +⋅ 𝑆𝑆⋅𝑢𝑢C𝑆𝑆(𝑢𝑢)		
                                                                                                                                                                                                                                                  𝑢𝑢         ⋅C𝑆𝑆(𝑢𝑢)		
                                                                                                                                                                                                                                                                  C (𝑢𝑢)		                                   For	exponential:	
                                                                                                                                                                                                                                                                                                              For	exponential:	
                                                                                                                                                                                                                                                                                                                  For	exponential:	
                             Policy	Limit	
                              Policy	Limit	
                                 Policy	Limit	                                                     =≈ =
                                                                                             𝑌𝑌 𝑌𝑌=𝑌𝑌  ≈ ≈                   	 	 	                                                                                              « « «
                                                                                                      	𝑢𝑢,	𝑢𝑢,	𝑢𝑢, 𝑋𝑋 𝑋𝑋≥𝑋𝑋
                                                                                                                         ≥𝑢𝑢	≥
                                                                                                                             𝑢𝑢	 𝑢𝑢	                                                                                         ∫\∫\𝑆𝑆∫    (𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                      C𝑆𝑆C (𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                          𝑆𝑆C (𝑥𝑥)	𝑑𝑑𝑑𝑑
                                                                                                                                                                                                                                                  		 		     		                                                𝜃𝜃 𝜃𝜃
                                                                                                                                                                                                                                                                                                                 ⋅ Pr(𝑋𝑋
                                                                                                                                                                                                                                                                                                                    ⋅𝜃𝜃Pr(𝑋𝑋
                                                                                                                                                                                                                                                                                                                        ⋅ Pr(𝑋𝑋
                                                                                                                                                                                                                                                                                                                           <<𝑢𝑢)	
                                                                                                                                                                                                                                                                                                                                <
                                                                                                                                                                                                                                                                                                                                𝑢𝑢)	𝑢𝑢)	
                                                                                                                                                                                                                                       \
                                                                                                                     1
                                     Copyright	
  ©	
  2014	
  Coaching	
  Actuaries.	
  	
  All	
  Rights	
  Reserved.
                                                                                                            2
www.coachingactuaries.com   Copyright	
  ©	
  2014	
  Coaching	
  Actuaries.	
  	
  All	
  Rights	
  Reserved.
                                                                                                           3
(A, B) indep. pair =⇒ (A, B c ), (Ac , B), (Ac , B c ) also indep. pairs                                                                                         Mode
                                                                                             S UMMARY S TATISTICS                                                A mode is an x value which maximizes the PMF/PDF.
                                                                           Expected Value                                                                        It is possible to have 0, 1, 2, . . . or infinite modes.
                    R ANDOM VARIABLES                                                                                  Z   ∞
                                                                                                                                                                 Discrete: any values with the largest probability
                                                                                    X
A random variable, X, is a function from the sample space S to R           E[X] =       x · p(x)            E[X] =             x · f (x) dx
                                                                                                                        −∞
Cumulative Distribution Function
                                                                                    x                                                                            Continuous: check end points of interval and where f 0 (x) = 0
                                                                           Law of the Unconscious Statistician (LOTUS)
F (x) = P (X ≤ x)                                                                                                                                                Percentile
                                                                                     X                            Z ∞
                                                                           E[g(X)] =    g(x) · p(x)     E[g(X)] =      g(x) · f (x) dx                           c is a (100p)th percentile of X if P (X ≤ c) ≥ p and P (X ≥ c) ≥ 1−p
                                                                                        x                                           −∞
                                                                                                                                                                 A 50th percentile is called a median
                                                                           Expected Value Linearity
                                                                                                                                                                 Discrete: look for smallest c with F (c) ≥ p
                                                                           E[aX + b] = a · E[X] + b             E[X + Y ] = E[X] + E[Y ]                         Continuous: solve for c in F (c) = p
                                                                           Survival Shortcut
                                                                                                                                            ∞
                                                                                                                                            X
                                                                           If X is nonnegative integer-valued, then E[X] =                         P (X > k)
                                                                                                                                            k=0
A valid CDF is nondecreasing, right-continuous and                                                                                    Z     ∞
                                                                           If X is nonnegative continuous, then E[X] =                          [1 − F (x)] dx
 lim F (x) = 0, lim F (x) = 1                                                                                                           0
x→−∞                x→∞
                                                                            Exam 1/P Formula Sheets
                                                                                     WWW.P ROBABILITY E XAM . COM
                                                                                                                                            2                at       (b+1)t
                                                                              1                        a+b                      (b − a + 1) − 1           e −e
DUniform({a, . . . , b})     Equally likely values a, . . . , b
                                                                            b−a+1                       2                              12              (b − a + 1)(1 − et )
                                                                      P (X = 1) = p                                                                                          t
Bernoulli(p)                 1 trial w/ success chance p                                                p                            p(1 − p)               1 − p + pe
                                                                      P (X = 0) = 1 − p
                                                                          
                             # of successes in n indep.                   n x         n−x                                                                                    t n
Binomial(n, p)                                                               p (1 − p)                 np                          np(1 − p)               (1 − p + pe )              np ∈ N =⇒ np = mode = median
                             Bernoulli(p) trials                          x
                             # w/ property chosen w/                        K N −K
                                                                                                                                                                                                            K
                                                                             x     n−x                   K                 K            K       N −n                                  Resembles Binomial(n,     N)
HyperGeom(N, K, n)           out replacement from N                               N
                                                                                                       n                 n           1−                           ugly
                                                                                                                                                N −1                                  with large N relative to n
                                                                                    
                             where K have property                                n
                                                                                                         N                 N            N
                                                −λx                −λx               1         1                λ
                 Exp(λ)                    λe                1−e                                                                  Only memoryless continuous distribution
                                                                                     λ         λ2              λ−t
                                          −λx         α−1
                                                                                                                  α
                                     λe     (λx)                                    α          α                λ
                 Gamma(α, λ)                                  ugly                                                                Sum of α independent Exp(λ) for integer α > 0
                                           Γ(α)                                     λ          λ2              λ−t
                                                                     Exam 1/P Formula Sheets
                                                                               WWW.P ROBABILITY E XAM . COM
   • Uniform, U (m)
                          1
        – PMF: f (x) =    m,   for x = 1, 2, . . . , m
                m+1           m2 − 1
        – µ=        and σ 2 =
                 2             12
   • Hypergeometric
                           N1     N2
                                      
                           x     n−x
        – PMF: f (x) =          N
                                  
                                n
        – x is the number of items from the sample of n items that are from group/type 1.
                 N1              N1 N2 N − n
        – µ = n( ) and σ 2 = n( )( )(            )
                  N               N N N −1
   • Binomial, b(n, p)
                        
                         n x
        – PMF: f (x) =      p (1 − p)n−x , for x = 0, 1, . . . , n
                         x
        – x is the number of successes in n trials.
        – µ = np and σ 2 = np(1 − p) = npq
        – MGF: M (t) = [(1 − p) + pet ]n = (q + pet )n
Continuous Distributions
  • Uniform, U (a, b)
                      1
      – PDF: f (x) =      , for a ≤ x ≤ b
                    b−a
                           x−a
      – CDF: P (X ≤ x) =         , for a ≤ x ≤ b
                           b−a
           a+b              (b − a)2
      – µ=       and σ 2 =
             2                 12
                     etb − eta
      – MGF: M (t) =           , for t 6= 0, and M (0) = 1
                     t(b − a)
  • Exponential
                       1
      – PDF: f (x) = e−x/θ , for x ≥ 0
                       θ
      – x is the waiting time we are experiencing to see one change occur.
      – θ is the average waiting time between changes in a Poisson process. (Sometimes called the
        “hazard rate”.)
      – CDF: P (X ≤ x) = 1 − e−x/θ , for x ≥ 0.
      – µ = θ and σ 2 = θ2
                          1
      – MGF: M (t) =
                        1 − θt
      – Distribution is said to be “memoryless”, because P (X ≥ x1 + x2 |X ≥ x1 ) = P (X ≥ x2 ).
  • Gamma
                          1                     1
      – PDF: f (x) =         α
                               xα−1 e−x/θ =            xα−1 e−x/θ , for x ≥ 0
                       Γ(α)θ                (α − 1)!θα
      – x is the waiting time we are experiencing to see α changes.
      – θ is the average waiting time between changes in a Poisson process and α is the number of
        changes that we are waiting to see.
      – µ = αθ and σ 2 = αθ2
                           1
      – MGF: M (t) =
                       (1 − θt)α
  • Chi-square (Gamma with θ = 2 and α = 2r )
                            1
      – PDF: f (x) =               xr/2−1 e−x/2 , for x ≥ 0
                        Γ(r/2)2r/2
      – µ = r and σ 2 = 2r
                              1
      – MGF: M (t) =
                         (1 − 2t)r/2
   • Normal, N (µ, σ 2 )
                        1       2    2
        – PDF: f (x) = √ e−(x−µ) /2σ
                      σ 2π
                                   2 t2 /2
        – MGF: M (t) = eµt+σ
Integration formulas
     Z
                       1           1             1
   •    p(x)eax dx = p(x)eax − 2 p0 (x)eax + 3 p00 (x)eax − . . .
                       a          a              a
     Z ∞            
              1 −x/θ
   •      x     e       dx = (a + θ)e−a/θ
      a       θ
     Z ∞             
            2 1 −x/θ
   •      x      e       dx = ((a + θ)2 + θ2 )e−a/θ
      a        θ
Other Useful Facts
   • When X depends upon Y , Var(X) = E[Var(X|Y )] + Var(E[X|Y ]). (Called the “Total Variance” of
     X.)
   • Chebyshev’s Inequality: For a random variable X having any distribution with finite mean µ and
     variance σ 2 , P (|X − µ| ≥ kσ) ≤ k12 .
   • For the variables X and Y having the joint PMF/PDF f (x, y), the moment generating function for
     this distribution is
                                                         XX
     M (t1 , t2 ) = E[et1 X+t2 Y ] = E[et1 X et2 Y ] =            et1 x et2 y f (x, y)
                                                          x   y
        – µx = Mt1 (0, 0) and µy = Mt2 (0, 0) (These are the first partial derivatives.)
        – E[X 2 ] = Mt1 t1 (0, 0) and E[Y 2 ] = Mt2 t2 (0, 0) (These are the “pure” second partial derivatives.)
        – E[XY ] = Mt1 t2 (0, 0) = Mt2 t1 (0, 0) (These are the “mixed” second partial derivatives.)
Discrete Distributions:
If X ∼ Binomial (x; n, p), where p is the prob. of success and n is the number of tries, then
                        n
                         px (1 − p)n−x x ∈ {0, 1, ..., n}
                          
      P(X = x) =        x                                 ,                     E X = np,   Var [X] = np(1 − p)
                       0               otherwise
     If X ∼ NegativeBinomial (x; r, p), where p is the prob. of success, and r is the number of
     successes required,
                        x−1
                                    pr (1 − p)x−r x ∈ {r, r + 1, ...}
                               
                        r−1
                                                                                       r
      P(X = x) =                                                                EX =
                       0                          otherwise                            p
                       e−λ λx
                   
                                      x ∈ {0, 1, 2, ...}
      P(X = x) =         x!                                                     EX = λ      Var [X] = λ
                       0              otherwise
                                                              2
Expectation: Continuous case. Suppose fX (x) is the probability density function of X. Then
                           ˆ ∞
                     EX =      xfX (x)dx
                           ˆ−∞
                             ∞
                E [g(X)] =     g(x)fX (x)dx
                            −∞
                 Var [X] = E (X − µ)2 = E X 2 − ( E X)2 , where µ = E X
                                           
Continuous distributions:
                            1                                                        (b − a)2
                       
                           b−a   x ∈ [a, b]                   b+a
            fX (x) =                                 EX =               Var [X] =
                           0     otherwise                     2                        12
                            1          2    2
            fX (x) = √          e−(x−µ) /2σ          EX = µ             Var [X] = σ 2
                           2π σ
Poisson Approximation Theorem: Let X ∼ Binomial (x; n, p).            For np small relative to n,
     P(X = x) ≃ P(Y = x), where Y ∼ Poisson(y; λ = np).
DeMoivre-Laplace Approximation Theorem: Let X ∼ Binomial (x; n, p). For np(1 − p) suffi-
   ciently large,                        !
                            X − np
                        P p           ≤ z ≃ P(Z ≤ z) = Φ(z)
                            np(1 − p)
     where Z ∼ N (z; 0, 1).